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Abstract: Accurately forecasting the daily production of coalbed methane (CBM) is important
forformulating associated drainage parameters and evaluating the economic benefit of CBM
mining. Daily production of CBM depends on many factors, making it difficult to predict using
conventional mathematical models. Because traditional methods do not reflect the long-term time
series characteristics of CBM production, this study first used a long short-term memory neural
network (LSTM) and transfer learning (TL) method for time series forecasting of CBM daily production.
Based on the LSTM model, we introduced the idea of transfer learning and proposed a Transfer-LSTM
(T-LSTM) CBM production forecasting model. This approach first uses a large amount of data similar
to the target to pretrain the weights of the LSTM network, then uses transfer learning to fine-tune
LSTM network parameters a second time, so as to obtain the final T-LSTM model. Experiments were
carried out using daily CBM production data for the Panhe Demonstration Zone at southern Qinshui
basin in China. Based on the results, the idea of transfer learning can solve the problem of insufficient
samples during LSTM training. Prediction results for wells that entered the stable period earlier were
more accurate, whereas results for types with unstable production in the early stage require further
exploration. Because CBM wells daily production data have symmetrical similarities, which can
provide a reference for the prediction of other wells, so our proposed T-LSTM network can achieve
good results for the production forecast and can provide guidance for forecasting production of
CBM wells.

Keywords: Recurrent Neural Network (RNN); Long Short-Term Memory (LSTM); forecasting of
CBM daily production; transfer learning

1. Introduction

As a high-quality energy source that can replace natural gas, coalbed methane (CBM) is an
important energy reserve in China [1]. The rational use and drainage of CBM is significant for improving
energy structure, protecting the environment, and promoting economic development [2]. Forecasting
CBM daily production can not only help predict the economic benefits of CBM development [3],
but also provide a basis for development of reasonable parameters for CBM drainage, which plays an
important role in the orderly mining of CBM [4].

At present, methods for predicting the daily production of CBM mainly include type curves,
decline curves, numerical simulations, material balance [5], and machine learning (e.g., neural networks,
support vector machines (SVMs)).
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Liet al. [6] used the Weibull curve to make a segmented prediction of CBM production, obtaining a
better fit in linear regression. Xu et al. [7] introduced the relationship between type curve-dimensionless
production and time, proposing the type curve method of CBM production by analyzing the influence
of permeability and Langmuir pressure on the type curve. Jang et al. [8] predicted production
performance of CBM by combining falling curve analysis with material balance and flow analysis to
establish a comprehensive production data model of CBM. In addition, several scholars have studied
CBM production using multivariate regression methods. For example, Xu et al. [4] established a
prediction model for outflows of CBM by combining multivariate regression with contour analysis of
the coalbed floor. Chen et al. [9] used the main factors affecting the gas content of coal seams extracted
through correlation analysis into the multivariate stepwise regression to produce a predicted value
consistent with the measured value. Li et al. [10] combined stepwise regression with a variety of factors
to make quantitative predictions about CBM resources.

Numerical simulations of unconventional gas reservoirs are summarized in the works of Cipolla
et al. [11], which often employ relatively complex mathematical models. With developments in
relevant technologies, geological parameters and human influence factors now require increasing
consideration to improve model accuracy. For example, Zhao et al. [12] used a gray lattice Boltzmann
method to perform numerical simulations, so as to address the problem of interlayer interference
caused by changes in permeability and differences in pressure between coal seams during the mining
process. Zhou [13] also used numerical simulations to predict the production of a horizontal CBM
well in Australia. The works of Cipolla et al. [11] also reflect this trend, often employing complex
mathematical models to numerically simulate the output of unconventional gas reservoirs. Yunetal. [1]
used C++-based Korean software CBMRS 1.0 to develop their own software dedicated to providing
numerical CBM reservoir simulation. Accurate geological parameters and sufficient production data
are essential to the use of numerical simulations for production forecasting [14]; without these, the use
of numerical simulations would be inappropriate.

The material balance equation is also an important tool for estimating the reserves and performance
of both conventional and unconventional gas reservoirs. King [15] introduced two material balance
methods for unconventional gas reservoirs that considered the effects of adsorbed gas; these were used
to estimate natural gas reserves and reservoir predictions. By contrast, the material balance equations
proposed by Shi et al. [16] considered the effects of the difference between initial reservoir pressure and
critical desorption pressure, pore and water compressibility, and dissolved and free gas factors. Sun
et al. [17] proposed an improved flow material balance (FMB) equation method by taking into account
the pressure—saturation relationship, which provides a reliable tool for extracting low-permeability
CBM reservoir information. As evidenced by these advancements, material balance equation methods
for CBM production forecasting can take into account numerous factors; however, CBM production is
a complex and dynamic process that is not limited to the aforementioned factors, and the difficulty of
obtaining these hinders the performance of these methods.

Machine learning methods avoid discussion of complex geological conditions as well as human
factors, allowing for more convenient applications in production forecasting. For example, many
scholars [18-21] have used BP neural networks to predict CBM production and have found that
neural networks are more accurate than the traditional method. Xia et al. [22] proposed a mixed
method based on a rough set (RS) and least squares support vector machine (LS-SVM) to predict CBM
productivity. Existing methods for predicting CBM production have been used widely, and a majority
have established a complex mathematical model for production forecasting. However, CBM production
is a complex dynamic process, influenced by several factors. This, coupled with the unavailability
of several factors, makes the process difficult to describe using a mathematical model [2]. Although
machine learning methods such as BP neural networks and SVMs have a wide range of applications in
production forecasting, predicting CBM production is a typical time series problem based on historical
production data of gas wells. BP neural networks and other methods do not fully consider the time
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dependence of time series data, analyze only a single sample’s data [23], and are very susceptible
to errors.

Although the process of CBM mining is extremely complicated, the daily production of CBM
itself is the result of a combination of various factors, which to some extent reflects the internal
mechanism of the system [24]. Accordingly, it is possible to abandon complicated research and find
out the inherent change rule based on historical data by studying daily CBM production data, then
predict future output. Aiming at the time series variation rule of CBM production data, this study
proposes a prediction method of CBM production based on long short-term memory (LSTM) models.
The main contribution of this paper is to propose a Transfer-LSTM (T-LSTM) model for predicting CBM
production. It innovatively applies transfer learning (TL) to the LSTM network pretraining process
and has achieved good results.

2. Related Work

LSTM is suitable for analyzing time series, being a deep learning recurrent neural network
structure that can learn long-term sequence data [25]. With the development of deep learning,
the LSTM model has achieved satisfactory results in many aspects. In time series prediction, for
example, many scholars [25-28] have applied the LSTM model to predict the fine particulate matter
(PM, 5) concentration of air pollution and obtained more accurate predictions than by existing methods.
Chen [29], Tian [30], and Li et al. [31] studied traffic flow using an LSTM model. Ma et al. [32] used
LSTM and Beijing microwave traffic detection data to predict traffic speed and found that a LSTM
network predicted accuracy and stability better than traditional neural network and other parametric or
nonparametric algorithms did. Fischer [33] and Kim et al. [34] used the LSTM model to make predictions
about financial markets and found that the results were better than the results of random forest, deep
neural network (DNN), and other methods. Peng [35] and Fang et al. [36] used the LSTM model to
predict electricity prices and electricity sales. Sagheer et al. [37] proposed a deep long short-term
memory (DLSTM) oil production prediction method based on genetic algorithm optimization and
compared it with statistical and software calculation methods, finding that the proposed DLSTM
model was more accurate under different comparison standards. Wang [3] analyzed the time series of
mine gas leakage based on the deep learning method but did not predict CBM production. Although
LSTM models have been widely used in time series analysis, they are still relatively new in CBM
production forecasting. In this study, the LSTM model was applied to predict CBM production, leading
to discussion of the feasibility of using deep learning to predict CBM production.

3. Data and Methods

3.1. Data Description

The experimental datasets used in this study were the CBM production data of the Panhe
Demonstration Zone of Qinnan CBM in Jincheng, Shanxi, China. The first phase of the demonstration
area was put into operation in 2005. Through years of drainage, the CBM production of these CBM
wells has entered a stable stage. The dataset consists of two parts: the first includes multiple indicators
such as CBM production, bottom hole temperature, casing pressure, water production, coal seam
structure, coal seam thickness, and the like for 149 gas wells from 2005 to 2010. The second part
contains the CBM production of another 7 gas wells from 2011 to 2014. Because these data are the
earliest successful commercialized CBM drainage data in China, analysis of the production data of the
early wells can guide the exploitation of new wells. In this study, we mainly tested the CBM production
of the seven wells in the second part. Because CBM production data for seven wells are insufficient
for deep learning network training, we used the first part of the data to pretrain the network and
used transfer learning (see Section 3.2 of this paper) to predict the second part of the CBM production.
The time series of CBM production in the seven wells is shown in Figure 1, where X indicates the
number of days of CBM mining (1,2, 3 ..., n) and y represents daily CBM production (m?). It can be
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seen from the curves that the CBM output types of the seven wells are different and vary greatly with
different phases.

The data were divided into training sets and test sets as required. To ensure availability of
sufficient data to train the network, the dataset was divided into training sets and test sets in the ratio
of 80% and 20%, respectively. To avoid the impact of excessive numerical range on the accuracy of the
network, CBM datasets were first standardized to values ranging between 0 and 1. Normalization of
the data is conducive to initialization and adjustment of learning rate and can greatly improve neural
networks’ speed in finding an optimal solution [38]. The min-max normalization method was adopted
in this paper.
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Figure 1. Time series of coalbed methane (CBM) daily production for the seven wells.
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3.2. LSTM Neural Network

LSTM is a special kind of recurrent neural network (RNN) that can effectively solve the
gradient disappearance or explosion problem of RNN through long-term dependence of time series
analysis [39-45]. Unlike traditional neural networks, RNN has hidden nodes that are connected,
with the current output of a time series related to the output before it, so that the time sequence
characteristics of data can be taken into account. The structure of a typical RNN network is shown
in Figure 2. The left side represents a network element, and the right side is the unfolded form of
multiple network elements, where t represents a time series, X input values, and S; memory at time
t. W, U, and V represent the weights of the input, the moment, and the output, respectively, and O
represents the output values. RNN can capture timing features but can solve only short-sequence
problems; it does not work for long-sequence data such as CBM daily production.

Ot Ot Ot+1

O S 0 O

v Y,

Unfold
U U U U

X Xt-1 Xt Xt+1

Figure 2. Structure of recurrent neural network (RNN).

LSTM can overcome the shortcomings of RNN and features long-term memory. A typical LSTM
network cell structure is shown in Figure 3, where Cell represents a memory cell; X; and ; represent the
input and output at time ¢, respectively; and h;_; represents the output at the previous time. The LSTM
network structure solves the RNN gradient problem through three “gates”: a “forget gate”, an “input
gate”, and an “output gate”. The “forget gate” decides which information to discard and which to
retain, the “input gate” controls the information input to the cell, and the “output gate” controls
the output information. The hidden layer structure of the LSTM network can be calculated by the
following equations:

it = 0(Wyixt + Wiihp—1 + WeiCi1 + bi) 1

fi = 0 (Wt + Wighi1 + WerCio + by) @)

¢t = fr*Cioq +ipxtan h (Wexe + Wiehi—q + be) 3)
0r = 0 (Wyoxt + Wiohi—1 + WeoCr + by) 4)

hy = ostan h(ct) @)

where f is a time series; 7, f, ¢, and 0 are input gate, forget gate, output gate, and memory cell, respectively;
W and b are corresponding weights and offsets, respectively; and 6 represents a sigmoid function.
According to the characteristics of CBM time series data, the overall framework of predicting CBM
daily production using the LSTM model is shown in Figure 4. The framework of CBM production time
series prediction was divided into three parts: input layer, hidden layer, and output layer. The input
layer was responsible for data standardization and dividing the datasets. The data output from the
input layer was used as an input to the hidden layer. The hidden layer was used to build the LSTM
network structure and predict the time series data. The hidden layer was antistandardized by the
output layer after completing the prediction, and the prediction results were used as the output.
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Figure 4. Framework of time series forecasting of CBM production based on LSTM. A recursive arrow

indicates that the processing can be repeated.

We used mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean
square error (RMSE) as the three principal indicators to evaluate the accuracy of our experiments,

1 n
MAE = = ) |P; - A ©6)
i=1
1 v |P; — Al
_ 1y IPi-Al
MAPE = — ; T @)
RMSE = ®)

where P; is predicted CBM production, A; is actual CBM production, and # is number of test samples.

3.3. T-LSTM Model

Transfer learning applies knowledge learned in a similar domain to a target domain to make
up for an insufficient number of samples in the actual training process. The similar domain refers
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to the existing knowledge, whereas the target domain is the new knowledge to be learned. In our
study, the similar domain is the data for the 149 wells in the first part, and the target domain is the
data for the 7 wells in the second part. Obviously, a dataset of 7 gas wells is relatively sparse for deep
learning training. Compared with our target data, a dataset of 149 gas wells is relatively large, so we
use the transfer learning method to apply the knowledge learned on 149 gas wells to the target domain.
Although the data in the similar domain are not from the same period as our target 7 gas wells, they all
have similar periodic characteristics and are very similar to our task domain [6]. Accordingly, we can
first use gas production data for 149 wells to pretrain our network, fix the learned weights, then transfer
our findings to the target domain, using gas production data in the target domain to fine-tune the
network parameters. In this way, we have formed a new T-LSTM model. Through transfer learning,
we can largely solve the problem of insufficient samples for deep learning. The specific process is
shown in Figure 5:

A large number

of samples
A all
OCD number of
=] samples
<:>O
Similar domain

data _——Task—

domain data
Pre-training Fine-tuning

100

Figure 5. The process of transfer learning.

4. T-LSTM Network Training and Parameter Optimization

The training set was used as an input into the T-LSTM network model for training, and the model
parameters were optimized through experiments. Here, well 4 is taken as an example to explain the
setting of the parameters. First, the influence of the number of LSTM hidden layers on network training
and prediction results was explored. The input layer and output layer of the network were set to 1.
Based on past experience, the initial learning rate was set to 0.001, the number of nodes in each layer
was 128, and the training iteration times epoch was set to 300.

Cross-validation is needed for optimal parameter selection. For machine learning and deep
learning, there are many traditional cross-validation methods, such as the leave-one-out cross-validation
method and the k-fold cross-validation method [46,47]. However, these methods cannot be used in time
series prediction, because time series data are time-dependent. To solve this problem, rolling-origin
recalibration evaluation was adopted in this paper [48]. The training set was divided into two
parts, with the first 50% the training subset and the second 50% the validation set. In the forward
rolling validation, the data from the validation set were moved to the training subset in chronological
order. Our cross-validation process is shown in Figure 6, with blue circles representing training data,
red circles validation data, and hollow circles unused data. We performed a split of the validation set
five times, each time using 10% of the data for verification and then moving it to the training subset in
chronological order for the next training process.
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L JiL J
Training subset Validation set

Figure 6. The process of cross-validation.

The optimal number of hidden layers was selected by experiments from 1 to 5. To improve the
generalization ability of the model and prevent overfitting, the dropout function was included in the
LSTM model and 20% of the nodes were discarded. The loss function used was MSE. Corresponding to
the different numbers of hidden layers (1, 2, 3, 4, 5), the LSTM network was trained, and the number of
hidden layers was selected by comparing the loss variation of the model, as shown in Figure 7. As can
be seen from Figure 7, with two hidden layers, the loss obtained was at its minimum (less than 0.001).
Accordingly, two hidden layers were selected to train the LSTM model. The more hidden layers used,
the longer the network training time required. Accordingly, using more hidden layers in a network
does not necessarily produce better network training. As can be seen from the results, use of too many
layers not only reduces training accuracy but also greatly increases training time.
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0.000 L 1 I . I . 1 ; ] ; i ;
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Figure 7. Loss curves comparison with different numbers of hidden layers.

The learning rate was found to directly affect the training result of the model. If the learning rate
was too high, the model was not trained accurately. Conversely, too small a learning rate increased
network convergence time. Through experimentation, the hidden layer’s number of LSTM networks
was fixed at 2, and different values of the learning rate were taken (LR = 0.00001, 0.00005, 0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, and 0.1) to explore the influence of learning rate value on the model.
The variations in model loss, corresponding to different learning rates, are shown in Figure 8. As can be
seen, when the learning rate was large (LR = 0.1, 0.05), the loss of the model did not gradually decrease
with the epoch but rather increased to a certain value and stopped changing as the epoch increased.
The model fit was poor. As the learning rate gradually decreased (LR = 0.01, 0.005), the loss error
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gradually decreased as the epoch increased. However, as the epoch continued to increase, loss error
increased instead of decreasing and was mostly in a state of shock. When the learning rate decreased
to 0.001, loss value decreased with increases in epoch and gradually stabilized. When the learning rate
decreased to 0.0001, loss value reached its minimum value (less than 0.001) and model accuracy its
highest value (with RMSE, MAE, and MAPE at their minimum values). As the learning rate continued
to decrease, the loss value no longer decreased significantly but the precision of the model started
to decrease (RMSE, MAE, and MAPE became larger). These findings show that when LR = 0.0001,
the model can achieve a better fit and achieve the highest accuracy. Accordingly, a learning rate of
0.0001 was adopted to train the LSTM network.

0.012
——LR=0.1
——LR=0.05
——LR=0.01
0.010 | | ——LR=0.005
——LR=0.001
—— LR=0.0005
—— LR=0.0001
0.008 |- —— LR=0.00005
—— LR=0.00001
£ 0006 -
|
0.004
0.002 “w
N \ M s : NAARAR A AR~ Ay
0.000 1 " 1 n l " 1 n 1 " 1 " 1
0 50 100 150 200 250 300

Epoches

Figure 8. Loss curve comparison with different learning rates.

Based on the foregoing analysis, we used a network with two hidden layers and set the learning
rate to 0.0001.

5. Results and Discussion

We trained the T-LSTM model through cross-validation and finally determined the optimal
structure and parameters of the network. Then, the LSTM model was used to predict the CBM
production of seven wells. The final prediction of CBM production is shown in Figure 9 (No. 1-No. 7),
with blue representing measured data, green the LSTM network output result of the training set,
and red the prediction of the T-LSTM network for the test set. It can be seen that time series analysis of
daily CBM production by T-LSTM can achieve accurate results. The predicted CBM production by the
T-LSTM network was close to the actual production. The predicted production of wells 2 and 4 was the
most consistent with actual production. From the results, the predicted values are evenly distributed
on both sides of the true values, indicating that the predicted results are unbiased. Although the results
for wells 1, 6 and 7 were significantly lower than those of other sample areas, the predicted values
deviated farther from the true values, the overall estimated values were higher than the true values,
and the predicted results were biased.

The RMSE, MAE, and MAPE values of the seven CBM wells were statistically analyzed, as shown
in Table 1. As can be seen, the errors of wells 2, 3, 4, and 5 were small, with RMSE values of 25.79, 90.86,
47.33, and 89.02, respectively, whereas the errors of wells 1, 6, and 7 were large, with RMSE values of
155.04, 174.53, and 184.06, respectively.
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Figure 9. Predictions of daily CBM production by T-LSTM model.

10 of 15

Table 1. Root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage
error (MAPE) values of the seven wells.

Well RMSE (m®) MAE (m®)  MAPE (%)
1 155.04 149.34 5.07
2 25.79 20.17 0.83
3 90.86 74.68 1.37
4 47.33 27.14 1.97
5 89.02 64.55 1.67
6 174.53 151.75 2.16
7 184.06 148.71 2.59

For the LSTM network, different results were obtained by each network training. To avoid
the contingency of network training and develop a robust LSTM network, 30 independent repeat
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experiments were conducted on the CBM production data for each gas well. After setting the network
parameters, training for each well was repeated 30 times, with RMSE, MAE, and MAPE values obtained
for each repeat. Then boxplots were used to statistically analyze the RMSE of the 30 experiments,
with RMSE, MAE, and MAPE distributions used to verify the stability of the T-LSTM network. Thirty
independent repetitions sufficed to obtain a good distribution of these three indicators. The boxplots
for the seven wells are shown in Figure 10. It can be seen that the RMSE, MAE, and MAPE results
obtained from the 30 network trainings were concentrated, with a small interval between the upper and
lower quartiles indicating a small distribution range and good stability of the LSTM network. From
the boxplots, we can clearly see that the prediction result for well 2 was the most accurate, featuring
the smallest RMSE, MAE, and MAPE values. The prediction results for wells 1, 6, and 7 were relatively
poor, featuring large values of RMSE, MAE, and MAPE. Based on analysis of the change curves of
production with time, the gas production of well 2 entered the stage of stable and continuous CBM
production earlier, so the prediction result was relatively accurate. However, for types such as well 6,
having low output or unstable output at the early stage, neural networks have not yet learned the
characteristics of the time series of the curves well, making it difficult to grasp the time node of the
output change and thus to forecast results for these types with a high degree of accuracy.
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Figure 10. RMSE, MAE, and MAPE error boxplots of 30 T-LSTM network training for seven wells.
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In addition, we compared the T-LSTM model with other CBM production prediction cases in
the literature, as shown in Table 2. As can be seen, the average relative error of the T-LSTM model
we proposed is 2.20%. The prediction error of the T-LSTM model was smaller than most cases in the
references, indicating that the T-LSTM model can predict CBM production better than many traditional
methods. Moreover, the T-LSTM model is more convenient to operate than traditional methods. It does
not require consideration of many complex geological factors and complex mathematical models, only
input of historical production data, and thus can be more efficient than many traditional methods.

Table 2. Comparison of the average relative error between the Transfer-LSTM (T-LSTM) model and
some traditional cases in the literature.

Prediction Model Average Relative Error (%)
BP neural networks [2] 6.04
SVR [2] 4.28
HPSO-SVR [2] 2.44
IPSO-SVM [2] 2.44
HPSO-SVM [2] 2.20
Type curves [7] 16
Decline curves [8] 5
Multiple stepwise regression [9] 13.6
Multiple regression [13] 7.87
BP neural networks [13] 2.25
BP neural networks [15] 1.35
BP neural networks [16] 4.61
LS-SVM [18] 791
T-LSTM 2.20

6. Conclusions

In this study, a time series forecasting method of CBM daily production based on a T-LSTM
network has been proposed, and parameter selection and model training, with CBM production
forecasting of the T-LSTM model introduced. Through experimentation, the following findings
were made:

(1) The use of the T-LSTM model for time series forecasting of CBM production can provide
accurate results. Compared with traditional methods, the LSTM model does not need to consider
the complex mining process of CBM but instead directly looks for the rule from the time series data
to predict future output. Combining the idea of transfer learning with that of LSTM can solve the
problem of insufficient training samples for deep learning. It can be seen from the experiment that the
curve of CBM production predicted by the T-LSTM model was very close to the actual production
curve and that error was small, suggesting a significant role for this model in practical applications.

(2) When training the LSTM model, the number of hidden layers and the setting of learning rate
are very important. With too few hidden layers, the model could not be fully trained. Too many layers
increased the network training time and reduced efficiency. Too large or too small learning rates will
affect network convergence speed and can even lead to overfitting and underfitting. Accordingly,
multiple experiments are needed to find the most suitable value.

(3) When predicting CBM production in seven gas wells, it can be seen that the prediction
accuracy of gas wells with different periodic trends varies greatly. For gas wells that entered the stable
production period earlier, the T-LSTM model’s predicted results were more accurate. However, for gas
well types that showed unstable production for a long time in the early stage, or that had extremely
low production and suddenly increased at a certain stage, the prediction results were relatively poor.
CBM production of these types of wells has not yet produced a regular rule, and as a result, the neural
network has not been fully trained, showing that LSTM might not be suitable for predicting production
of all types of CBM wells—a finding that requires further exploration.
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