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Abstract: Social media users, including organizations, often struggle to acquire the maximum number
of responses from other users, but predicting the responses that a post will receive before publication
is highly desirable. Previous studies have analyzed why a given tweet may become more popular
than others, and have used a variety of models trained to predict the response that a given tweet
will receive. The present research addresses the prediction of response measures available on Twitter,
including likes, replies and retweets. Data from a single publisher, the official US Navy Twitter
account, were used to develop a feature-based model derived from structured tweet-related data.
Most importantly, a deep learning feature extraction approach for analyzing unstructured tweet
text was applied. A classification task with three classes, representing low, moderate and high
responses to tweets, was defined and addressed using four machine learning classifiers. All proposed
models were symmetrically trained in a fivefold cross-validation regime using various feature
configurations, which allowed for the methodically sound comparison of prediction approaches.
The best models achieved F1 scores of 0.655. Our study also used SHapley Additive exPlanations
(SHAP) to demonstrate limitations in the research on explainable AI methods involving Deep Learning
Language Modeling in NLP. We conclude that model performance can be significantly improved by
leveraging additional information from the images and links included in tweets.
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1. Introduction

Information published on social media is often meant to gain the attention of other users.
On Twitter, one of the most widely used social media platforms at the time of writing this paper [1],
whether published information successfully gains attention can be assessed by several measures, such as
replies, likes or retweets. Petrovic et al. [2] have demonstrated that humans can predict, with a certain
probability, whether a given tweet will receive a substantial response. Indeed, some researchers [3]
still use human coding for tweet classification. However, much effort is committed to automating
Twitter-related predictions.

Table 1 provides a brief review of selected work on the automated prediction of responses to tweets.
Similar to Cotelo et al. [4], many authors have explored the integration of the textual and structural
information available in each tweet. Suh et al. [5] have conducted a large-scale investigation of tweet
features responsible for tweet popularity, and have explored the relationships among these variables
by using a generalized linear model. Some studies have focused on modeling “cascades of retweets,”
i.e., the number of retweets over time. Gao et al. [6] has used a general reinforced Poisson process model
that is fed data on the number of retweets over time. Kupavskii et al. [7] has used a gradient boosting
decision tree model, fed with various structured features, including social and content features, as well
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as time-sensitive features of the initial tweet publisher, along with the “infected nodes,” i.e., users
who “retweeted” the initial news. A study by Cheng et al. [8] has investigated many linear and
non-linear classifiers and features regarding news content, including image analysis, “root” features of
the publisher of the original tweet, features of users who re-shared a given tweet, and structural and
time-dependent features. In Zhao et al. [9], no features were used; instead, only information regarding
the number of retweets overtime was fed into a self-exciting point processes model.

Table 1. A brief review of studies addressing prediction of the response to tweets.

Modeling Approach Target Variable Features Extracted for the Model Study

Ordinary least squares
regression to predict feature
significance on number of
retweets

Total number of
retweets None, human data coding Keib et al. [3]

Passive-aggressive algorithm
and prediction by humans used
for classification task

Total number of
retweets

Social (features associated with the
author of the tweet) and tweet features
(encompassing various statistics
regarding the tweet itself, along with
the actual text of the tweet)

Petrovic et al. [2]

Generalized linear model for
prediction of feature significance

Total number of
retweets

Structured tweet features such as the
presence of hashtags, mentions and
URLs

Suh et al. [5]

Generalized linear model, naive
Bayes model used for
classification task

Total number of
retweets

Structured tweet and user features:
sentiment, length of tweet, number of
mentions, hashtags, followers, and
URLs, emotional divergence

Jenders et al. [10]

RF used for classification task Total number of
retweets

Structured user and tweet features:
number of words, hashtags, URLs,
mentions, tweet length, whether the
tweet is a reply, timestamp of the
tweet, number of images and videos,
and sentiment

Oliveira et al. [11]

General reinforced Poisson
process model used for
regression analysis

Number of retweets
over time Number of retweets over time Gao et al. [6]

Gradient boosting decision tree
model. Regression and
classification tasks.

Number of retweets
over time

Structural features including social
features, content features (i.e., tweet
length, number URLs, mentions,
hashtags, negative and positive terms
and smileys, question and exclamation
marks, arousal, valence and
dominance), Affective Norms of
English Words (ANEW), time-sensitive
features of the initial node, features of
the infected nodes, and page rank.

Kupavskii et al. [7]

Logistic regression.
Classification task.

Total number of
retweets

Previously retweeted, TF-IDF content
features (terms used in the tweet text),
Latent Dirichlet Allocation topic
distribution, the number of retweets of
a given account, and many others
briefly mentioned

Hong et al. [12]

Many linear and non-linear
classifiers, e.g., logistic
regression and RF. Classification
task.

Number of retweets
over time

Content, including image analysis,
“root” features of the original poster,
re-sharer features, structural features,
and temporal features

Cheng et al. [8]

Self-exciting point processes.
Regression task.

Total number of
retweets

None, only the previous number of
retweets Zhao et al. [9]

Deep Learning architecture.
Classification task.

High or low
number of replies

Features extracted from tweet and
profile text by Language Models
including baseline TF-IDF and Deep
Learning Bidirectional Encoder
Representations from Transformers
(BERT) [13]. A broad selection of
structural features as well.

Matsumoto et al. [14]

Support vector machine.
Classification task.

Total number of
retweets Broad set of user and tweet features Zhang et al. [15]

Researchers have also pursued the more challenging goal of predicting the total replies that a
tweet will receive before publication. Petrovic et al. [2] has investigated a passive-aggressive algorithm,
including social features, such as those reflecting the publishing user, along with tweet features that
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“encompass various statistics of the tweet itself, along with the actual text of the tweet.” A generalized
linear model fed only structural features, such as “contains hashtags” or “contains URL,” is used
in Suh et al. [5]. In Jenders et al. [10], a generalized linear model and naive Bayes models are fed a
structured tweet and user features, such as the sentiment of the tweet, tweet length, number of mentions,
number of hashtags, number of followers, emotional divergence and number of URLs. A random
forest (RF) classifier model was adopted in Oliveira et al. [11], which also benefited from the inclusion
of structured user and tweet features, such as the number of hashtags, URLs, mentions, tweet length,
number of words, whether the tweet is a reply, the hour of the tweet’s timestamp, the number of
images and videos, and the sentiment of the tweet. Hong et al. [12] have used a logistic regression
model fed user features, such as the number of retweets of a given account and content features
extracted through slightly more sophisticated methods, including Term Frequency–Inverse Document
Frequency (TF-IDF) analysis of the terms used in the tweet text, and Latent Dirichlet Allocation topic
distribution analysis. The paper also briefly mentions many other features. Zhang et al. [15] used
a support vector machine model and fed it various structured user and tweet features, such as the
number of followers, friends, past tweets, favorites, number of times the user was listed, age of account,
user activity, user screen name length, the verification status of the user, average number of followers
gained from a tweet, average number of times a user was listed through a tweet, number of URLs,
hashtags, mentions, words, characters, whether the tweet was a reply, whether the tweet had been
retweeted previously, and the time at which the tweet was published.

For some specific applications, such as detecting spamming accounts [16], even more structured
user features, such as the URL rate and the interaction rate, are believed to be highly informative.
Interestingly, a recent study [14] has reversed the prediction logic and based the analysis on replies,
but this approach struggled to predict the popularity of the original source tweet. Importantly, this study
used complex Deep Learning Language Modeling to automatically extract content feature vectors from
tweets, rather than using hand-selected features.

Also, a different trend in the research community focusing its effort on Twitter data is worth
mentioning, specifically, that which addresses the detection of events in Twitter using wavelet-based
analysis. For example, one of the works representing this approach introduced EDCoW (Event Detection
with Clustering of Wavelet-based Signals) [17], and demonstrated that detecting events through news
spreading in Twitter is feasible with the proposed method.

Given the abundance of structural tweet features used by various authors, it is understandable
that many works, like Keib et al. [3], Cotelo et al. [4] and Jenders et al. [10], struggled to identify which
of these features influence the predictive capabilities of trained models, and to what extent. In this
context, owing to the revived interest in explainable artificial intelligence (XAI) after “explainability
winter” [18], it is possible that exploiting new interpretability techniques could be beneficial.

Our research aimed to compare selected machine learning classifiers fed with structured tweet
features, and features extracted with the recently developed Deep Learning Language Models (LMs),
for predicting the total number of replies to tweets published by @USNavy, the official US Navy account.
For each tweet, we accounted for only the information available before publishing. We also wished to
demonstrate how a recently introduced XAI tool can be leveraged to improve the understanding of the
importance of structural features, and not features provided by Deep Learning LMs. Finally, in order
to provide information valuable from an ML practitioners’ perspective, we also give insight into the
computation times of deployed methods.

We believe that our choice of data source, namely a single Twitter account, is beneficial for Natural
Language Processing (NLP) practitioners who, while working for an entity owning a Twitter account,
are obliged to predict responses to a future tweet by this entity. In our study, the selection of the
particular @USNavy account was dictated by the funding source of our research specified in the
funding section. We also hope that the small size of the here-analyzed training data sample can be
perceived as informative if a question is posed: is a small number of available historical tweets from my
organization an issue in the application of the here-described methods? Because unstructured tweet
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text is written in a highly specific manner, numerous studies [19–22] have used tools from the NLP
field and proposed tweet-filtering techniques before addressing the machine learning task. Our work
benefitted from such tweet pre-processing concepts; however, given the high quality of the language
used by the official US Navy account, we defined our own simplified approach.

Our feature extraction efforts began with exploiting structured tweet information, such as
whether the tweet included an image or contained any hashtags. Petrovic et al. [2], demonstrated
that social features, such as the number of followers and friends, and whether the user’s language is
English, are very informative regarding reply prediction. In addition, Mbarek et al. [23] and others,
as previously mentioned, have suggested various user profile-related features that can improve the
quality of classification. Our research could not benefit from these approaches because we sought
to analyze tweets published by a single user. Instead, we included the date of publication as an
indirect feature correlated, for example, with changes in the number of followers over time. However,
we did not seek to define precise hour-by-hour models, as proposed in Petrovic et al. [2]. Rather than
concentrating on features engineered by hand, we decided to focus on gathering information from
unstructured text data by using a Deep Learning architecture based on recently developed LMs.

Our work contributes to the field primarily by comparing the performances of three machine
learning models in the same classification tasks, on the basis of features extracted primarily
with a recently developed Deep Learning Language Modeling approach and four different LMs.
The comparison was performed independently for three different target variables: the total numbers of
replies, likes, and retweets. We also used SHapley Additive exPlanations (SHAP) [24] a state of the
art eXAI technique, to demonstrate that the high performance of Deep Learning Language Modeling
comes at the price of model explainability. To provide full experimental reproducibility, we have
released our code and data set in an open repository [25].

2. Methods

2.1. Analyzed Data

To gather and analyze Twitter data, it was necessary to gain acceptance for the proposed use
case from Twitter by obtaining a Twitter Developer Account. In this work, we analyzed Twitter data
published by the official @USNavy account from January 2011 to December 2019. Our search within
this period was conducted on 14 January 2020, and resulted in a total of 23,951 tweets. The annual
numbers of replies of likes and retweets to the gathered tweets increased over time, as shown in
Figure 1.Symmetry 2020, 12, x FOR PEER REVIEW 5 of 16 

 

 

Figure 1. Box plots of annual responses to tweets from the official @USNavy account. Outliers were 

not plotted, for clarity. From left to right: replies, likes, and retweets. 

For all three target variables, the years 2017–2019 showed a substantial increase, as compared 

with the previous years. To analyze more up-to-date and uniform data, we narrowed our analysis to 

these three most recent years. In this period, the official @USNavy account published 4853 tweets, 

which we further limited to 4498 tweets according to the procedure described in the unstructured 

text pre-processing section of the manuscript. Descriptive statistics of the target variables for the 

analyzed data are presented in Table 2. 

Table 2. Descriptive statistics of target variables for the analyzed 4498 tweets. 

 Mean Std Min 25% 50% 75% Max 

Replies 16.53 42.15 0 5 9 16 1344 

Likes 540.45 960.70 0 216 368 593 27,653 

Retweets 156.06 289.56 0 56 95 162 6134 

2.2. Classification of Target Variables 

In our study, rather than predicting the precise number of user responses to a given tweet (i.e., 

solving a regression task), we decided to address a classification task, in which the classes generally 

reflected the number of responses. Class definitions were derived from descriptive statistics of the 

analyzed response data, and are presented in Table 3. 

Table 3. Definition of classes reflecting the number of responses to tweets. 

 Class Name 

Target Variable Low Moderate High 

Replies 0–5 6–16 Over 16 

Likes 0–216 216–593 Over 593 

Retweets 0–56 56–162 Over 162 

2.3. Classification Framework 

To solve the defined classification task, we propose a framework with the workflow presented 

in Figure 2. This framework divides each tweet’s data instance into structured non-textual and 

unstructured textual data, and performs separate feature extractions for both data types. 

Furthermore, the extracted features from the tweet instance are fed into a Machine Learning 

Classifier, which predicts the reply class. 

Figure 1. Box plots of annual responses to tweets from the official @USNavy account. Outliers were
not plotted, for clarity. From left to right: replies, likes, and retweets.

For all three target variables, the years 2017–2019 showed a substantial increase, as compared
with the previous years. To analyze more up-to-date and uniform data, we narrowed our analysis to
these three most recent years. In this period, the official @USNavy account published 4853 tweets,
which we further limited to 4498 tweets according to the procedure described in the unstructured text
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pre-processing section of the manuscript. Descriptive statistics of the target variables for the analyzed
data are presented in Table 2.

Table 2. Descriptive statistics of target variables for the analyzed 4498 tweets.

Mean Std Min 25% 50% 75% Max

Replies 16.53 42.15 0 5 9 16 1344

Likes 540.45 960.70 0 216 368 593 27,653

Retweets 156.06 289.56 0 56 95 162 6134

2.2. Classification of Target Variables

In our study, rather than predicting the precise number of user responses to a given tweet
(i.e., solving a regression task), we decided to address a classification task, in which the classes generally
reflected the number of responses. Class definitions were derived from descriptive statistics of the
analyzed response data, and are presented in Table 3.

Table 3. Definition of classes reflecting the number of responses to tweets.

Class Name

Target Variable Low Moderate High

Replies 0–5 6–16 Over 16

Likes 0–216 216–593 Over 593

Retweets 0–56 56–162 Over 162

2.3. Classification Framework

To solve the defined classification task, we propose a framework with the workflow presented
in Figure 2. This framework divides each tweet’s data instance into structured non-textual and
unstructured textual data, and performs separate feature extractions for both data types. Furthermore,
the extracted features from the tweet instance are fed into a Machine Learning Classifier, which predicts
the reply class.
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Figure 2. The workflow in the proposed classification framework.

It is essential to mention that in our work, we use the notion “unstructured text” and “unstructured
textual data” solely to underline the difference of free text from structured data. Specifically, this does
not refer to the quality of language used in Twitter posts that we analyze.
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2.4. Feature Extraction

When structured data were considered, each tweet instance was flagged in a binary manner
according to several categories: includes image, includes links to an external web resource, includes any
hashtags, was posted as a reply to another tweet, and includes a retweet of another tweet. In addition,
the tweet publication date was included as a separate feature as the number of months after January
2017. This approach resulted in the definition of six features derived from structured non-textual data
for each tweet data instance. Table 4 presents the percentage of “true” values for each binary feature
for all tweet instances analyzed.

Table 4. Percentage of “true” values for each binary feature for all evaluated tweet instances.

Feature Has Image Has Link Has Hashtags Is a Reply Includes a Retweet

% of “true” values 83.53 60.38 89.31 2.31 9.92

Feature extraction from the unstructured text was conducted through a complex approach
involving several steps, as presented in Figure 3.
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2.4.1. Pre-Processing and Filtering of Unstructured Text Data

Unstructured Twitter text substantially differs from standard text, and previous research has
accordingly proposed a special approach to pre-processing [19–22]. In our research, we borrowed from
these proposals and modified them by adding our new steps, which resulted in the pre-processing and
filtering procedure presented in Figure 4. After pre-processing, all tweets with duplicated text were
deleted; 4498 tweets remained for the final analysis.

Symmetry 2020, 12, x FOR PEER REVIEW 7 of 16 

 

2.3.1. Pre-Processing and Filtering of Unstructured Text Data 

Unstructured Twitter text substantially differs from standard text, and previous research has 

accordingly proposed a special approach to pre-processing [19-22]. In our research, we borrowed 

from these proposals and modified them by adding our new steps, which resulted in the pre-

processing and filtering procedure presented in Figure 4. After pre-processing, all tweets with 

duplicated text were deleted; 4498 tweets remained for the final analysis. 

 

Figure 4. Procedure for the pre-processing of tweets. 

2.3.2. Deep Learning Feature Extractor 

To extract features from the pre-processed unstructured text, we used the Flair NLP framework 

(version 0.4.5) presented by Akbik et al. [26]. This allowed us to create and train a Deep Learning 

Feature Extractor (DLFE) via the procedure presented in Figure 5. 

 

Figure 5. Deep Learning Feature Extractor architecture and training. 

First, we used an LM to convert tokenized textual data into corresponding single-token vectors. 

The procedure was conducted with three LMs for subsequent quality comparison: (a) FastText [27] 

LM [Gensim version [28] trained on Twitter data with model word dictionary covering 61.4% of data 

set tokens; (b) a distilled version of Bidirectional Encoder Representations from Transformers 

(DistilBERT) LM [29]; and (c) Glove LM [30] with model word dictionary covering 64.9% of data set 

tokens. Second, we trained a two-layer bidirectional Long Short Term Memory Neural Network 

(LSTM) with hidden_size = 512 to create tweet-level embeddings from single-token vectors provided 

by the LM. For each LM, the training procedure of DLFE used parameters previously demonstrated 

to provide a high performance with a reasonable training time [31], namely: initial learning rate = 0.1, 

minimal learning rate = 0.002, annealing rate = 0.5, mini-batch size = 8, hidden size = 256, and shuffle 

data during training = true. Other parameters were set to the default values proposed by the Flair 

framework. As a result, we obtained three ready-to-use DLFEs optimized for the analyzed data. 

To add a state of the art transformer LM to our comparison, we also introduced a Robustly 

Optimized BERT Pretraining Approach (RoBERTa) large model [32]. In this case, the LM was not 

used to output single token embeddings, and therefore no LSTM was used. Instead, RoBERTa was 

fine-tuned on our data, and the built-in transformer model special classification token “CLS” was 

used to obtain tweet-level embeddings directly from the transformer model. The fine-tuning 

procedure was performed with the following parameters, inspired by Devlin et al. [13]: initial 

learning rate = 0.00003, mini-batch size = 8, maximum number of epochs = 4, minimal learning rate = 

0.000003, and patience = 3. Other parameters were set to the default values proposed by the Flair 

framework. 

2.3.3. Division of the Data during the Training Process 

Figure 4. Procedure for the pre-processing of tweets.

2.4.2. Deep Learning Feature Extractor

To extract features from the pre-processed unstructured text, we used the Flair NLP framework
(version 0.4.5) presented by Akbik et al. [26]. This allowed us to create and train a Deep Learning
Feature Extractor (DLFE) via the procedure presented in Figure 5.

First, we used an LM to convert tokenized textual data into corresponding single-token vectors.
The procedure was conducted with three LMs for subsequent quality comparison: (a) FastText [27]
LM [Gensim version [28] trained on Twitter data with model word dictionary covering 61.4% of
data set tokens; (b) a distilled version of Bidirectional Encoder Representations from Transformers
(DistilBERT) LM [29]; and (c) Glove LM [30] with model word dictionary covering 64.9% of data
set tokens. Second, we trained a two-layer bidirectional Long Short Term Memory Neural Network
(LSTM) with hidden_size = 512 to create tweet-level embeddings from single-token vectors provided
by the LM. For each LM, the training procedure of DLFE used parameters previously demonstrated to
provide a high performance with a reasonable training time [31], namely: initial learning rate = 0.1,
minimal learning rate = 0.002, annealing rate = 0.5, mini-batch size = 8, hidden size = 256, and shuffle
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data during training = true. Other parameters were set to the default values proposed by the Flair
framework. As a result, we obtained three ready-to-use DLFEs optimized for the analyzed data.
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To add a state of the art transformer LM to our comparison, we also introduced a Robustly
Optimized BERT Pretraining Approach (RoBERTa) large model [32]. In this case, the LM was not
used to output single token embeddings, and therefore no LSTM was used. Instead, RoBERTa was
fine-tuned on our data, and the built-in transformer model special classification token “CLS” was used
to obtain tweet-level embeddings directly from the transformer model. The fine-tuning procedure was
performed with the following parameters, inspired by Devlin et al. [13]: initial learning rate = 0.00003,
mini-batch size = 8, maximum number of epochs = 4, minimal learning rate = 0.000003, and patience = 3.
Other parameters were set to the default values proposed by the Flair framework.

2.4.3. Division of the Data during the Training Process

Our research used fivefold cross validation. For training of the DLFE, 70% of all data instances
were used for training, 10% were used for validation, and 20% were used for testing. When machine
learning models were trained, 80% of all data instances were used for training, and 20% were used for
testing. The same data instances were used for training and testing in both the training of the DLFE
and, subsequently, the machine learning prediction of user response.

2.4.4. Feature Sets were Fed to the Machine Learning Classifiers

In Table 5, we present three feature groups and several defined feature sets used to compare the
quality of solving prediction tasks. The groups and sets were defined in the same manner for each target
variable. For each cross-validated trial, we conducted statistical analyses in Python with statsmodels
(version = 0.10.1) and pingouin (version = 0.3.4) software packages. The adopted procedure was as
following: we tested for the normality of the distribution according to the proposal by Shapiro–Wilk [33]
(Shapiro and Wilk, 1965); one-way ANOVA was carried out; this was then followed with a Tukey
Honest Significant Difference multiple comparison test in order to verify significant differences between
trials. Significance threshold was set to p = 0.05.

Table 5. Feature sets defined in our study.

Feature Group Feature Set Abbreviation Description of Feature Set

I S Includes six features derived from structured tweet data

II

FT Includes features derived from unstructured tweet text data
provided by the DLFE based on FastText LM

GL Includes features derived from unstructured tweet text data
provided by the DLFE based on Glove LM

DB Includes features derived from unstructured tweet text data
provided by the DLFE based on DistilBERT LM

RB Includes features derived from unstructured tweet text data
provided by the CLS output of the fine-tuned RoBERTa model



Symmetry 2020, 12, 1054 8 of 15

Table 5. Cont.

Feature Group Feature Set Abbreviation Description of Feature Set

III

SFT Union of S and FT feature sets

SGL Union of S and GL feature sets

SDB Union of S and DB feature sets

SRB Union of S and RB feature sets

2.5. Adopted Classifiers, Outcome Measures, Software and Computing Machine

We analyzed the achieved classification quality obtained by three classification models: (a) Ridge
(R); (b) Random Forest (RF); (c) Gradient Boosting (GB) and (d) Multi-layer Perceptron (MLP).
Each RF classifier was an ensemble of 250 trees, and each GB classifier was trained with 250 boosting
stages. The MLP classifier was configured as follows: 3 fully connected layers with 8 neurons
each, Adam optimizer, rectified linear unit (RELU) activation functions and 2000 max iterations.
Other parameters of each classifier were set to default as proposed by the Python sklearn software
package (version = 0.22.1). The F1 micro score was used as the outcome measure. For all cases, only the
mean F1 micro score is reported, for clarity. All experiments were coded in Python 3 and performed on
the same computing machine equipped with a single NVIDIA Titan RTX 24 GB RAM GPU.

2.6. Summary of the Algorithm

For improved clarity of adopted procedures, we provide appropriate pseudo code in Figure 6.
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2.7. Explaining Model Decisions

To provide an improved understanding of the rationale of the machine learning models’ predictions,
we used SHAP (version 0.35.0), a state of the art XAI technique. We used SHAP Tree Explainer [34] to
generate visualizations of model-level explanations of several selected RF and GB model variants.

2.8. Methods Computation Time

For ML practitioners, not only quality but also the computation time of deployed methods plays an
important role. To provide such information for all employed LMs and a selected dependent variable,
we have computed the times involved in training feature extractor models, creating tweet-level vector
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representations for a selected data fold, and the whole procedure of training and testing machine
learning classifiers.

3. Results and Discussion

In our opinion, there are several notable observations regarding our experimental results. Figure 7
depicts partial results of the prediction of the number of “replies,” which can be treated as an example for
comparing the prediction quality of the trained models. Here, using features from group I, i.e., derived
only from structured tweet data, resulted in an inferior prediction quality to that derived using group
II features, extracted from unstructured tweet text by the DLFE, independently of the selection of the
machine learning classifier. Therefore, our results support the intuitive hypothesis that the written
content in tweet text matters more than hand-crafted features, such as having an image or the date of
publication. A comparison of the results for groups II and III also supports another intuitive assumption
that the six features derived from structured tweet data provide meaningful information and improve
prediction quality, mostly based on features extracted from unstructured tweet text. Examination of
the full results presented in Table 6 strengthens this conclusion because, in most cases, using group III
features provided a quality the same as, or slightly higher than, that derived using group II features.
However, an exception to this rule should be mentioned, for instance, in the prediction of replies,
for which the results without structured data were marginally higher, specifically, a 0.558 F1 score for
DB features and a RF classifier versus 0.557 for SDB features and the same classifier.

Assessing the full results presented in Table 6 allowed us to draw additional conclusions:

1. The MLP and R classifiers were usually, but not always, outperformed by the GB and RF classifiers.
No clear pattern indicated which classifier performed best;

2. Predicting the number of replies was more difficult than predicting the other two target variables
for all tested feature sets;

3. For likes and retweets, for all compared LMs, RoBERTa provided the highest prediction
performance for group II features as well as group II features in combination with structured
features (group III features). However, this result was not the case for the prediction of replies.
We hypothesize that this finding was caused by the unoptimized training regime for this target
variable, and we discuss this aspect further in “Limitations of the study”;

4. DistilBERT LM most often had the second-best performance after RoBERTa LM; however, in this
case, the improvement in the prediction quality over that of Glove and FastText LMs was marginal;

5. The best quality of results for replies, likes and retweets was associated with F1 scores of 0.558,
0.655 and 0.65, respectively.
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Table 6. Results achieved by three trained classifiers as a function of the feature set and target variable.
The best results for each target variable are highlighted in bold. Only mean F1 micro scores from
fivefold cross-validated results are presented, for clarity.

Feature Group Feature Set ML Classifier Replies Likes Retweets

I S

GB 0.5 0.558 0.532

RF 0.502 0.572 0.54

R 0.489 0.523 0.522

MLP 0.484 0.538 0.522

II

FT

GB 0.533 0.592 0.611

RF 0.541 0.592 0.606

R 0.542 0.589 0.611

MLP 0.53 0.568 0.591

GL

GB 0.534 0.604 0.61

RF 0.537 0.618 0.604

R 0.526 0.602 0.601

MLP 0.518 0.586 0.578

DB

GB 0.553 0.62 0.613

RF 0.558 0.628 0.61

R 0.55 0.615 0.613

MLP 0.52 0.588 0.585

RB

GB 0.516 0.641 0.64

RF 0.531 0.631 0.631

R 0.526 0.626 0.627

MLP 0.526 0.623 0.626

III

SFT

GB 0.541 0.593 0.618

RF 0.54 0.593 0.607

R 0.546 0.596 0.616

MLP 0.544 0.579 0.596

SGL

GB 0.537 0.606 0.611

RF 0.54 0.616 0.604

R 0.532 0.61 0.609

MLP 0.525 0.599 0.605

SDB

GB 0.552 0.618 0.611

RF 0.557 0.626 0.609

R 0.556 0.622 0.612

MLP 0.536 0.603 0.584

SRB

GB 0.537 0.655 0.65

RF 0.531 0.631 0.637

R 0.536 0.633 0.637

MLP 0.541 0.634 0.624

As already mentioned in the Methods section, we have carried out statistical analyses for all
presented experiments. Full results of these analyses are available, along with data and code [31],
and their possible interpretation is that most results had a normal distribution. One-way ANOVA
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indicated significant differences between trials, and Tukey HSD tests indicated significant differences
in around 50% of the compared pairs.

Information regarding the computation times of deployed methods, presented in Table 7,
shows that improved prediction quality comes at the cost of speed, both when mode training
and inference is concerned. If a system operating in real-time is developed, then probably using
DistilBERT and RoBERTa may, importantly, prolong the whole data processing procedure. However,
we believe it is essential to underline that the demonstrated times are only generally illustrative,
and will strongly differ between computing machines and code implementations.

Table 7. Computation times of deployed methods for the “retweets” dependent variable. Model training
times are per single model, and tweet-level embedding times are per 900 tweets.

LM Training Time [h] Tweet-Level Embedding Time [s]

LSTM based on
FastText 0.296 3.278

Glove 0.276 3.378

DistilBERT 0.62 15.456

Fine tuning RoBERTa 0.159 57.765

Similar F1 score values were obtained by Hong et al. [12]; however, Hong used different features,
and the analyzed data were published by various user accounts, which allowed them to leverage
account-specific features that are known to provide valuable information and improvements in
classification scores, as demonstrated for instance by Zhang et al. [15]. Our findings can also be
compared to those of Kupavskii et al. [7]. In addition to solving a regression task, Kupavskii et al. [7]
conducted a two-class classification by using a gradient-boosting decision tree model to achieve F1
scores as high as 0.775 and 0.67, for the two analyzed classes. In our work, we assumed that no
post-publishing information was available. These higher F1 scores might possibly be attributable to
the utilization of information available after a tweet’s publication, because the authors themselves
demonstrated that even incorporating information regarding the number of retweets from the first 15 s
after a tweet is published can substantially increase predictive performance. In addition, solving a
classification task with two classes is usually simpler than solving a similar task with three classes.

The consistent quality of our deep learning methods is probably reducible to the fact that they are
capable of creating context-aware, tweet-level representations, i.e., capturing the context of the whole
tweet and extracting more precious information from the unstructured text. LMs such as Glove and
FastText provide only context-independent features, which causes the performance to drop.

Further increasing the performance of our machine learning models is likely to be possible with
the proper engineering of additional structured features. Many possible features could be adopted,
including those as simple as the length of a tweet, as proposed in Duan et al. [35]. Figures 8–10
demonstrate the importance of well-engineered structural features. The mentioned figures depict
SHAP explanations for the same machine learning classifier, GB, and features from groups I, II and
III. Analysis of Figure 8 indicates that time-dependent information regarding when the tweet was
published was most informative for the model trained solely on structured features. In Figure 9,
features created by DLFE can also be demonstrated, but unfortunately, there is no information on what
these features represent. This unfortunate observation shows that while deep learning modeling in
NLP provides a significant performance boost, it makes the state of the art XAI techniques useless in
some cases. Figure 10 shows the importance of the structured features, compared with DLFE features,
for a model trained on these combined features. The single most crucial structured feature was found
in the 15 most important features. Thus, properly engineered structured features appear to be truly
valuable, even in conjunction with DLFE features.
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Figure 8. SHAP explanations for a GB model trained on the group I features. Feature abbreviations:
ym—publication time of the tweet, counted in months after January 2017; has_url2—whether the
tweet contains any links; has_hash—whether the tweet contains any hashtags; is_reply_to—whether
the tweet is a reply to another tweet; has_retweet—whether the tweet contains any retweets. Classes
indicate a level of response: 0—low; 1—moderate; 2—high.

Symmetry 2020, 12, x FOR PEER REVIEW 13 of 16 

 

the tweet is a reply to another tweet; has_retweet—whether the tweet contains any retweets. Classes 

indicate a level of response: 0—low; 1—moderate; 2—high. 

 

Figure 9. SHAP explanations for a GB model trained on group II features obtained by RoBERTa LM. 

Features are numbered by the DLFE, and the model architecture prevents them from being decoded 

into any human-understandable explanation. Classes indicate a level of response: 0—low; 1—

moderate; 2—high. 

 

Figure 10. SHAP explanations for a GB model trained on group III features (obtained by RoBERTa 

LM and structured features). Feature names are the same as in Figures 8 and 9. 

In fact, we believe that the key to significant improvements in prediction quality lies in crucial 

information that is available in tweets but is currently neglected. A representative detail that 

illustrates the underlying problem can be seen in the pre-processing of tweets. Our tweet pre-

processing procedure resulted in the removal of 351 duplicated tweets. Of course, the @USNavy 
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LM. Features are numbered by the DLFE, and the model architecture prevents them from being
decoded into any human-understandable explanation. Classes indicate a level of response: 0—low;
1—moderate; 2—high.
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In fact, we believe that the key to significant improvements in prediction quality lies in crucial
information that is available in tweets but is currently neglected. A representative detail that illustrates
the underlying problem can be seen in the pre-processing of tweets. Our tweet pre-processing procedure
resulted in the removal of 351 duplicated tweets. Of course, the @USNavy account did not publish the
same tweets several times; however, the procedure converting all links and images to the same tokens
resulted in the creation of identical tweets such as “LIVE NOW: Watch #USNavy’s newest Sailors
graduate boot camp–_URL _IMAGE” or “Around the fleet in today’s #USNavy photos of the day. info
and download: _URL . . . _IMAGE.”

Consequently, among the 351 deleted tweets, many differed only in image or link content.
As shown in Table 4, the analyzed set of tweets included 83.5% of data instances with images.
Intuitively, the content of an image should influence the likelihood of “liking” or “retweeting” a tweet,
but our features are not capable of reflecting image content in any manner. We believe that extracting
information from the images attached to tweets coulda clearly improve the quality of predictions
regarding user responses. Future efforts to address this issue could begin with a similar approach, as in
Mbarek et al. [23], in which the authors experimented with leveraging publicly available Convolutional
Neural Network-based tools and the simple color analysis of images for feature extraction. In addition,
for 60.38% of data instances with links, the used classifiers include no information regarding the web
resources to which the links direct. In this context, prediction quality could be improved by analyzing
the URL type, as proposed in the study by Suh et al. [5], which indicated that some tweets are more
likely to be retweeted than others, depending on the URL target. Structured features extracted by the
proposed approaches could also contribute to improving understanding of the rationale for model
predictions if XAI tools similar to those used in our study were implemented.

4. Limitations of the Study

One limitation of our study is the small data set, which prohibits us from drawing strong
conclusions from our experiments. Another source of possible data-related bias is the choice of a single
Twitter account as a data source. It cannot be excluded that the here-described methods would perform
differently for another Twitter account.

Another limitation specific to the topic addressed is that we did not focus on testing many structured
engineered tweet features that could improve prediction quality. This decision was deliberate, because
the main aim of this work was to demonstrate the utility and quality of the Deep Learning Feature
Extraction approach regarding unstructured tweet text.

To determine the comparability of various LMs and all target variables, we performed training
procedures with the same set of parameters. This design could have introduced bias, because the chosen
training regime could be more beneficial for some LMs and target variables than others. This negative
effect is apparent in the results of predicting replies; unexpectedly, RoBERTa LM was outperformed by
simpler LMs, probably because of the unoptimized training regime.

5. Conclusions

Predicting the number of likes, replies or retweets that a tweet will receive before publication is a
difficult task. Other researchers have experimented with various models and features, and some have
analyzed different scenarios by using available post-publishing information. In our work, we presented
models trained primarily on features extracted from unstructured tweet text, via deep learning
feature extraction based on recently published LMs, i.e., DistilBERT and RoBERTa. Our findings
confirm that using these recent models for text-based feature extraction provides a higher quality of
prediction results, when compared to using simple structural features and earlier-introduced LMs like
Glove and FastText. We also found that from the three analyzed dependent variables, predicting the
number of replies was most difficult. We believe that substantial room for improvement still remains,
and we hypothesize that improving prediction quality will be possible with proper leveraging of the
information contained in the images and links published with tweets. Our study also demonstrated
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that when more structured features containing additional information are introduced, it is possible to
assess their influence on the prediction quality if proper XAI techniques are employed. This may allow
optimization at the stages of feature engineering and selection. Unfortunately, the tested XAI method
did not prove useful for features provided by deep learning language models. Understanding the
rationale for model predictions could also be improved with the use of XAI techniques.
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