
symmetryS S

Article

Quantum Key Distillation Using Binary Frames

Luis A. Lizama-Perez 1,* and J. Mauricio López 2

1 Sección de Posgrado de la Universidad Politécnica de Pachuca, Ex-Hacienda de Santa Bárbara,
43830 Zempoala, Hidalgo, Mexico

2 Cinvestav Querétaro, Libramiento Norponiente 2000, Real de Juriquilla, 76230 Santiago de Querétaro,
Querétaro, Mexico; jm.lopez@cinvestav.mx

* Correspondence: luislizama@upp.edu.mx or adrianlizama@gmail.com

Received: 13 April 2020; Accepted: 19 June 2020; Published: 24 June 2020
����������
�������

Abstract: We introduce a new integral method for Quantum Key Distribution to perform sifting,
reconciliation and amplification processes to establish a cryptographic key through the use of binary
matrices called frames which are capable to increase quadratically the secret key rate. Since the
eavesdropper has no control on Bob’s double matching detection events, our protocol is not vulnerable
to the Intercept and Resend (IR) attack nor the Photon Number Splitting (PNS) attack. The method
can be implemented with the usual optical Bennett–Brassard (BB84) equipment allowing strong
pulses in the quantum regime.
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1. Introduction

Quantum cryptography has emerged as a promissory theoretical and technological paradigm
for the quantum computing era. This is because the presence of an eavesdropper in QKD protocols
produces a detectable disturbance on the quantum communication. Unfortunately, some technological
loopholes have been found in the photo-detection system which have imposed new challenges to
QKD systems.

Due to those technological loopholes most of the QKD systems have failed to be secure against
some of the most challenging attacks: the Intercept-Resend with Faked States (IRFS) attack [1–10] and
the Photon Number Splitting (PNS) attack [11]. IRFS attacks can be partially solved by monitoring the
photo intensity at the receiver.

Previously, we have introduced the ack-state protocol in [12,13]. In addition, the nack-state
protocol was first discussed in [14]. Such protocols constitute a generalization of the BB84 to resist the
PNS attack [13] and the IRFS attack [14], respectively. Both methods are conceived under the basis of a
new theoretical approach called quantum flows, denoted by Q [13,15].

In this work, we extend the Q approach to introduce a new distillation method based on binary
matrices called frames. It is known that the distillation process generate a few secret bits after a high
number of quantum pulses are transmitted from Alice (the sender) to Bob (the receiver).

Several algorithms are applied during the distillation process: sifting, error correction and privacy
amplification among others. However, some of them have been developed from other research fields
to attend specific requirements. Error correction algorithms are described in [16–19] and privacy
amplification is analyzed in [20]. Up to our knowledge there is no integral method capable to perform
the QKD distillation in a single process.

We will introduce here the frame distillation as an integral method for QKD to perform sifting,
error correction and privacy amplification just in one process. Surprisingly, we have found that at least
theoretically, this technique increases quadratically the size of the secret key allowing to raise up the
secret key rate.
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2. Related Work

We will describe briefly some reconciliation methods used in QKD, a summary of them is shown
in Table 1:

1. Binary protocol [16] is a reconciliation method that find and correct errors after the transmission
of quantum pulses caused by the noise in the channel and possibly from the eavesdropper.
After Alice and Bob obtain an error estimation based on a portion of their sifted key,
they determine whether the error failure threshold has been breached. If the error rate is in
excess of the fail threshold, Alice and Bob begin the raw key step again. If the estimated error
rate is acceptable, Alice and Bob begin the first of a number of passes and use a predetermined
random permutation, applying it to the sifted key bits.

2. Cascade [17] is a reconciliation method that has become the de-facto standard for all QKD practical
implementations. After a number of passes, permutations and cascades, the protocol finishes
with low probability that errors still remain [21]. However, large communication overhead have
raised methods based on error correcting codes which are more practical.

3. The Winnow algorithm [18] is a reconciliation method based on Hamming codes which introduces
additional errors because the Hamming algorithm can only reveal one single error in each block.

4. LDPC [19] is a linear error correcting code that uses iterative decoding using the sum product
soft decision decoder to correct transmission errors.

We conclude this section pointing out some of the challenges of interactive methods that could be
summarized from [21] as follows:

• Cascade exhibits great efficiency at low error rates but is still robust up to 18% error rate if required.
• Effective estimation of the error rate in the quantum channel.
• Interactivity could be high intensive in the number of passes to check parity.
• The number of required permutations of the shared bits could demand a persistent

computational effort.

Table 1. Comparison of reconciliation methods as presented in [22].

Reconciliation Method Advantages Disadvantages

Interactive

Binary [16] Easy and simple Large communication
overhead

Cascade [17]
Easy and simple

Strong ability of error
correction

Code based

Winnow [18] Communication time
depending on the
rate

Additional errors
(Hamming)

Great Efficiency

LDPC [19]

Correction of errors
as Cascade
Improvement of the
safety of the protocol

3. BB84 Protocol

Figure 1 shows the quantum states and measurement bases of BB84 protocol. Here, Alice sends
one of the following qubits: |0X〉, |0Z〉, |1X〉 and |1Z〉. On the other side, Bob detects the incoming state
choosing randomly the X or Z measurement basis. Bob’s station is equipped with four optical detectors,
one for each qubit. If Bob chooses X to measure |0X〉 or |1X〉 he obtains 0 or 1, respectively and it is
said that Bob has performed a compatible measurement because Bob’s measurement basis matches
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Alice’s preparation basis. Otherwise, if Bob chooses Z to measure |0X〉 or |1X〉, the measurement is not
compatible, the result is ambiguous and it must be discarded. States |0Z〉 or |1Z〉 behave according to
the same principle.

In the BB84 protocol, when a single matching detection event is produced at Bob’s station,
the information is derived from the compatible quantum measurement, otherwise the measurement
result is ambiguous and it must be discarded.

Figure 1. BB84 pulses represented in the Bloch sphere. The quantum states prepared by Alice (left)
could be |0X〉, |1X〉, |0Z〉, |1Z〉 and the measurement bases Bob could apply are X and Z (right).

4. Quantum Flows

Let us introduce the simplest case of quantum flows approach [13,14]. Here, Alice sends to Bob a
pair of quantum states, parallel or non-orthogonal (see Figure 2). The selection between parallel or
non-orthogonal pair is performed randomly. On the other side, Bob measures the two quantum states
with the same measurement basis, X or Z. If after Bob has measured the pair of quantum states he
obtains the same result, a single bit has been successfully transmitted from Alice to Bob. This implies
that two quantum states are used to encode a single bit.

After several rounds, pairs of non-orthogonal qubits are interleaved with pairs of parallel qubits.
We define that a non-orthogonal quantum flow is interleaved with a parallel quantum flow. This scheme
can be generalized to multiple parallel or non-orthogonal states [13,14].

Figure 2. We represent pairs of quantum states: (a) orthogonal pairs (|0Z〉, |1Z〉) and (|0X〉, |1X〉),
(b) non-orthogonal pairs (|0X〉, |0Z〉), (|1X〉, |0Z〉), (|0X〉, |1Z〉) and (|1X〉, |1Z〉) and (c) parallel pairs
(|0Z〉, |0Z〉), (|1X〉, |1X〉),(|0X〉, |0X〉) and (|1Z〉,|1Z〉).
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In quantum flows approach, the basic mechanism to transfer information from Alice to Bob is
that Alice encodes one bit through a pair of non-orthogonal quantum states. On the other side, the bit
is received successfully if a double matching detection event is produced at Bob’s optical station after
he measures the pair of non-orthogonal quantum states with the same measurement basis (X or Z),
so that the same detector clicks twice (see Figure 3).

Since the two qubits sent by Alice are non-orthogonal and Bob used the same measurement
basis, necessarily Bob performs one compatible measurement (the measurement basis that matches
the preparation basis chosen by Alice). Although the other measurement is non-compatible, that is,
Bob’s measurement basis does not match Alice’s preparation basis, it has 1

2 probability to produce
click at the same detector chosen by Bob. Therefore, in case of a double matching detection event,
the transferred bit comes from the compatible measurement. Here, the order between the compatible
and the non-compatible measurement is irrelevant for our purposes.

4.1. Measurement of Non-Orthogonal Quantum States

Consider Alice sends to Bob a pair of the non-orthogonal states depicted in Figure 2: (|0X〉, |0Z〉),
(|0X〉, |1Z〉), (|1X〉, |0Z〉), (|1X〉, |1Z〉). One of the following detection events will be registered at Bob’s
optical system:

1. Single detection: One of the two qubits is detected at Bob’s station. It could be processed as
usually in BB84 protocol. However, in our context, this kind of detection will not be included as
part of the distillation process.

2. Double detection: The two non-orthogonal states are detected at Bob’s station.

In the matching case, the same detector produces a click for a given pair of non-orthogonal
qubits. In the current protocol only this case will be exploited to derive secret bits.

In the non-matching case the qubits are registered at different photo detectors. These kind of
results are ambiguous and they are not useful to derive secret bits.

3. No detection: No pulse is registered.

In case a double matching detection event is produced at Bob’s side, the shared bit comes from
the compatible measurement (see Table 2). Therefore, non-matching results are ambiguous and they
are not usable to distill secret bits.

Table 2. Measurement results after a double detection event (matching and non-matching). In the
matching case, Bob measures the two quantum states with coincident results. Only double matching
events encode a bit. The shared bit comes from the compatible measurement.

Bob’s Basis Measurement
Alice’s Non-Orthogonal Matching Event Non-Matching Event

Pairs X Z X Z

(|0X〉, |0Z〉) (|0X〉, |0X〉) (|0Z〉, |0Z〉) (|0X〉, |1X〉) (|1Z〉, |0Z〉)
(|0X〉, |1Z〉) (|0X〉, |0X〉) (|1Z〉, |1Z〉) (|0X〉, |1X〉) (|0Z〉, |1Z〉)
(|1X〉, |0Z〉) (|1X〉, |1X〉) (|0Z〉, |0Z〉) (|1X〉, |0X〉) (|1Z〉, |0Z〉)
(|1X〉, |1Z〉) (|1X〉, |1X〉) (|1Z〉, |1Z〉) (|1X〉, |0X〉) (|0Z〉, |1Z〉)

For example, Figure 3 shows that Alice prepares and sends to Bob the pair of non-orthogonal
states (|0X〉 , |1Z〉). He chooses randomly to measure both pulses with the X basis (or Z). The two
possible double matching detection events are illustrated at right of Figure 3. First, we see the case
when Bob chooses X and the double matching detection event produces |0X〉. The other possibility is
that Bob chooses Z and the double matching detection event gives |1Z〉.

This is equivalent to say that exists one bit encoded at each quantum measurement basis,
however the transferred bit comes from the measurement basis chosen by Bob that matches the
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preparation basis chosen by Alice. This kind of quantum measurement is just possible with pairs of
non-orthogonal qubits since measurement of parallel qubits using the non-compatible measurement
basis will produce ambiguity.

Figure 3. Alice sends the non-orthogonal pair (|0X〉 , |1Z〉) to Bob. After a double matching detection
event is produced at Bob’s optical system it could register |0X〉 or |1Z〉.

4.2. Quantum Photonic Gains

Not taking into account losses in the quantum channel and the efficiency of optical detection
system we can compute the gains of double pulses. In this context, Q(+,+) represents the photonic gain
of two non-empty pulses, Q(±,∓) is the gain of the pulses in which is produced a non-empty pulse
and one vacuum pulse (whatever the order between them) and Q(−,−) is the gain of two consecutive
vacuum pulses [15]. Since the gains follow a Poisson’s distribution we can write them in Equation (1).

Q(+,+) = (1− e−µ)
2

Q(±,∓) = 2e−µ(1− e−µ)

Q(−,−) = e−2µ

(1)

For example, for µ = 0.1 we have Q(−,−) = 0.8187, Q(±,∓) = 0.1722 and Q(+,+) = 0.01. Therefore,
the gain of double pulses reduces considerably. Increasing µ to 0.5 raises Q(+,+) to 0.15. However,
the detection system sometimes requires a recuperation time after it can register another detection event,
so the probability to get two consecutively pulses reduces even more. Fortunately, quantum states
inside a pair of non-orthogonal states can be sent temporally separated as it is represented in Figure 4
(for details see Section 4.2 of [14]).

Figure 4. Quantum states inside a non-orthogonal pair are separated temporally to avoid losses due
to consecutive detection events. The order between two non-orthogonal states is not relevant for the
present discussion.
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5. Distillation Based in Non-Orthogonal Quantum States

To explain the distillation process to produce secret bits between Alice and Bob using
non-orthogonal quantum states we must introduce a new concept based on binary matrices
called frames.

5.1. Frames

Binary frames or simply frames, are binary matrices conceived to implement the sifting,
error correction and amplification processes for non-orthogonal quantum states based QKD.
We introduced the set of 2× 2 frames enumerated from 1 to 14 in Table 3. We have classified the
frames into useful and useless frames but such distinction will be explained later. Each row of a frame
contains the qubits of the non-orthogonal pair sent by Alice, basis X to the left, basis Z to the right
(see Table 3).

Table 3. There are 6 useful frames: fi, where i = 1, . . . , 6 and 8 useless frames f j, where j = 7, . . . , 14.

Useful Frames Useless Frames

f1 =

(
|0X〉 |1Z〉

|1X〉 |0Z〉

)
f2 =

(
|1X〉 |0Z〉

|1X〉 |1Z〉

)
f7 =

(
|0X〉 |0Z〉

|0X〉 |0Z〉

)
f11 =

(
|1X〉 |1Z〉

|1X〉 |1Z〉

)

f3 =

(
|0X〉 |1Z〉

|1X〉 |1Z〉

)
f4 =

(
|1X〉 |1Z〉

|0X〉 |1Z〉

)
f8 =

(
|0X〉 |0Z〉

|1X〉 |1Z〉

)
f12 =

(
|1X〉 |1Z〉

|0X〉 |0Z〉

)

f5 =

(
|1X〉 |0Z〉

|0X〉 |1Z〉

)
f6 =

(
|1X〉 |1Z〉

|1X〉 |0Z〉

)
f9 =

(
|0X〉 |1Z〉

|0X〉 |0Z〉

)
f13 =

(
|0X〉 |0Z〉

|0X〉 |1Z〉

)

f10 =

(
|1X〉 |0Z〉

|0X〉 |0Z〉

)
f14 =

(
|0X〉 |0Z〉

|1X〉 |0Z〉

)

After Bob measures a pair of non-orthogonal qubits and provided he get a double matching
detection event, he obtains a bit from the corresponding detector. It means that Bob can obtain just one
bit per row inside a frame, thus two bits per frame.

A double detection events is illustrated at right of Figure 3. Each double detection event has its
own Matching Results (MR) code. A Matching Result represents the final configuration of the Alice’s
frame after Bob has measured it. In the example of Figure 5, the four possible results are (|0Z〉 , |1Z〉),
(|0X〉 , |0Z〉), (|1X〉 , |1Z〉) and (|1Z〉 , |0Z〉).
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Figure 5. We see (at left) the states prepared by Alice, two pairs of non-orthogonal states: (|0X〉 , |1Z〉)
and (|1X〉 , |0Z〉). After a double matching detection event is produced at Bob’s side (in this example
two double detection events) the possible matching results are exhibited at the right.

5.2. Matching Results (Mr)

We can see the overall purpose of the protocol saying that Alice transfers a specific frame to
Bob. Then, after two matching detection events are produced at Bob’s station, the frame ends in a
configuration we call Matching Result (MR). We list in Table 4 the four possible Bob’s Matching Results.
Table 4 shows that each Matching Result contains two bits that encode Bob’s MR. The sifting process,
we will introduce next, is intended to Alice would be capable to identify successfully Bob’s MR.

Table 4. There exist four possible Matching Results (MR) for 2× 2 frames. The bit produced by a
double matching event is represented inside the ket notation with the symbol •. Additionally, each MR
has been identified with a binary code left to each frame. After the sifting process such MR code will
become part of the secret key.

MR=00

(
|•X〉 −

|•X〉 −

)
MR=10

(
|•X〉 −

− |•Z〉

)

MR=01

(
− |•Z〉

− |•Z〉

)
MR=11

(
− |•Z〉

|•X〉 −

)
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5.3. Sifting Protocol

Let us enumerate the first steps of the sifting protocol based on frames:

1. Alice prepares and sends to Bob a pair of non-orthogonal qubits over the quantum channel.
She chooses a pair randomly between (|0〉X , |0〉Z), (|0〉X , |1〉Z), (|1〉X , |0〉Z) and (|1〉X , |1〉Z).

2. Bob chooses randomly the measurement basis (X or Z) to measure the incoming pair of
non-orthogonal qubits.

3. After several rounds, using a classical channel, Bob announces to Alice the non-orthogonal pairs
that produce double matching detection event (remember that Bob obtains a distribution of
single and double detection events, which can be matching or non-matching). As indicated
before, the states inside a quantum pair are temporally separated each other, so users must agree
previously on the time difference.

These steps are not enough to distill secret bits. Alice needs a method to identify Bob’s Matching
Results. Now, let us introduce the sifting bits.

5.4. Sifting Bits Based in the Xor Function

To compute the sifting bits it must be applied the usual xor function to the vertical bits inside each
column of the frame, taking the vacuum state as a zero bit. The sifting bits are written at the bottom of
each Matching Result (MR) in Table 5.

A simple example about the execution of the framed distillation can be found in the Appendix
of this article. The most important property of the sifting bits is that they must not be redundant,
otherwise they will become ambiguous. Therefore, the sifting bits of a given frame must not be derived
from distinct Matching Results (MR). This condition can be verified in Table 5, where is evident that
the sifting bits defines a complete set (no repetitions) over the xor function applied to the frame. At this
point, it must result logical that not all the 2× 2 frames can be used during the sifting process. Actually
there are only 6 usable frames which are shown in Table 3. Now, we can enumerate all the steps of the
sifting framed protocol:

1. Alice prepares and sends to Bob a pair of non-orthogonal qubits over the quantum channel.
She chooses a pair randomly between (|0〉X , |0〉Z), (|0〉X , |1〉Z), (|1〉X , |0〉Z) and (|1〉X , |1〉Z).

2. Bob chooses randomly the measurement basis (X or Z) to measure the incoming pair of
non-orthogonal qubits.

3. After several rounds, using a classical channel, Bob announces to Alice the double matching
detection events.

4. Alice computes the usable frames fi where i = 1 . . . 6 (see Figure 3) and sends to Bob the required
information to construct such frames (Alice knows which pairs of qubits are paired into a frame).

5. Bob constructs the frames grouping the pairs of qubits, then he computes the sifting bits of each
frame and sends them back to Alice over a public channel.

6. Using the sifting bits and looking up Table 5 Alice identifies Bob’s Matching Results. Given a
frame, the sifting bits are correlated with a unique MR because they conform a complete binary
set {00, 01, 10, 11}, thus Alice is allowed to recognize Bob’s MR. Then, Table 4 is used to derive
the secret bits.

7. On the other side, Bob uses Table 4 to get the shared bits.

As a result, the bits Alice and Bob share are the bits that encode each Matching Result, according to
Table 4.
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Table 5. To the left we see the 6 usable frames that Alice can prepare to be sent over the quantum
channel. Provided Bob obtains the two (required) Matching Results he computes the sifting bits
applying the xor function to each column (they are written at the bottom of each frame). The sifting
bits which are publicly announced, conform the set {00, 01, 10, 11} that does not contain redundancy,
so that Alice can identify without ambiguity Bob’s Matching Results.

Alice Bob

f1 =

|0X〉 |1Z〉

|1X〉 |0Z〉


|0X〉 −

|1X〉 −


1 0

 − |1Z〉

− |0Z〉


0 1

 − |1Z〉

|1X〉 −


1 1

|0X〉 −

− |0Z〉


0 0

f2 =

|1X〉 |0Z〉

|1X〉 |1Z〉


|1X〉 −

|1X〉 −


0 0

 − |0Z〉

− |1Z〉


0 1

 − |0Z〉

|1X〉 −


1 0

|1X〉 −

− |1Z〉


1 1

f3 =

|0X〉 |1Z〉

|1X〉 |1Z〉


|0X〉 −

|1X〉 −


1 0

 − |1Z〉

− |1Z〉


0 0

 − |1Z〉

|1X〉 −


1 1

|0X〉 −

− |1Z〉


0 1

f4 =

|1X〉 |1Z〉

|0X〉 |1Z〉


|1X〉 −

|0X〉 −


1 0

 − |1Z〉

− |1Z〉


0 0

 − |1Z〉

|0X〉 −


0 1

|1X〉 −

− |1Z〉


1 1

f5 =

|1X〉 |0Z〉

|0X〉 |1Z〉


|1X〉 −

|0X〉 −


1 0

 − |0Z〉

− |1Z〉


0 1

 − |0Z〉

|0X〉 −


0 0

|1X〉 −

− |1Z〉


1 1

f6 =

|1X〉 |1Z〉

|1X〉 |0Z〉


|1X〉 −

|1X〉 −


0 0

 − |1Z〉

− |0Z〉


0 1

 − |1Z〉

|1X〉 −


1 1

(
|1X〉 −

− |0Z〉

)
1 0

5.5. Security of the Sifting Bits

For security reasons, the sifting bits must not be correlated with a unique Matching Result.
This property must be achieved to avoid an attacker derives the secret bits from the sifting bits.
The security property is demonstrated in Table 6.
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Table 6. The sifting bits obtained by Bob (written at the bottom of each frame) must be produced from
at least two different Matching Results. At the right of each frame we have indicated the corresponding
original Alice’s frame.

|0X〉 −

− |0Z〉


0 0

f1

 − |0Z〉

|0X〉 −


0 0

f5

|1X〉 −

|1X〉 −


0 0

f2, f6

 − |1Z〉

− |1Z〉


0 0

f3, f4

 − |1Z〉

− |0Z〉


0 1

f1, f6

|0X〉 −

− |1Z〉


0 1

f3

 − |0Z〉

− |1Z〉


0 1

f2, f5

 − |1Z〉

|0X〉 −


0 1

f4

|1X〉 −

|0X〉 −


1 0

f4, f5

|0X〉 −

|1X〉 −


1 0

f1, f3

 − |0Z〉

|1X〉 −


1 0

f2

(
|1X〉 −

− |0Z〉

)
1 0

f6

 − |1Z〉

|1X〉 −


1 1

f1, f3, f6

|1X〉 −

− |1Z〉


1 1

f2, f4, f5

Before closing this section, we depict in Figure 6 the overall required exchange of messages of the
(error-free) framing-based protocol. In this scenario Bob gets the shared bits according to Table 4 while
Alice uses the sifting bits, Tables 4 and 5 to derive Bob’s MR.

Quantum Key Distillation using Binary Frames 13

Alice Bob

NO1, NO2,..., NOmAlice prepares and sends NO Bob obtains double matching detections
i1, i2,..., ik

he returns sub-indices
f1, f2,..., fnAlice prepares frames f Bob computes sifting bits,
s1, s2,..., sn he returns the sifting informationAlice gets Bob’s MR

Fig. 6: The exchange of messages assuming an error free protocol. NO represents the pairs of non-
orthogonal qubits, the sub-indices k denotes the double matching detection events at Bob’s station,
f represents the the required information to construct the frames and s denotes the sifting bits
computed by Bob.

6 Error correction method

The method discussed so far does not include an error detection mechanism to discard erroneous bits
produced by the quantum channel or the optical detection system. To make the frame distillation
protocol capable to identify erroneous bits we will proceed in the following manner: In addition to
the sifting bits, Bob will reveal to Alice the measured bits obtained from detectors.

We define the Sifting String (SS) as a binary string composed by the sifting bits and the measured
bits. Given a frame, a Sifting String SS is constructed as follows, sifting bits are written from left
to right while measured bits from top to bottom.

SS = 1stsifting bit || 2ndsifting bit, 1stmeasured bit || 2ndmeasured bit
To preserve security, the Sifting String must be correlated at least to two Matching Results

(MR). Then, a secret bit (denoted as sb) can be assigned to each MR as represented in Tab. 7. For
example, consider that Bob announces the Sifting String 00,00, then there are two possible MR for
this SS: 10 and 11, we have sb=0 for the first case and sb=1 for the second one (see Tab. 7).

The Sifting String allows Alice to detect the erroneous bits because SS reveals the sifting bits
but also the measured bits. Provided Alice has sent an specific frame to Bob, he returns the SS
which must be one of the valid SS listed in Tab. 8, otherwise an error is detected. Tab. 8 shows
Bob’s SS when the error is in the first (or second) bit of the measured bits. Although it is included
detection when the two bits are erroneous, this case will be corrected taking them as two separated
single errors. We will return soon to this point.

Despite Bob’s SS allows Alice to identify erroneous bits because a given SS is invalid, some
errors keep undetected because the SS falls within the set of valid SS. In the following section
we will demonstrate an strategy to detect and correct all the errors produced in the channel and
detection system.

6.1 Picking up undetected errors

Before we describe the complete method to achieve error correction let us advertises that Alice
generates all possible useful frames combining Bob’s double matching detection events. Thanks to

Figure 6. The exchange of messages assuming an error free protocol. NO represents the pairs of
non-orthogonal qubits, the sub-indices k denote the double matching detection events at Bob’s station,
f represents the the required information to construct the frames and s denotes the sifting bits computed
by Bob.

6. Error Correction Method

The method discussed so far does not include an error detection mechanism to discard erroneous
bits produced by the quantum channel or the optical detection system. To make the frame distillation
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protocol capable to identify erroneous bits we will proceed in the following manner: In addition to the
sifting bits, Bob will reveal to Alice the measured bits obtained from detectors.

We define the Sifting String (SS) as a binary string composed by the sifting bits and the measured
bits. Given a frame, a Sifting String SS is constructed as follows, sifting bits are written from left to
right while measured bits from top to bottom.

SS = 1stsifting bit || 2ndsifting bit, 1stmeasured bit || 2ndmeasured bit

To preserve security, the Sifting String must be correlated at least to two Matching Results
(MR). Then, a secret bit (denoted as sb) can be assigned to each MR as represented in Table 7.
For example, consider that Bob announces the Sifting String 00,00, then there are two possible MR for
this SS: 10 and 11, we have sb = 0 for the first case and sb = 1 for the second one (see Table 7).

Table 7. The Sifting String (SS) which is publicly announced is constructed with the sifting bits and
the measured bits. To achieve a secret bit (sb) each SS must be correlated at least to two Matching
Results (MR).

SS MR Frame sb MR Frame sbSifting Measured (See Table 4) (See Table 3) (See Table 4) (See Table 3)

00 00 10 f1 0 11 f5 1

00 11 00 f2, f6 0 01 f3, f4 1

01 10 01 f1, f6 0 11 f4 1

01 01 10 f3 0 01 f2, f5 1

10 01 00 f1, f3 0 11 f2 1

10 10 00 f4, f5 0 10 f6 1

11 11 11 f1, f3, f6 0 10 f2, f4, f5 1

The Sifting String allows Alice to detect the erroneous bits because SS reveals the sifting bits but
also the measured bits. Provided Alice has sent an specific frame to Bob, he returns the SS which must
be one of the valid SS listed in Table 8, otherwise an error is detected. Table 8 shows Bob’s SS when the
error is in the first (or second) bit of the measured bits. Although it is included detection when the
two bits are erroneous, this case will be corrected taking them as two separated single errors. We will
return soon to this point.

Despite Bob’s SS allows Alice to identify erroneous bits because a given SS is invalid, some errors
keep undetected because the SS falls within the set of valid SS. In the following section we
will demonstrate an strategy to detect and correct all the errors produced in the channel and
detection system.

6.1. Picking up Undetected Errors

Before we describe the complete method to achieve error correction let us advertises that Alice
generates all possible useful frames combining Bob’s double matching detection events. Thanks to
this procedure (see privacy pre-amplification in the next section) double errors can be treated as single
errors because each error is combined with the rest of the detection events.

Now, we can introduce the method to identify undetected errors written in Table 8. We separate
such cases into two types (here the quantum state in ket notation represents a double matching
detection event):

I. |0X〉 is detected as |1X〉 or |0Z〉 results in |1Z〉.
II. |1X〉 is detected as |0X〉 or |1Z〉 results in |0Z〉.
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Table 8. We list the set of valid Sifting Strings (SS) for each frame fi. Provided Alice has sent an specific
frame to Bob, he returns the SS which must be one of the listed here, otherwise an error is detected.
We analyze if an error is detectable when occurs in the 1st (or 2nd) measured bit.

Frame Valid Sifting MR 1st Bit Detection 2nd Bit Detection 1st and DetectionStrings (SS) 2nd Bits

f1

SS11 = 00, 00 10 10,10 yes 01,01 yes 11,11 no
SS12 = 01, 10 01 00,00 no 00,11 yes 01,01 yes
SS13 = 10, 01 00 00,11 yes 00,00 no 10,10 yes
SS14 = 11, 11 11 10,01 no 01,10 no 00,00 no

f2

SS21 = 00, 11 00 10,01 no 10,10 yes 00,00 yes
SS22 = 01, 01 01 00,11 no 00,00 yes 01,10 yes
SS23 = 10, 01 11 11,11 no 00,00 yes 01,10 yes
SS24 = 11, 11 10 01,01 no 10,10 yes 00,00 yes

f3

SS31 = 00, 11 01 01,01 no 01,10 yes 00,00 yes
SS32 = 01, 01 10 11,11 no 00,00 yes 10,10 yes
SS33 = 10, 01 00 00,11 no 00,00 yes 10,10 yes
SS34 = 11, 11 11 10,01 no 01,10 yes 00,00 yes

f4

SS41 = 00, 11 01 01,01 yes 01,10 no 00,00 yes
SS42 = 01, 10 11 00,00 yes 11,11 no 10,01 yes
SS43 = 10, 10 00 00,00 yes 00,11 no 10,01 yes
SS44 = 11, 11 10 01,01 yes 10,10 no 00,00 yes

f5

SS51 = 00, 00 11 01,10 yes 10,01 yes 11,11 no
SS52 = 01, 01 01 00,11 yes 00,00 no 01,10 yes
SS53 = 10, 10 00 00,00 no 00,11 yes 10,01 yes
SS54 = 11, 11 10 01,01 no 10,10 no 00,00 no

f6

SS61 = 00, 11 00 10,01 yes 10,10 no 00,00 yes
SS62 = 01, 10 01 00,00 yes 00,11 no 01,01 yes
SS63 = 10, 10 10 00,00 yes 11,11 no 01,01 yes
SS64 = 11, 11 11 10,01 yes 01,10 no 00,00 yes

As an example consider Alice sends f2 to Bob who reads it using MR=01 (see 6th row of Table 8).
He must respond with SS22 = 01, 01 which represents in ket notation SS22 = 01, |0Z〉 |1Z〉 because
MR = 01. In Equation (2) Alice’s frame is represented as f2a. At Bob’s side it is written as f2b while the
erroneous case is denoted as f2b

′.

f2a =

|1X〉 |0Z〉

|1X〉 |1Z〉


f2b =

 − |0Z〉

− |1Z〉


0 1

SS22 = 01, 01

f2b
′ =

 − |1Z〉

− |1Z〉


0 0

SS21 = 00, 11

(2)

The error in the first (double matching) detection event is produced when |0Z〉 is detected as |1Z〉,
as a result Bob responds 00, 11 which corresponds to SS21 a valid SS for f2 when MR=00, so the error
pass undetected.
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As we will demonstrate soon, only errors of type I. can be detected. For this purpose, we will use
the auxiliary quantum pair (|0X〉 , |0Z〉) to construct frames f9 and f10 (see Table 3). Frames f9 will be
used to identify errors produced when |0X〉 is detected as |1X〉. Similarly, frames f10 will be useful to
detect errors when |0Z〉 results in |1Z〉.

In Table 9 we demonstrate the effectiveness of the method. Here, Bob’s |0X〉 yields |1X〉, then Bob
responds SS = 10,10 but Alice finds the error because this is an invalid SS. Similarly, when |0Z〉 results
in |1Z〉, Alice identifies the error in f10 because Bob’s SS = 01,10 is not valid. As shown in Table 9,
these errors are detected half of the time but only one detection is sufficient to reveal the error. Provided
we have several instances of the null quantum pair and provided a double detection event is combined
with all of them, it is guaranteed that an error in such a double detection event will be found.

This procedure is consistent as long as the null quantum pair (|0X〉 , |0Z〉) does not contain error.
However, correctness of null quantum pairs can be easily confirmed by Alice using several others
null quantum pairs. A convenient method to catch this type of error is constructing several frames
f7 (see Table 3) that always yield SS = 00,00 otherwise such null quantum pairs are useless and must
be discarded. Once an error is detected inside f7 all the frames that contain these two null quantum
pairs must be discarded. Then, the null pairs can be used to detect errors by means of frames f9 and
f10. Is important to note that Eve cannot separate individually Alice’s frames. Only Alice is capable to
identify auxiliary frames among reconciliation frames. To the final she only says to Bob what cases
must be discarded including f9, f10 and some instances of f2, f3, f4 and f6 (see Tables 10 and 11).

Errors of type II. cannot be detected because, generally speaking (a detailed analysis as type I. can
be done), bit 1 flips into bit 0 and it does not produce a visible alteration in the Sifting String, so these
cases must be removed. Therefore, effective auxiliary frames are f7, f9 and f10. Our analysis shows
that frames f8 does not increase the error correction information. Frames f12 contain the same rows of
f8 but inverted, so they do not increase information. Similarly, f9 contains the rows of f13 but inverted
and f10 the rows of f14, so they do not add useful information to correct errors. Finally, frames f11 are
useless because their qubits are all |1X〉 or |1Z〉.

6.2. Error-Correction Security Model

Since not all undetected errors in Table 7 can be identified as it is shown in Tables 10 and 11 we
define the error-correction security model as the method capable to achieve error correction completely
while it preserves the security property stated from the beginning: frames are only known by Alice
while she can deduce Bob’s MRs. The SS in the public channel can be correlated equally to a bit 0 or 1.

Before we define the security model, let us introduce the framing gain (FG) as the ratio between
usable frames (4) and the total frames (14), so FG = 2

7 .

– To distill secret bits, Alice will use only 4 types of frames: f2, f3, f4 and f6 which are represented
in Table 12. Alice will incorporate 3 auxiliary frames: f7, f9, f10.

– In case of errors, SS are correctable as demonstrated in Tables 10 and 11. As implied from
these tables, half of the SS must be removed. After Alice informs to Bob which cases must be
eliminated (those that come from SS = (10, 01), (01, 01), (01, 10), (10, 10)), they keep 1

7 of the total
frames, half of the framing gain. Thus, we say that the secret framing gain is 1

7 . In addition,
frames f7, f9 and f10 must be discarded because they are used to detect errors and they do not
add up secret bits.

– Since each SS comes from two different frames it can be correlated to one secret bit, this property
is demonstrated in Table 13.
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Table 9. Bob measures the quantum pair (|0X〉 , |1Z〉), but |0X〉 produces |1X〉. This error is identified
half of the times using f9. Similarly, Bob receives (|0X〉 , |0Z〉) but |0Z〉 results in |1Z〉. This error is
successfully managed half of the times using f10. The second and fourth rows show the erroneous
cases. The errors are represented with bars above the bits: |0X〉 in f9 and |0Z〉 in f10.

Alice Bob

f9 =

|0X〉 |1Z〉

|0X〉 |0Z〉


|0X〉 −

|0X〉 −


0 0

SS = 00, 00

 − |1Z〉

− |0Z〉


0 1

SS = 01, 10

 − |1Z〉

|0X〉 −


0 1

SS = 01, 10

(
|0X〉 −

− |0Z〉

)
0 0

SS = 00, 00

f9 =

|0X〉 |1Z〉

|0X〉 |0Z〉


|1X〉 −

|0X〉 −


1 0

SS = 10, 10

 − |1Z〉

− |0Z〉


0 1

SS = 01, 10

 − |1Z〉

|0X〉 −


0 1

SS = 01, 10

(
|1X〉 −

− |0Z〉

)
1 0

SS = 10, 10

f10 =

|1X〉 |0Z〉

|0X〉 |0Z〉


|1X〉 −

|0X〉 −


1 0

SS = 10, 10

 − |0Z〉

− |0Z〉


0 0

SS = 00, 00

 − |0Z〉

|0X〉 −


0 0

SS = 00, 00

(
|1X〉 −

− |0Z〉

)
1 0

SS = 10, 10

f10 =

|1X〉 |0Z〉

|0〉X |0〉Z


|1X〉 −

|0X〉 −


1 0

SS = 10, 10

 − |1Z〉

− |0Z〉


0 1

SS = 01, 10

 − |1Z〉

|0X〉 −


0 1

SS = 01, 10

(
|1X〉 −

− |0Z〉

)
1 0

SS = 10, 10

Table 10. Error correction map for undetected errors. From Table 8 we list all erroneous cases that keep
undetected. The bit underlined in the ket notation flips into the the bit underlined in the Sifting String.
Some errors are identified using the auxiliary frames f9 and f10. If detection of error is not possible the
frame must be removed. For this reason frame f1 is ambiguous and must be removed.

Frame Quantum Sifting Detection Sifting Error-Bit Correction
Pair String Frame String Code

f1

(
|0X〉 , |1Z〉

)
00, 00 - - 1st remove10, 01(

|1X〉 , |0Z〉
)

00, 00 - - 2nd remove01, 10

f2

(
|1X〉 , |0Z〉

)
10, 01 - - 1st remove01, 01(

|1X〉 , |0Z〉
)

00, 11 f10 01,10 1st SS22
11, 11 SS23

f3

(
|0X〉 , |1Z〉

)
01, 01 - - 1st remove10, 01(

|0X〉 , |1Z〉
)

11, 11 f9 10,10 1st SS32
00, 11 SS33
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Table 11. Error correction map for undetected errors (cont). Frame f5 is ambiguous and will
be discarded.

Frame Quantum Sifting Detection Sifting Error-Bit CorrectionPair String Frame String

f4

(
|0X〉 , |1Z〉

)
01, 10 - - 2nd remove10, 10(

|0X〉 , |1Z〉
)

11, 11 f9 10,10 2nd SS42
00, 11 SS43

f5

(
|1X〉 , |0Z〉

)
00, 00 - - 1st remove01, 01(

|0X〉 , |1Z〉
)

00, 00 - - 2nd remove10, 10

f6

(
|1X〉 , |0Z〉

)
00, 11 f10 01,10 2nd SS62
11, 11 SS63(

|1X〉 , |0Z〉
)

10, 10 - - 2nd remove01, 10

Table 12. We list usable (4) frames, it must be included (4) frames f7, f8, f9 and f10 to verify errors by
means of the null quantum pairs.

f2 =

(
|1X〉 |0Z〉

|1X〉 |1Z〉

)
f3 =

(
|0X〉 |1Z〉

|1X〉 |1Z〉

)
f4 =

(
|1X〉 |1Z〉

|0X〉 |1Z〉

)
f6 =

(
|1X〉 |1Z〉

|1X〉 |0Z〉

)

Table 13. If an error is detected using f9 or f10, then Alice corrects the error according to Tables 10
and 11. If no error is found Alice uses the secret bits listed here.

SS MR Frame sb MR Frame sb

SS21 = SS31 = SS41 = SS61 = 00, 11 00 f2, f6 0 01 f3, f4 1

SS24 = SS34 = SS44 = SS64 = 11, 11 11 f3, f6 0 10 f2, f4 1

SS42 = SS62 = 01, 10 01 f6 0 11 f4 1

SS22 = SS32 = 01, 01 10 f3 0 01 f2 1

SS23 = SS33 = 10, 01 00 f3 0 11 f2 1

SS43 = SS63 = 10, 10 00 f4 0 10 f6 1

7. Privacy Pre-Amplification

If Bob informs Alice the positions of N double matching detection events she can pair the qubit
pairs into all possible useful frames. Thus, she can generate (N

2 ) frames. Since this procedure enhances
the shared information during the reconciliation phase of the distillation process we call it privacy
pre-amplification. Normally, amplification occurs as a separated stage after sifting and reconciliation
have been performed.
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Since (N
2 ) =

N(N−1)
2 , it implies that the shared information from the double matching detection

events grows quadratically with N, the number of double detection events.
In the next section we will derive the secret key rate but before, let us introduce some important

properties of the frame-based reconciliation protocol:

Throughput. The throughput of the framed reconciliation can be computed as (N
2 ) = N(N−1)

2 .
The throughput of the protocol varies quadratically O(N2) with the number of the double matching
detection events N.

Effective Throughput Speed. As discussed in the previous section, the secret framing gain is 1
7 ,

so the number of secret bits will be 1
7 (

N
2 ) = 1

14 N(N − 1) ∼ N2. A running example of the framed
reconciliation is shown in Appendix A. If N = 1000, the number of secret bits is around 105. Since the
errors can be removed in no more than tens of milliseconds, the throughput speed achieves 106 bps.
Such speed can be further enhanced applying a bigger N and using more computational resources as
shown in Table 14 (see also Figure 7).

Efficiency. The minimum number of required bits to reconcile the shared frames is 2(n2 − n) bits
(because there are four publicly revealed bits per frame), but also the total number of revealed bits is
2(n2 − n), so the efficiency of the protocol achieves unity.

Round Trips. Although this protocol is an interactive reconciliation protocol, it only requires four
rounds to be completed. Just a single transmission (from Alice to Bob) is needed for correction bits
(the indices of events that must removed and those of the erroneous detection events). No redundant
information is required. Other protocols require tens of parity check passes [21]. No extra permutation
or interleaving is required to achieve reconciliation.

Qber. As we will show in the security analysis section, the protocol remains secure although the
eavesdropper could be equipped with unlimited quantum memory and multiple copies of Bob’s
quantum states. It is known that the Photon Number Splitting attack (PNS) can be detected when the
QBER of the channel is beyond 25% due to Eve’s erroneous basis selection. By contrast, the security
of the framed reconciliation method is invariant despite the number of copies that Eve obtains from
the quantum channel therefore immune to the PNS attack. In this case, no estimation of the QBER
from the quantum channel is needed. Remarkably, we do not see any limit in the QBER of the channel
because a single auxiliary null quantum pair is enough to detect all the errors. Remember that each
double detection event is combined with each other.

Since the gain of frames f7 is 1
14 there are 1

14 (
N
2 ) frames of this type. To detect errors it must be at

least one (error free) frame f7, thus we have 1
14 (

N
2 )(1− e) ≥ 1 where e is the error rate of the quantum

channel. From here, we derived e ≤ 1− 14
(N

2 )
. Suppose N = 10, then errors can be detected if e ≤ 0.68.

Table 14. Simulation of the protocol when have been registered 1000 double matching detection events.
Tests were performed in an Intel Core i7-8750H 2.2 GHz, 12GB RAM.

QBER Time Secret Throughput
(ms) Bits (Kbps)

5% 54.0146 59,873.7 1108.90435
10% 57.6022 58,911.2 1025.13229
15% 54.0614 52,630.1 972.532054
20% 55.6709 48,830.9 877.799205
25% 60.9381 46,706.4 773.520113
30% 78.4297 40,960.0 522.251137
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Figure 7. From the experimental simulation in Table 14 we show the frame contribution when
QBER = 30%, 605,060 frames have been created and 237,762 correspond to auxiliary frames. For each
frame f2, f3, f4 and f6 we show the number of frames created (left) and the frames after error
correction (right).

8. The Intercept and Resend (IR) Attack

In the Intercept and Resend (IR) attack, Eve firstly measures each pair of non-orthogonal quantum
pulses in the quantum channel, then she sends another pair of quantum pulses to Bob prepared
according to the same quantum states. Let us explain the IR attack over the framing protocol using the
following example:

– Alice sends to Bob the pair (|0X〉 , |0Z〉) over the quantum channel. Eve measures them and let us
assume she obtains a double matching detection event say (|0Z〉 , |0Z〉).

– Eve prepares and sends to Bob the quantum pair (|0Z〉 , |0Z〉).
– Suppose Eve makes sure that both quantum pulses arrive to Bob’s optical station. There are five

possible outcomes: {(|0Z〉 , |0Z〉), (|0X〉 , |0X〉), (|1X〉 , |1X〉), (|1X〉 , |0X〉), (|0X〉 , |1X〉)}. Since only
one case matches Eve’s double detection event, the probability to get the same result is 1

5 (the same
probability is present when Eve obtains (|0Z〉 , |1Z〉) and she resends those states to Bob).

As a consequence, Eve’s chance to impose her measurement results to Bob is 1
5 . However,

Bob can still recover the correct measurement sent by Alice with 0.2 probability. In the example
above, the correct outcome corresponds to (|0Z〉 , |0Z〉). Unfortunately for Eve she cannot distinguish
(from the public discussion) if Bob got (|0Z〉 , |0Z〉) or (|0X〉 , |0X〉), thus she is forced to guess this
outcome. Moreover, the double detection event (|0Z〉 , |0Z〉) is combined with Bob’s remaining double
detection events thus Eve’s information reduces even more.

Let us discuss the numerical rates. Suppose we have N double detection events, 0.2N are captured
by Eve. Half of the rest, that is 0.4N, can be processed by Alice and Bob (the other half corresponds
to useless double non-matching detection events). Thus, we have Iab = 1

7 (
0.6N

2 ) = 0.025N2 − 0.028N
while Iae = 1

7 (
0.4N

2 ) = 0.011N2 − 0.042N where 1
7 is the secret framing gain. The secret throughput

speed ∆I = Iab − Iae is written in Equation (3).

∆I = 0.0142N2 + 0.0142N (3)

As can be seen in Equation (3), the shared secret information ∆I does not depend on the distance
between the two remote stations because Eve has no control on Bob’s double matching detection event.
This idealized situation could be altered if Eve mounts an Intercept and Resend attack with Faked States
(IRFS) where Eve forces the measurement results on Bob’s detectors. In the IRFS attack, Eve remains
undetected provided she adjusts the gains of single and double detection events simultaneously,
as indicated by Equations (4) and (5) and discussed in [14].

2(e−µηBT −Y0)(Y0 + 1− e−µηBT ) = (e−µηET −Y0)(Y0 + 1− e−µηET ) (4)



Symmetry 2020, 12, 1053 18 of 24

(Y0 + 1− e−µηBT )2 =
1
2
(Y0 + 1− e−µηET )2 (5)

where µ is the expected photon number of the source and Y0 is the background noise. Here, ηBT and
ηET are the overall efficiency of Bob and Eve, respectively. Solving the system for ηET , we obtain ln Y0

−µ

and ln(1+Y0)
−µ , which cannot satisfied in practice [14].

Returning to the IR attack, the error rate introduced by Eve is 1
5 . In BB84 and most QKD protocols,

the attacker hides as noise in the quantum channel (assuming she implements a quantum channel
substitution). Typically, the next step would be computing the distance allowed by the error rate
caused by the eavesdropper. In our case, the IR attack cannot be completed successfully by Eve because
she has no control over the double detection events produced at Bob’s station.

9. The Photon Number Splitting Attack

Suppose Eve has a copy of all the quantum states that arrives to Bob’s station because Alice sends
attenuated (multi-photon) quantum pulses and Eve is equipped with a sufficiently large quantum
memory. Since the sifting process does not reveal Bob’s bases choices, the following factors affects
unfavorably to Eve:

– 1
2 because of the probability to get a double matching detection event.

– 1
2 due to basis matching. Eve must measure choosing between two different measurement basis
(X or Z).

Q(+,+)

1
2 matching (Bob)

1
2 X basis (Eve) 1

2 Z basis (Eve)

1
2 non-matching

Therefore, the total matching ratio for Eve is 1
4 and 1

2 for Bob (see Figure 8). Assuming Bob’s
station registers N double matching detection events, then we have Iab = 0.5N and Iae = 0.25N,
thus ∆I = 0.25N. Since ∆I > 0, the shared information between Alice and Bob remains secret.

Secret Throughput Speed. Let us represent the shared information between Alice and Bob after they
executed privacy pre-amplification as Iab = 1

7 (
N
2 ) = 0.0714N2 − 0.0714N where N is the number of

double matching detection events. As discussed previously, Eve can obtain 25% of the shared secret

information, so Eve can distill Iae = 1
7 (

N
4
2 ) = 0.0044N2 − 0.01785N, now we can derive the secret

throughput speed ∆I = Iab − Iae as indicated by Equation (6).

∆I = 0.0669N2 − 0.0535N (6)
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Figure 8. Alice sends a pair of non-orthogonal states to Bob who obtains a double matching detection
at his optical detectors. Eve has a copy of such states, however she has a 0.5 chance to choose the
correct measurement basis (X or Z). Furthermore, the probability to get a double matching detection
event is 0.5. Therefore, Eve’s probability to get Bob’s result is just 0.25.

9.1. Quantum Measurement Bases Choice Attack

Eve would decide to apply other quantum measurement bases to gain more information, then she
uses the measurement bases X + Z or X − Z as depicted at right in Figure 9. Assuming Bob has
registered a double matching detection event and Eve has a copy of those states sent by Alice, she can
capture that information with 0.28125 probability. To see that, first consider that Eve chooses between
the measurement bases (X + Z or X−Z) with 0.5 probability. Then, as shown in Figure 9 non-matching
detection events are ambiguous for Eve, which occur with 0.375 probability. By contrast, she gets
a double matching event with 0.5625 probability. As a result, the chance to get Bob’s information
is 0.28125.

Figure 9. Alice sends a pair of non-orthogonal states to Bob who obtains a double matching detection
event at his optical detectors. Eve has a copy of such states, however he has a 0.5 chance to choose the
optimal measurement basis, in this case the X − Z basis. Despite Eve choose between bases X + Z
or X − Z, the chance to guess Bob’s result is 9

16 = 0.5625 so she obtains an inconclusive result with
6
16 = 0.375. From here, the probability for Eve to obtain Bob’s measurement result is 0.28125.
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9.1.1. Secret Throughput Speed

We know that the information shared between Alice and Bob is Iab = 1
7 (

N
2 ) = 0.0714N2− 0.0714N.

If we consider the optimal quantum measurement case as discussed previously, Eve can extract 9
32 of

double matching events represented as N, so Iae =
1

14 (
9N
32
2 ) = 0.0056N2 − 0.0200N. Therefore, we can

compute the secret throughput speed ∆I as written in Equation (7).

∆I = 0.0657N2 − 0.0513N (7)

In view of the above results, we deduced that IR and PNS attacks cannot be successfully
implemented over the framing protocol. Moreover, it might be feasible to evaluate the use of less
attenuated quantum pulses between the two remote stations. From here, our approach could be
used in continuous quantum variable (CV) QKD because it does not require multiple matching
detection events.

Other attacks are still under analysis and will be presented in a future work. In individual attacks
the photons sent by Alice are intercepted and measured by Eve independently. IR attack is a case
of an individual attack. Eve can entangle each qubit over the quantum channel with an auxiliary
quantum state and then she measured them individually. In collective attacks, Eve prepares auxiliary
independent states which then interact with the qubits individually but they are measured collectively.
Furthermore, in coherent attacks, Eve performs a joint measurement on the auxiliaries after Alice and
Bob have concluded their public discussion [23,24].

As a final comment, individual attacks are more realistic than coherent attacks and a complete
theory of coherent attacks is not yet available. Moreover, it has been argued that coherent attacks are
no more efficient than individual attacks [25,26].

10. Conclusions

We have introduced a new method for QKD distillation. The framed reconciliation approach
integrates the sifting, reconciliation and amplification stages in a unique process. The method can be
implemented as a software level over the usual optical equipment of a BB84 system.

The protocol produces at least theoretically fast secret bits, convergence of the method is
guaranteed, the method works under any QBER in the channel while the key is distilled secretly. So far
functionality of the method has been demonstrated computationally. The key grows quadratically in
the number of the double detection events. The method does not require additional bits to estimate
channel’s parameters. Since Eve has no control on Bob’s double matching detection events, our analysis
indicates that the protocol is not vulnerable to the IR attack neither the PNS attack. We leave for future
work other attacks as the Intercept and Resend with Faked States (IRFS). This approach opens the
possibility to use less attenuated quantum pulses in the context of continuous variable (CV) QKD.
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Appendix A

In this appendix we demonstrate a running example of framed reconciliation using 2× 2 frames.
For this simple example we assume that after measuring the quantum states that Alice sent to Bob,
he has gotten 8 double matching events (enumerated from i1 to i8 in Table A1).
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Table A1. Bob announces to Alice eight double matching detection events N = 8 (enumerated from
i1 to i8).

Bob’s Bob’s Public Alice’s
Detection Announcement Original Pair

(
|0X〉 ,−

)
i1

(
|0X〉 , |1Z〉

)
(
−, |0Z〉

)
i2

(
|0X〉 , |0Z〉

)
(
−, |1Z〉

)
i3

(
|0X〉 , |1Z〉

)
(
|1X〉 ,−

)
i4

(
|1X〉 , |1Z〉

)
(
−, |0Z〉

)
i5

(
|1X〉 , |0Z〉

)
(
−, |1Z〉

)
i6

(
|1X〉 , |1Z〉

)
(
|0X〉 ,−

)
i7

(
|0X〉 , |1Z〉

)
(
|1X〉 ,−

)
i8

(
|1X〉 , |0Z〉

)

Alice proceeds to compute the total 28 combinations. Alice identifies just 10 useful frames
(see Table A2). Then, she communicates to Bob the arrangement information to construct such frames.
Now, Bob computes and returns the Sifting Strings, which contains the sifting bits and the measured
bits (see Table A3). We show the resulting secret bits in Table A4. The secret bit (sb) of each Sifting
String is derived according to Table 7.

Table A2. Alice constructs the set of useful frames, then she sends to Bob the frame arrangement
information: {1. f3 = (i1, i4), 2. f3 = (i1, i6), 3. f3 = (i3, i4), 4. f3 = (i3, i6), 5. f6 = (i4, i5), 6. f4 =

(i4, i7), 7. f6 = (i4, i8), 8. f2 = (i5, i6), 9. f4 = (i6, i7), 10. f6 = (i6, i8)}.

1.
i1
i4

(
|0X〉 |1Z〉

|1X〉 |1Z〉

)
f3 5.

i4
i5

(
|1X〉 |1Z〉

|1X〉 |0Z〉

)
f6 9.

i6
i7

(
|1X〉 |1Z〉

|0X〉 |1Z〉

)
f4

2.
i1
i6

(
|0X〉 |1Z〉

|1X〉 |1Z〉

)
f3 6.

i4
i7

(
|1X〉 |1Z〉

|0X〉 |1Z〉

)
f4 10.

i6
i8

(
|1X〉 |1Z〉

|1X〉 |0Z〉

)
f6

3.
i3
i4

(
|0X〉 |1Z〉

|1X〉 |1Z〉

)
f3 7.

i4
i8

(
|1X〉 |1Z〉

|1X〉 |0Z〉

)
f6

4.
i3
i6

(
|0X〉 |1Z〉

|1X〉 |1Z〉

)
f3 8.

i5
i6

(
|1X〉 |0Z〉

|1X〉 |1Z〉

)
f2
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Table A3. Bob publishes the Sifting String that contains the sifting bits and the measured bits.
Alice deduces MR and associates the corresponding secret bit (sb) according to Table 7.

1.
i1

i4

sifting bits

MR=00|0X〉 −

|1X〉 −


1 0

SS = 10, 01

f3 5.
i4

i5

sifting bits

MR=10(
|1X〉 −

− |0Z〉

)
1 0

SS = 10, 10

f6 9.
i6

i7

sifting bits

MR=11 − |1Z〉

|0X〉 −


0 1

SS = 01, 10

f4

2.
i1

i6

sifting bits

MR=10(
|0X〉 −

− |1Z〉

)
0 1

SS = 01, 01

f3 6.
i4

i7

sifting bits

MR=00|1X〉 −

|0X〉 −


1 0

SS = 10, 10

f4 10.
i6

i8

sifting bits

MR=11 − |1Z〉

|1X〉 −


1 1

SS = 11, 11

f6

3.
i3

i4

sifting bits

MR=11 − |1Z〉

|1X〉 −


1 1

SS = 11, 11

f3 7.
i4

i8

sifting bits

MR=00|1X〉 −

|1X〉 −


0 0

SS = 00, 11

f6

4.
i3

i6

sifting bits

MR=01 − |1Z〉

− |1Z〉


0 0

SS = 00, 11

f3 8.
i5

i6

sifting bits

MR=01 − |0Z〉

− |1Z〉


0 1

SS = 01, 01

f2

Table A4. Alice and Bob derive the secret bits according to Table 7. In is this example the number of
secret bits is 5 which is consistent with the relation 1

7 (
8
2) = 4.

Item SS Alice’s Frame Bob’s MR sb

1. SS33 = 10, 01 f3 00 remove
2. SS32 = 01, 01 f3 10 remove
3. SS34 = 11, 11 f3 11 0
4. SS31 = 00, 11 f3 01 1
5. SS63 = 10, 10 f6 10 remove
6. SS43 = 10, 10 f4 00 0
7. SS61 = 00, 11 f6 00 0
8. SS22 = 01, 01 f2 01 remove
9. SS42 = 01, 10 f4 11 remove

10. SS64 = 11, 11 f6 11 0

Let us introduce an error in the detection event i1. Alice must verify the presence of errors in the
shared bits. When she evaluates i1 with Table 9, Alice detects SS = 10,10 which indicates that i1 has
been measured with error. Alice corrects the error according to Table 10 and she communicates to Bob
the erroneous event.
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Table A5. In this example i1 is erroneous. Alice found the error evaluating i1 inside f0 as indicated in
Table 9. Then, Alice corrects the error using Table 10.

Item Events Error-Free Frame Erroneous Operation to Be
SS SS Implemented

1. (i1, i4) SS33 = 10, 01 f3 00,11 correct applying SS33
2. (i1, i6) SS32 = 01, 01 f3 11,11 correct applying SS32
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