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Abstract: In quantum field theory with spontaneous breakdown of symmetry, the invariance of the
dynamics under continuous symmetry transformations manifests itself in observable ordered patterns
with different symmetry properties. Such a dynamical rearrangement of symmetry describes, in well
definite formal terms, metamorphosis processes. The coherence of the correlations generating order
and self-similar fractal patterns plays a crucial role. The metamorphosis phenomenon is generated
by the loss of infrared contributions in physical states and observables due to their localized nature.
The dissipative dynamics and evolution, the arising of the arrow of time and entanglement are also
discussed. The conclusions may be extended to biology and neuroscience and to some aspects of
linguistics in the transition from syntax to semantics (generation of meanings).

Keywords: quantum field theory; metamorphosis; spontaneous breakdown of symmetry; dynamical
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1. Introduction

The “change in form and structure” is often the protagonist in nature in all its aspects and the
“question of metamorphosis” has always attracted much attention in the literature, arts and philosophy.
In science the phenomenon of metamorphosis has been since a long time and is still today object
of extended searches in the frame of evolutionistic theory and observations, in biology and botanic
studies. The great land of fractal studies involving mathematics, statistical sciences and computer
simulations offers on the other hand more and more occasions of explorations and applications to
many sectors of engineering and science.

However, one less explored possibility in the study of the metamorphosis phenomenon is the one
offered by the quantum field theory (QFT) of particle physics and condensed matter physics. Aim of
this work is to show how the observable manifestations of dynamical symmetries in QFT may be
described in well definite formal terms as metamorphoses. The metamorphosis phenomenon then
appears in its genuine dynamical feature.

In the following, the discussion will rest on known QFT results, reviewed by resorting to specific
general mechanisms, such as the spontaneous breakdown of symmetry (SBS) (Sections 2 and 3),
the group contraction mechanism in the dynamical rearrangement of symmetry (Sections 4 and 5),
the effects due to the system boundaries (Section 6). Fractal self-similarity properties and q-deformed
coherent states, properties of functional stability, entanglement, dissipation, non-unitary time evolution
(the arrow of time) are also briefly discussed (Sections 7 and 8). Section 9 is devoted to the conclusions.

The localized character of physical states in finite space–time regions and the consequent loss
of infrared contributions is found to be at the origin of the metamorphosis dynamical processes.
The coherence of the condensate structure of the ground state (the vacuum structure) is responsible
for the endless evolution [1] of forms along the flow of the arrow of time in morphogenesis processes.

The conclusions may be extended to gauge field theories and finite temperature systems.
The discussion is limited to internal symmetries described by continuous compact symmetry groups.
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Nevertheless, we will also see that “external” (space and time) symmetries can be affected by the
breakdown phenomenon. For example, the breakdown of time-reversal symmetry in open systems
leads us also to the breakdown of time translational symmetry (and thus of Lorentz symmetry in a
relativistic theory) (cf. Section 8). Breakdown of continuous space translational symmetry occurs,
for example, in the case of crystals, where the symmetry rearrangement leads us to the crystal lattice
structure. However, for brevity I only mention it in Section 5. Similarly, I will only spend a few words
about the breakdown of time translation and time-reversal symmetry in connection with quantization
in the curved background and inflation in cosmology (Section 8). Details of these and other issues are
thus not discussed in the present work. The interested reader is referred to the quoted literature.

In order to facilitate the reading, mathematical details are summarized and partially confined in
the appendices.

2. Two Levels of Description in Quantum Field Theory

In QFT there are representations of the canonical commutation relations (CCR for bosons;
canonical anticommutation relations (CAR) for fermions) that cannot be related to each other by
unitary transformations. In fact, infinitely many of them exist in QFT [2–9]. As is customary, I will
refer to them as “unitarily inequivalent representations” (uir) of the CCR (CAR). In this section my
comments are focused on such a specific feature of QFT, not present in quantum mechanics (QM),
where the representations of the CCR (CAR) are unitarily equivalent [10]. The occurrence of uir in QFT
is due to the fact that the number of degrees of freedom carried by fields is by definition an infinite
number, which invalidates the proof of unitary equivalence holding instead in QM.

The mathematical issue of unitary equivalence or non-equivalence of the representations is
of special physical relevance since it is actually the issue of physical equivalence or not of the
corresponding dynamical regimes of the system under study. For example, the ferromagnetic and
the non-ferromagnetic phases are described by uir and denote dynamical regimes with physical
different properties of the same system of elementary constituents (similarly, the superconductive and
non-superconductive phases, the crystal and the amorphous phases, etc.).

The conclusion is that the ‘same’ system (e.g., the same piece of material) may appear in the
observations with physical properties that are mutually exclusive, in the example of ferromagnets
with zero or non-zero magnetization M. Unitary inequivalence means that there is no unitary
transformation able to change the value of the magnetization. The system actually is observed
to be in one of the representations (Hilbert spaces) HF associated to one of the possible values
of M, each representation being orthogonal to the other ones. This means that the ferromagnetic
state of given magnetization M cannot be given by a superposition of states of magnetization
M′, M′′, ... etc. Transitions through the representations HF,M, each one associated to a specific
value of M, (phase transitions) are actually possible [11]. However, they are “singular” transitions,
meaning that they involve some kind of “criticality”, thus not surprisingly involving the divergence of
some quantity (e.g., susceptivity).

The dynamics of elementary constituents manifests itself in physical states and observables given
in terms of physical fields φ(x), x ≡ x, t, satisfying linear field equations

Λ(∂)φ(x) = 0 (1)

and having CCR (if boson fields) or canonical anticommutation relations (CAR) (if fermion fields).
This is the physical level of description. Λ(∂) is a differential operator (projecting on the on-shell
dispersion relation). Since φ(x) are field operators, Equation (1) has to be understood as a ‘weak
equality’, namely an equation for matrix elements computed in HF, which means that we have to
perform our choice of the state space HF, on which we want to work, among the set {HF} of the
infinitely many uir. In QM there is no need to do such a choice since the representations are unitary
equivalent [10].
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Consider now the other level of description, the dynamical level. QFT is assumed to be a canonical
theory where the dynamics is specified by the Lagrangian L. The discussion is thus focused on closed
systems described by canonical formalism. The basic entities describing the interaction are called
Heisenberg fields. Denote them by ψ(x). They satisfy the equations derived from L,

Σ(∂)ψ(x) = F(ψ(x)) , (2)

and have CCR (CAR). Σ(∂) is a convenient operator describing kinematical terms and F is non-linear
in the ψ(x) fields. These are field operators defined on some Hilbert space H. Equation (2),
like Equation (1), is therefore meaningful only provided H is assigned (it is a weak equality).
However, we do not have access to such a space. We have access only to physical states in HF.
Such a situation imposes to us to consider the mapping between ψ(x) and φ(x) fields (the dynamical
map or the Haag expansion):

ψ(x) = Ψ(φ(x)) , (3)

which again has to be understood as a weak equality in HF. Matrix elements of ψ(x) fields can be then
computed in HF.

I remark that the numbers of the ψ and φ fields need to be not necessarily the same. A bound
state, for example, might be created out of a number of interacting ψ fields. Another physical field is
thus obtained. Physical fields must constitute anyway an irreducible set of fields.

Let me mention also thatH and HF are unitarily inequivalent spaces (the Haag theorem) [2–4,8,12].
Apart from crucial consequences at the structural and computational level, such as the need of
non-perturbative physics, the Haag theorem confirms that we have access to the dynamics of the
basic ψ(x) fields only through its manifestation in terms of physical fields φ(x) and physical states.
An intrinsic “opacity” of the basic dynamics is built-in in our knowledge [13].

It may happen that in one or more of the spaces HF, the vacuum |0〉 is not symmetric under
the symmetry group G of the Lagrangian, but only under one of its subgroup (called the stability
group). One then says that the spontaneous breakdown of symmetry (SBS) occurs (in this work I am
not interested in the “explicit” breakdown of symmetry obtained by introducing a symmetry breaking
term in the Lagrangian).

Suppose we have SBS. Let g ∈ G be an invariant transformation of the Heisenberg field ψ(x)

ψ(x)→ ψ′(x) = g[ψ(x)] . (4)

Through the dynamical map (3) the transformation (4) can be obtained by the transformation
t ∈ G′ of the fields φ

φ(x)→ φ′(x) = t[φ(x)] , (5)

giving
g[ψ(x)] = Ψ(t[φ(x)]) . (6)

When G′ 6= G we have the dynamical rearrangement of symmetry G → G′ [5–7,14–19].
As shown in the next section, SBS implies that observable ordered patterns, identified by an “order

parameter”, are dynamically generated in |0〉. The specificity and the value of the order parameter
depend on the considered, specific representation HF.

Summing up, the same dynamics ruled by (2) may manifest itself in the infinitely many different
realizations offered by the inequivalent physical representations {HF}. One aspect of the success of
QFT in describing a multitude of physical phenomena resides in such a tremendous richness.

Symmetry patterns in physical states are observable realizations of the invariance of the dynamics.
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3. Spontaneous Breakdown of Symmetry

I will consider the ferromagnet as an example. Transformations of the continuous SU(2) group
are symmetry transformations for the Lagrangian and Heisenberg equations. The ε-term in the
generating functional (see Appendix A) describes the coupling of the system with an external agent
(the environment) and triggers the SBS (choice of HF) [20]. The dynamics thus “realizes” itself in the
broken symmetry state, where the system stays also in the absence of the environment action (ε→ 0)
and is characterized by the magnetization M (the order parameter).

The magnetized (ground) state |0〉 is not symmetric under the three parameters SU(2) group (three
axis spherical rotations), but only under rotations around the magnetization direction, e.g., the 3rd
axis in the spin-space (U(1) subgroup of SU(2)). However, the invariance of the theory is not
“lost” at the level of physical fields since their equations are still invariant, as we will see, under a
three-parameter group, the E(2) group, although the basic symmetry is broken in |0〉. The conservation
laws associated with the three SU(2) generators commuting with the Hamiltonian cannot be lost since
this would introduce a radical modification of the dynamics of our model (of its defining Lagrangian
and Hamiltonian). What happens is that the invariance, defined by such vanishing commutators,
unfolds itself in different symmetry patterns, it manifests itself under different physical “appearances”.
A metamorphosis process, indeed.

Changes in the order parameter correspond to transitions among the “phases” HF’s (phase
transitions). Our conclusions, although derived for the ferromagnets, hold in their structural
aspects for any system whose Lagrangian is symmetric under continuous compact symmetry
group transformations.

In the itinerant electron model of ferromagnets the Heisenberg electron field is

ψ(x) =

(
ψ↑(x)
ψ↓(x)

)
, (7)

where spin up and spin down are denoted by ↑ and ↓, respectively. They have usual equal-time CAR
and the SU(2) transformation is

ψ(x)→ ψ
′
(x) = exp(iθiλi)ψ(x), i = 1, 2, 3, (8)

σi are the Pauli matrices, λi = σi/2, the rotation angles in the spin-space θi are real and denote the
continuous group parameters. The explicit expression of the Lagrangian is not needed here; it is only
required to be symmetric under the SU(2) transformations (8), i.e., L[ψ(x)] = L[ψ′(x)]. The explicit
expression of the SU(2) spin density S(i)

ψ (x), i = 1, 2, 3, does not need to be specified (one possible

form is S(i)
ψ (x) = ψ†(x)(σi/2)ψ(x)). The SU(2) algebra is

[S(i)
ψ (x), S(j)

ψ (x)] = iεijkS(k)
ψ (x) . (9)

The essential steps in the functional integration formalism are presented in the Appendix A.
Let µB denote the Bohr magneton. gµB〈S

(3)
ψ (x)〉ε gives the magnetization. 〈S(3)

ψ (x)〉ε is given in
Equations (A7) and (A8) and represents the expectation value of the spin density in the third direction
(the order parameter). ε carries the information of the SBS. At the end of the computation we take the
limit ε→ 0. Putting M(ε) = 〈S(3)

ψ (x)〉ε and

M = lim
ε→0

M(ε), (10)

∆i(ε, p) = ρ(i)(p)
(

1
p0 −ωp + iεai

− 1
p0 + ωp − iεai

)
, (11)
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Equations (A7) and (A8) give

M(ε) = iε∆i(ε, 0) , i = 1, 2 , (12)

showing that SBS, i.e., non-zero M, with ε→ 0 is possible only provided that ωp = 0 at p = 0. We then
have M = 2ρ (cf. Appendix A).

The conclusion is therefore that the order parameter M can be different from zero provided that a
bound state of gapless energy ωp = 0 at p = 0 exists. We have thus proved the Goldstone theorem in
SBS theories [21], stating that SBS implies the existence of massless (gapless) modes or particles, the so
called Nambu–Goldstone (NG) boson particles.

Summing up, the model independent proof has been given of the existence of the magnons (NG
boson particles) in the SU(2) SBS. Magnons are gapless (vanishingly small mass m) bound states
of electrons, quanta of spin waves which by propagating over large distances R create long-range
correlations among the spin components and thus ferromagnetic ordered patterns (R ∝ (1/m)→ ∞).

4. Dynamical Rearrangement of Symmetry

I discuss now the rearrangement of G ≡ SU(2) into G′, the symmetry group of the equations of the
quasielectron field φ(x) (in solid state physics physical fields in the material are called quasiparticles)
and the magnon boson field χ(x):

Λ(
−→
∂ )φ(x) = 0 , K(

−→
∂ )χ†(x) = 0 . (13)

φ(x) and χ(x) form an irreducible set of fields. The electromagnetic field does not influence the main
features of the rearrangement G → G′. Thus I do not consider it here (see below and [5] for further
details). The χ(x) field commutation relations are

[χ(x), χ†(y)]tx−ty = δ(x− y). (14)

Other commutators are zero and the dynamical map is

ψ(x) = Ψ(φ(x), χ(x)) . (15)

The S-matrix S and the spin densities S(i)(x) are obtained by using the Lehmann-Symanzik-
Zimmerman (LSZ) formula

S(φ, φ†, χ, χ†) = 〈: exp[−iA(φ, φ†, χ, χ†)] :〉 (16)

S(i)(φ, φ†, χ, χ†) = 〈S(i)
ψ (x) : exp[−iA(φ, φ†, χ, χ†)] :〉, i = 1, 2, 3, (17)

where A(φ, φ†, χ, χ†) is given in the Appendix B. Normal ordering and functional average are denoted
by : ... : and 〈...〉, respectively.

The transformed fields are denoted by φθ , φ†
θ , χθ , χ†

θ and the transformations are found to be
(cf. Appendix B)

φ(x)→ φθ(x) = φ(x) ,

χ(x)→ χθ(x) = χ(x) + iθ1

(
M
2

) 1
2

, (18)

for θ2 = θ3 = 0,
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φ(x)→ φθ(x) = φ(x) ,

χ(x)→ χθ(x) = χ(x) − θ2

(
M
2

) 1
2

, (19)

for θ1 = θ3 = 0, and
φ(x)→ φθ(x) = eiθ3λ3 φ(x) ,

χ(x)→ χθ(x) = e−iθ3 χ(x), (20)

for θ1 = θ2 = 0 and their hermitian conjugates. Equations (18)–(20) are canonical transformations.
Equation (20) is the (unbroken) U(1) third axis rotation.

In conclusion, the SU(2) symmetry is dynamically rearranged as shown by Equations (18)–(20)
(to be compared to (8)). These are E(2) group transformations, the Inönü–Wigner SU(2) group
contraction [19,22–24]. It is indeed a general result, confirmed in many examples in high energy and
condensed matter physics, that in the presence of SBS, under quite wide conditions, the dynamical
rearrangement G → G′ is controlled by the mathematical structure of group contraction [19,25,26].
A true metamorphosis process. We do not observe the symmetry of the dynamics but its physical
manifestations.

The SU(2) symmetry is “restored” as the temperature T raises above the critical temperature TC
(the Curie temperature). However, provided T < TC, the “forms” or “phases” we observe are the
ferromagnetic ones. Moreover, changes in the magnetization (i.e., in the ‘forms’ of ordered patterns)
are observed as T changes.

5. Homogeneous and Non-Homogeneous Boson Condensation

Since in SBS theories the ground state |0〉 is not symmetric under G, there must be at least one of
the generators, say

Dn =
∫

d3xj(n)0 (x) , (21)

that does not annihilate |0〉, Dn|0〉 6= 0. The integration in Equation (21) extends over the (infinite)
volume V and j(n)0 (x) is the zero component of the conserved current j(n)µ (x), ∂µ j(n)µ (x) = 0.
The problem is to find the expression of the generators in terms of the physical fields (their
dynamical maps). One can show that Dn|0〉 6= 0 is possible only provided that Dn is linear in
field operators [7,14,15].

Translational invariance of the vacuum implies that

〈0|DnDn|0〉 =
∫

d3x〈0|j(n)0 (x)Dn|0〉 (22)

is a divergent quantity, which means that Dn is mathematically not well defined, or, stated differently,
the Dn transformation is not unitarily implementable [3,5,12]. The state eiθDn |0〉 thus belongs to a
representation which is unitarily inequivalent to the one to which |0〉 belongs, 〈0|eiθDn |0〉 = 0 at
V → ∞.

The generator Dn needs to be regularized to be mathematically well defined. This is done
by writing

Dn ≡ lim
f (x)→1

D f ,n = lim
f (x)→1

∫
d3x f (x)j(n)0 (x) . (23)

f (x) is a square integrable function. We require that it is also solution of the equations for the fields
appearing linearly in j(n)0 (x). This last constraint ensures that D f ,n is time independent, as it needs to
be since it is a symmetry generator (and the invariance of the dynamics is not violated at physical level).
The regularization (23) amounts to take finite volume integration and the limit V → ∞ (i.e., f (x)→ 1)
at the end of computation.
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The translations in (17) and (18) are thus the limit for f (x) → 1 of χ(x) → χθ(x) =

lim f (x)→1(χ(x) + f (x)cj), with cj = ijθj (M/2)1/2 , j = 1, 2, and h.c.. f (x) is a regular function,
solution of the magnon equations, which are thus invariant under χ(x) → χ(x) + f (x)cj.
The generators of (18)–(20) (with f (x)θi replacing θi) are

s(1)f =

(
M
2

)1/2 ∫
d3x[χ(x) f (x) + χ†(x) f ∗(x)] , (24)

s(2)f = −i
(

M
2

)1/2 ∫
d3x[χ(x) f (x)− χ†(x) f ∗(x)] , (25)

s(3)f =
∫

d3x[φ†(x)λ3φ(x)− χ†(x)χ(x)] . (26)

Their commutation relations are:

[s(1)f , s(2)f ] = iM
∫

d3x| f (x)|2 = (const.)1, (27)

[s(3)f , s(i)f ] = iε3ijs
(j)
f ,

which is the (projective) e(2) algebra. The introduction of the functions f (x) is also understood
by recalling that we consider weak equalities among physical states. These are observable states,
and therefore smeared out, localized states. Thus they are naturally expressed in terms of square
integrable functions, which are characterized by finite support (in space and time), going to zero at
plus and minus infinity. Computing expectation values in physical states thus naturally introduces the
use of square integrable functions.

Note that Equations (24) and (25) (or s(±)f = (1/2)(s(1)f ± is(2)f )) are generators of coherent
states [27,28]. The ferromagnet ground state is thus a coherent state of magnons. Coherent behaviors
of microscopic components appear in the ordered patterns as manifestations of SBS, the “forms” in
which the dynamics is realized, its metamorphosis.

Coherence is thus dynamically generated and through it the quantum dynamics manifest at the
macroscopic level. In coherent states of coherent strength |α|, the ratio of the fluctuations ∆n over the
number n of condensed modes goes to zero for high |α| as 1/|α|, which leads to the classical behavior
of the system [19,20]. Some of its properties can be derived only from the dynamics of its elementary
components. The system is then defined to be a macroscopic quantum system. The order parameter,
characterizing the system behavior, is indeed a classical quantity, not affected by quantum fluctuations
(of course, except during phase transitions; moreover, under boundary conditions of strong coupling
the semiclassical limit cannot be achieved, as discussed in [29]). In Section 8, also fractal self-similarity
is shown to be isomorph to coherent state structure.

The dynamical rearrangements of symmetry, i.e., the metamorphosis process, thus signals the
transition from the collection of individual components to their collective systemic coherent behavior.
This is a general result. In the presence of the electromagnetic field, NG quanta do not belong to the set
of observable particles. However, they still control the condensate of the vacuum. For brevity, here I
do not discuss such a mechanism (see [5,30–32]).

In the limit f (x) → 1 the boson condensation is space-time independent (homogeneous).
However, without taking the f (x) → 1 limit, it is also possible to consider non-homogeneous
boson condensation. Homogeneous and non-homogeneous boson condensations are thus possible
realizations of the invariance of the same dynamics (the boson transformation theorem [5,6]).
The function f (x), solution of physical field equations, may be Fourier integrable (regular
function), or be divergent, or with topological singularities (singular function) generating the
formation of extended objects with topological non-trivial singularities, such as vortices, solitons,
monopoles, etc. [5,6,8,32,33]. f (x) plays in such cases the role of a “form factor”.
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Of particular interest is for example the case of crystal lattice structure since it involves the
spontaneous breakdown of an “external” symmetry (continuous space translations). The lattice
structure (space “discreteness”) is the result of the dynamical rearrangement of the continuous space
translational symmetry [5]. The crystal periodic potential and related Bloch periodic functions are
described by the q-deformation of Weyl-Heisenberg algebra [34,35].

Boson condensation with singularities is possible only for gapless bosons, as indeed is the case of
NG bosons in SBS. This explains why the formation of objects with topological singularities is observed
to occur in the presence of ordered patterns and in the phase transition processes. A rich diversity of
forms is thus obtained, genuine morphogenesis processes.

6. The Origin of Metamorphoses

Physical states and observables are always localized in space and time. Therefore, so-called
infrared terms, of the order of 1/V, do not contribute to them. Let me analyze how the missing of
infrared terms is at the origin of the metamorphosis process (the change of the symmetry algebra).

The magnon boson field χ(x) is given by

χ(x) =
∫ d3 p

(2π)3/2 χpeip·x−iωpt, (28)

with ωp = 0 at p = 0 (cf. Equation (12)). We can split χ(x) into χt(x), the “hard” part containing
momenta larger than η, and χη(x), the “soft” or infrared part containing momenta smaller than η,

χ(x) = χt(x) + χη(x) . (29)

Note that χη(x) ∝ η and it does not depend on x for η → 0 (cf. Appendix C).
By using of (29) in (17) the contributions to the generators due to χη(x) can be identified. In the

Appendix C it is shown that:

S(1)
f = s(1)f +

(
1

2M

)1/2
(χη + χ†

η) : s(3)t : , (30)

S(2)
f = s(2)f − i

(
1

2M

)1/2
(χη − χ†

η) : s(3)t : , (31)

S(3)
f = s(3)t +

(
1

2M

)1/2 [
i(χη − χ†

η)s
(2)
t − (χη + χ†

η)s
(1)
t

]
. (32)

The su(2) algebra is then recovered by computing

lim
η→0

lim
η̄→0

lim
f→1

[S(i)
f , S(j)

f ] = iεijkS(k) , (33)

where η and η̄ are used for the two rotations in the commutator. Thus

[S(i)
f , S(j)

f ] = iεijkS(k) . (34)

Instead, the e(2) algebra is obtained if the infrared contributions are missed:

lim
f→1

lim
η̃→0

[S(1)
f , S(2)

f ] = iM lim
f→1

∫
d3x| f (x)|2 = (const)1 , (35)

lim
f→1

lim
η̃→0

[S(3)
f , S(i)

f ] = lim
f→1

lim
η̃→0

iε3ijS(j) , (36)

with η̃ denoting the minimum of η and η̄.
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Thus we have two non commuting limits, f → 1 and η̄ → 0. The commutators of the generators
expressed in terms of physical fields are not affected by infrared terms (the group contraction algebra
e(2)). Instead, these terms globally contribute to the S(i) commutators expressed in terms of the
Heisenberg field (recovered by including the whole volume in the f → 1 limit and adding up all the
infrared contributions). In conclusion, the metamorphosis SU(2)→ E(2) finds its root in the localized
nature of physical states and observables.

I remark that the result presented here is fully general and exact, not derived in a linear
approximation (as for example in the Holstein–Primakoff representation [36]).

Finally, I remark that the localization of physical states and observables is also a prerequisite for
the locality and causality principle. When we say that QFT is a local theory, we mean that a system A
may be influenced by another system B, which is at some distance δ from A, through the exchange of
a quantum traveling at a speed not higher than the light speed c. This is required by relativity and
guaranties that the causality principle is also satisfied (the effect necessarily follows in time the cause
(at a ∆t ≥ δ/c)). The basic requirement for the locality is of course that A is distinguishable from B,
i.e., they are localized in finite, separate space-time regions.

Let me estimate in a concrete example the order of magnitude of the localization of a low
energy electron. Consider e.g., a thermal electron moving in the z direction with kinetic energy
Ekz ≈ (1/40) eV. k is the wave vector. For simplicity, the plane wave approximation is used.
Let ∆x << L, with L the linear size of the instrument surface detecting the electron, say of the
order of millimeters. The motion direction is well-defined if the transverse component of the wave
vector is small compared to kz, thus assume ∆kx/kz << 1 (we will see that assuming this of the
order of 10−5 will fit the instrument constraint). Due to the Heisenberg uncertainty relation, it is
1/(kz∆x) ≤ (∆kx/kz). From Ekz = h̄2k2

z/2m (with pz = h̄kz) it is derived 1/kz = (h̄/mc)(mc2/2Ekz)
1/2.

Use of mc2 = 0, 5× 106 eV and h̄/mc = 3, 861× 10−11 cm (the Compton wave length of the electron)
gives 1/kz = 10−7 cm. Using this value in 1/(kz∆x) ≤ 10−5 gives ∆x ≥ 10−2 cm, which can easily
satisfy the instrument condition ∆x << L. Note that the obtained result justifies the use of the wave
plane approximation (instead of the electron wave packet description) (further details in [37]).

7. Boundary Effects in Spontaneous Breakdown of Symmetry

In Equation (A10) the integration over the infinite volume selects the zero-momentum in the
two-point correlation function. The system volume finiteness, however, produce effects on the
system order, e.g., distortions of symmetry patterns due to boundary effects. On the other hand,
the system boundaries by themselves might be dynamically created, not imposed by some external
agent. The boundaries and the size of symmetry patterns in non-homogeneous condensation are in
fact dynamically generated. Processes of fragmentation of ordered domains into smaller domains
might be indeed described by the reduction of the extension of the ordering correlation range.

Consider Equations (A7) , (A8) and (A10). Restrict the integration to finite volume V ≡ η−3. Since

δη(p) =
1

2π

∫ 1
η

− 1
η

dx eipx =
1

πp
sin

p
η

, (37)

and limη→0 δη(p) = δ(p) we have

lim
η→0

∫
dp δη(p) f (p) = f (0) = lim

η→0

∫
dp δ(p− η) f (p) . (38)

Since δη(p) ' δ(p− η) for small η, we get (cf. Equation (11))

M(ε, η, y) = iεe−iη·~y ∆i(ε, η, p0 = 0) , i = 1, 2 , (39)
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Thus, provided ω~p=η = 0 for η → 0, limε→0 limη→0 M(ε, η, y) 6= 0. We see that for η → 0
(infinite volume limit) the Goldstone theorem holds. However, it is limε→0 M(ε, η, y) = 0 for non-zero
η (finite volume, boundary effect); the χ bosons behave as having an “effective mass” ∝ ω~p=η 6= 0.
Then, M 6= 0 only if ε 6= 0. ε plays the role of the pump supplying energy.

Our conclusions, although derived for the case of ferromagnets, are fully general [20]. In the
presence of boundaries an effective mass me f f is generated for the correlation quanta and the
condensation domain has linear size ∝ ξ ≡ 1/me f f . In general, “distorsions” of the condensate
may occur “near” the boundaries. Conversely, if NGs acquire an effective mass due to action of some
external agent (e.g., thermal effects), then the system dynamically rearranges so that condensation
regions of size ∝ 1/me f f are formed [38] within boundaries dynamically generated (fragmentation
of ordered patterns), or else “symmetry restoration” (transition to disordered phase) may occur for
ξ → 0.

Symmetry restoration typically occurs due to thermalization when temperature T becomes larger

than the critical temperature TC. Then, me f f ∝
√
|T−TC |

TC
and thermal fluctuations around TC may

produce size fluctuations ∝ 1/me f f . The converse may also happens, fluctuations in size may manifest
as thermal fluctuations.

A final remark is that the invariance of the S-matrix under c-number translations of χ(x) implies
that it depends on χ(x) through its derivative. ∂µχ(x) is indeed invariant under χ(x)→ χ(x) + const..
The result is that the S-matrix does not depend on low momentum χ(x) fields because ∂µχ(x)→ 0 for
pµ → 0, thus recovering the Dyson low-energy theorem for magnons (the Adler theorem in particle
physics, the soft boson limit of current algebra theory) [5,6,8,39,40]. The stability of the ordered patterns
is thus not affected by the excitation of low momenta NG modes (large wave-length quanta). In the case
of non-homogeneous condensation (domain of size ∝ 1/me f f ), the invariance requires dependence of
S-matrix on χ(x) through its field equation. Then the stability threshold is fixed by pµ ∝ me f f (stability
under excitation of quanta of wave-length λ ∝ 1/me f f ).

8. Fractals and Coherence

It can be shown that fractal self-similar structures are isomorph to squeezed coherent states [41–43].
This leads us to recognize metamorphosis processes in fractal formation.

I consider the example of the logarithmic spiral. The discussion and the results can be extended
to other iteratively constructed fractals [44,45].

The logarithmic spiral (Figure 1) is described by [44]

r = r0 ed θ , (40)

where (r, θ) are polar coordinates, r0 and d real constants, r0 > 0. In a log-log plot (θ, ln(r/r0)),
(40) gives the straight line of angular coefficient tan−1 d :

ln
r
r0

= d θ . (41)

The slope d is the fractal dimension or self-similarity dimension. Rescaling of r/r0 by the power
(r/r0)

n implies of course θ → n θ and the self-similarity property is evident. The golden spiral [44]
is the one where d = dg ≡ 2 ln φ/π, with φ = (1 +

√
5)/2 denoting the golden ratio, so that,

in Equation (40), rg(θ) = r0 edg θ and rg(θ = nπ/2)/r0 = edg (nπ/2) = (φ)n. The connection with the
Fibonacci progression is then also possible (see e.g., [42,46]).

In the z-plane, with z = ξ + i η = r0 ed θ ei θ , the corresponding parametric equations are:

ξ = r(θ) cos θ = r0 ed θ cos θ , (42)

η = r(θ) sin θ = r0 ed θ sin θ . (43)
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Both elements q = e± d θ of the (hyperbolic) basis {e− d θ , e+ d θ}must be considered, as required
by its completeness. Similarly for the imaginary exponent ±i θ. Thus the points on the z-plane are
determined by the (linearly) independent choices z1 = r0 e− d θ e− i θ and z2 = r0 e+ d θ e+ i θ .

Let the parametrization θ = θ(t) be introduced. z1 and z2 are solutions of

m z̈1 + γ ż1 + κ z1 = 0 , (44)

m z̈2 − γ ż2 + κ z2 = 0 , (45)

with
θ(t) =

γ

2 m d
t =

Γ
d

t (46)

and setting to zero for simplicity an arbitrary additive constant. m, γ and κ are positive real constants
and Γ ≡ γ/2m. In Equations (44) and (45) “dot” denotes as usual derivative with respect to t.

Figure 1. Anti-clockwise and clockwise logarithmic spirals.

Use of the notations Ω2 = (1/m)(κ − γ2/4m) = Γ2/d2, κ > γ2/4m allows to write z1(t) =

r0 e− i Ω t e−Γt, z2(t) = r0 e+ i Ω t e+Γ t. t may be interpreted as the time parameter and | d θ/dt | = | Γ/d |
gives the angular velocity. The two solutions of the damped and amplified harmonic oscillator,
(44) and (45), respectively, describe the two logarithmic spirals of opposite chirality. Time reversal
symmetry is broken in each one of the two spirals and the arrow of time enters in the physical scenario.

Extension of the discussion to other fractals is possible. For example, for the Koch curve (Figure 2),
by using q = e−d θ , with d the fractal dimension, the self-similarity equation q α = 1 can be written in
polar coordinates and is similar to Equation (40) [42]. Then the equations in the z-plane can be written
also for the case of the Koch fractal as done for the logarithmic spiral.

I also remark that the system (44) and (45) is isomorph to QED under proper conditions [43]. I will
not discuss this issue for brevity .

Taken separately, the damped and amplified oscillators (44) and (45) are open, “non-hamiltonian”
systems. However, together they constitute a closed system and the canonical formalism can be used
for their analysis [47]. The inclusion in the discussion of both components of the basis {e− d θ , e+ d θ} is
thus justified also on a physical ground.

This leads us to the discussion of the QFT formalism for dissipative systems. The closed system
is found to evolve in time going through the uir of CCR, built on SU(1, 1) squeezed coherent
states, which are also entangled states. Coherence, dissipation and entanglement thus appear to
be interconnected dynamical features of fractal structures.

To see this, starting from the oscillator modes z1 and z2, the operators a and b and their CCR,
[a, a†] = 1 = [b, b†], [a, b] = 0 = [a, b†], can be introduced in a standard way (I omit for simplicity
the momentum subscript k). It is then convenient to define the operators A = (1/

√
2)(a + b) and

B = (1/
√

2)(a− b). They annihilate the vacuum |0〉, A|0〉 = 0 and B|0〉 = 0, with |0〉 ≡ |0〉 ⊗ |0〉,
and have CCR. For details see [46–48].

From the algebraic point of view, one considers the two oscillators together by introducing the
maps HF → HF ⊗ HF and A → A⊗A, which indeed “duplicates” the algebra A (the doubling
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of the degrees of freedom). We thus consider the Hopf algebra with commutative coproduct map
∆A = A⊗ 1 + 1⊗ A. One might be interested, however, in making a distinction between the two
systems, for example considering one of them as the environment in which the other one is embedded.
It is then convenient to move to the “q-deformed” Hopf algebra, with coproduct ∆A = A⊗ q+ q−1⊗A,
which is now a non-commutative algebra (under exchange 1↔ 2), and is therefore able to distinguish
between “the system” and “its environment” (of course, it is our choice to define which one in the
couple is “the system”). In full generality, the q-deformation parameter is q = eθ or q = eiθ , for bosons
or fermions, respectively (see [35,49,50] for details). The non-commutative character of deformed
Hopf algebra is also at the root of non-commutative geometry, of which here for brevity I do not
report [51], and of the possibility to “label” the uir by using ln q = ζ. Of particular interest is the case of
time-dependent q, as it happens indeed with ζ = Γt. Let |0(t)〉 denote the vacuum state at t. The time
evolution operator is

U (t) = exp
(
−Γt

2

((
a2 − a†2)− (b2 − b†2))) . (47)

U (t) is also the two mode squeezing operator [47]. In terms of the operators A and B, restoring the k
subscript, U (t) is

U (t) = ∏
k

exp
(

Γkt
(

A†
k B†

k − AkBk
))

, (48)

where we recognize the interaction part HI of the total Hamiltonian H = H0 + HI [47],

H0 = ∑
k
[h̄Ω(A†

k Ak − B†
k Bk) + ih̄Γ(A†

k B†
k − AkBk)] . (49)

Omitting again for simplicity the k subscript, and putting K+ = A†B†, K− = K†
+ = AB,

K3 = (1/2) (A† A + B†B + 1), with the Casimir operator C2 = (1/4)(A† A − B†B)2, we recognize
in H the generators of the su(1, 1) algebra: [K+, K−] = −2K3, [K3, K±] = ±K±. We also see that
[ H0, HI ] = 0; thus, the condition of positiveness imposed on eigenvalues of H0 is preserved under
time evolution induced by HI (U (t) = e−i(t/h̄)HI ).

We also have

Ak → Ak(t) = e−i(t/h̄)HI Akei(t/h̄)HI = Ak cosh(Γkt)− B†
k sinh(Γkt) (50)

Bk → Bk(t) = e−i(t/h̄)HI Bkei(t/h̄)HI = Bk cosh(Γkt)− A†
k sinh(Γkt) (51)

and h.c., which are the Bogoliubov transformations and give the (inverted) dynamical map of A(t)
and B(t) in terms of A and B (playing the role of Heisenberg fields). A(t) and B(t) annihilate |0(t)〉,
whose explicit expression is

|0(t)〉 = ∏
k

1
cosh (Γkt)

exp
(

tanh (Γkt)A†
k B†

k

)
|0〉 , (52)

normalized at each t, 〈0(t)|0(t)〉 = 1, and we have

lim
t→∞
〈0(t)|0〉 ∝ lim

t→∞
exp (−∑

k
Γkt) = 0, (53)

with ∑k Γk finite and positive, which express the dissipative character (instability) of the oscillators.
The B modes represent the heat bath of the A-oscillator [47]. Moreover, destruction of A modes is
equivalent to creation of B modes. We have

〈0(t)|0〉 → 0 as V → ∞ ∀ t , (54)
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〈0(t)|0(t′)〉 → 0 as V → ∞ ∀ t and t′, t′ 6= t (55)

for
∫

d3κ Γκ finite and positive. These equations show that the representation {|0(t)〉} is unitarily
inequivalent to other representations {|0(t′)〉, ∀ t′ 6= t} in the V → ∞ limit. This confirms that time
evolution occurs over trajectories in the manifold of uir. This is a symplectic, Kählerian manifold [28]
and trajectories through it can be shown to be classical chaotic ones [52,53].

Time evolution is also controlled by the entropy variations dS, which is to be expected due to the
dissipative character of the dynamics [42,47]. Heat dissipation is dQ = (1/β)dS [47]. The Hamiltonian
H can be shown to be actually the free energy F = U − T S. Putting the Boltzmann constat kB = 1,
the temperature is T = h̄ Γ, the entropy S = 2 K2, with K2 ≡ −(i/2)(K+ − K−), and heat contribution
is 2 h̄Γ K2. It is T ∝ h̄ Ω/2, the zero point energy [8,54]. |0(t)〉 is shown to be a finite temperature state
in the Thermo Field Dynamics formalism [6,8,47]. This is a remarkable feature since it shows how
temperature enters in the dissipative evolution of coherent condensate patterns. One finds

NAk (t) = 〈0(t)|A
†
k Ak|0(t)〉 = 〈0(t)|Bk(t)B†

k (t)|0(t)〉 = sinh2 Γkt , (56)

which gives the number of Ak-modes condensed in |0(t)〉 at t. Minimizing the free energy gives the
Bose-Einstein distribution for NAk [47].

Equation (56) shows that the q parameter controls the coherent condensate content of |0(t)〉.
It is remarkable that time for the A-mode is measured by its double B-mode. Notice indeed that in
computing NAk (t) the only non-vanishing contributions are given by the Bk(t)-modes.

Equation (56) also suggests that A and B are entangled modes [42,53,55]. The SU(1, 1) state |0(t)〉
is in fact known to be an entangled state for its two mode components. One may compute the linear
correlation coefficient J(NA, NB) [53,55] and show that the phase-mediated correlation between Ak
and Bk modes acquires the maximal value:

J(NA, NB) =
cov(NA, NB)

(〈(∆NA)2〉)1/2 (〈(∆NB)2〉)1/2 = 1, (57)

where I have omitted the subscripts k for simplicity. Number operators are denoted by NA ≡ NAk =

A†
k Ak, NB ≡ NBk = B†

k Bk. The variance is 〈(∆N)2〉 ≡ 〈(N − 〈N〉)2〉 = 〈N2〉 − 〈N〉2, and the
covariance is denoted by cov(NA, NB) ≡ 〈NANB〉 − 〈NA〉 〈NB〉. The expectation value in |0(t)〉 is
denoted by 〈∗〉.

Figure 2. First five stages of the Koch curve.

〈NANB〉 = 〈NA〉 〈NB〉 for non-correlated modes and the covariance is zero. On the contrary,
the coherent structure of the vacuum |0(t)〉 generates the strong (A, B)-pair correlation. Clearly, there is
no signal transmission between A and B mode, they are entangled by sharing their common phase in
the |0(t)〉 condensate. No contradiction arises, therefore, with the relativity principle (and causality),
since there is no exchange of messengers among them and, on the another hand, in contrast with the
group velocity which is bounded by the speed of light c, the phase velocity is not bounded by c. There
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are no “spooky force at a distance”. The condensate is a realistic quantum system of entangled modes,
observable in its macroscopic manifestation (as realistic is, e.g., a magnet, a crystal, etc.).

I remark that the classical oscillators considered above provide an example of deterministic
systems à la ’t Hooft. Quantization emerges when a constraint of the form K2|0〉 = 0 is imposed on
physical states. For details see [54,56,57].

Let me finally observe that in the dissipative dynamics discussed above we have a spontaneous
breakdown of time translational symmetry and at once breakdown of time-reversal symmetry
(cf. Equation (53)). The symmetry of the Hamiltonian (49) under transformations induced by the K2

generator of SU(1, 1) is broken in the system vacuum |0〉 (cf. Equations (54) and (55)). Since K2 is part of
the Hamiltonian (K2 ∝ HI) we have the breakdown of the “external” (time-)symmetry. In a relativistic
system this would correspond to the breakdown of Lorentz time translational symmetry. This is
particularly interesting since it happens indeed in the case of quantization in the presence of curved
background (the breakdown of Poincaré symmetry) [58] and in the case of vacuum structure in
inflationary scenarios in cosmology [59–61]. On the other hand, breakdown of time-reversal symmetry
involves group contraction mechanisms and can be described in terms of loop–antiloop symmetry [62].
An interesting question is how to extend these results to a general covariant theory [63,64]. From our
discussion, one might be tempted to propose gravitational effects as collective modes, macroscopic
quantum manifestations of a basic quantum coherent dynamics. The possibility to describe the
CMB (cosmic microwave background) in terms of a coherent codensate has been presented in [65].
However, this is a too long story to be further discussed here.

Returning to the discussion of fractals, the conclusion is that fractal forms emerge as macroscopic
manifestations of the underlying coherent quantum dynamics (morphogenesis) and their evolution
(metamorphoses) goes along trajectories through uir of the CCR. Changes in boundary conditions may
turn in diverging trajectories (non-linear dynamical evolution [66]).

9. Conclusions

Some light on the “question of metamorphosis” is shed by the two-level language of QFT.
The dynamics of elementary components manifests itself as a flow of evolving forms at the
physical level.

Coherent condensation of quanta of long-range correlation waves (the NG boson quanta)
determines specific forms, self-similar fractal structures, their evolution and fractal dimension,
the vacuum structure.

I have explicitly discussed the example of the ferromagnet. The dynamical rearrangement of
symmetry SU(2)→ E(2) describes formally the metamorphosis process leading from the collection
of randomly oriented spin elements (SU(2) symmetry) to the organized form of the ferromagnet
(on average, a prevalence of, e.g., spin up with respect to spin down).

Changes in the magnetization M are changes in the forms of the ferromagnetic ordered patterns,
i.e., further metamorphosis processes evolving in time over classical chaotic trajectories through
physically different representations.

The dynamical rearrangement of symmetry is controlled by the Inönü–Wigner group contraction.
This is a general result in SBS. It can be shown also by use of projective geometry arguments [67,68] and
it has been proved in models invariant under SU(n), SO(n), chiral SU(2)× SU(2), SU(3)× SU(3),
spontaneous breakdown of phase, chiral phase and scale invariance, the case of a scalar isotriplet,
the SU(3) group in T − t Jahn–Teller systems [25].

The group contraction mechanism introduces translations of the NG fields. These control
the coherent boson condensation and thus the formation of ordered patterns. The resulting order
parameter is independent of quantum fluctuations due to coherence and thus it is a classical field (of
course, far from critical regimes; in polaron theory under boundary conditions of strong coupling
the semiclassical limit cannot be achieved [29]). The system then behaves as a macroscopic quantum
system, stable under excitations of low momenta NG quanta (the low energy theorems, Section 7).
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In Section 6, the intrinsic localized character of physical states and observables has been shown
to be at the origin of the dynamical rearrangement of symmetry (the origin of the metamorphosis
process). In localized states, infinitesimal contributions of the order of 1/V, with the volume V → ∞,
are missing. The lack of these contributions (the infrared effect) is responsible for the difference
between the “rearranged” symmetries and the dynamical ones.

In the discussion on ferromagnets I have considered spontaneous breakdown of “internal”
symmetries. Without entering into details, I have only mentioned the breakdown of space translational
symmetry (occurring, e.g., in the crystal case). The breakdown of time-reversal symmetry and time
translational symmetry has been considered in Section 8. I have not discussed further the breakdown
of “external” symmetries. I have only quoted some references on the breakdown of Poincaré symmetry
in curved background, the case of inflationary scenarios in cosmology. The question remains open
whether the extension of the results to general covariant theories is possible.

SBS is triggered by the coupling of the system with an external agent, e.g., the environment in
which it is embedded. Such a coupling, although infinitesimally small (ε → 0, Sections 3 and 4),
drives the system to sit in one of the infinitely many uir. The important point is that we deal always
with open systems. However, the canonical formalism describes closed systems. Therefore we have to
consider the system under study together with its environment. The whole {system-environment}
is then a closed system. Through such a doubling of the degrees of freedom, temperature enters in
our scheme. Free energy minimization plays then a relevant role and the breakdown of time-reversal
symmetry (the arrow of time) makes time evolution irreversible (... perhaps it is not a case that in stories
and legends undoing a metamorphosis (break a spell, restore a symmetry) requires a miraculous
action...only the kiss of the Princess may reverse the arrow of time and let the frog go back to be the
most beautiful Prince [69]).

The modes A and B in the state |0(t)〉 are entangled modes (Equation (57)). A and B annihilate
the vacuum state |0〉. They do not annihilate the physical vacuum |0(t)〉, which is instead annihilated
by the physical modes A(t) and B(t). The states |0〉 and |0(t)〉, (and similarly |0(t)〉 and |0(t′)〉, for any
t 6= t′) are unitarily inequivalent states (Equations (54) and (55)). The measurement of the number of A
modes is actually determined by the B(t) modes (Equation (56)). The entanglement thus reveals itself
when quantities of the “Heisenberg field level” are computed in the “physical level” (the vacuum |0(t)〉
at time t) [53]. Equation (56) is an example of computation by use of the dynamical map, expressed in
this case by the Bogoliubov transformations (50) and (51) (the number operator of the Heisenberg A
field is measured by use of the “lens” of the physical fields A(t) and B(t) and physical vacuum |0(t)〉).

The QFT formalism and the remarks on the openness of the system apply to condensed matter
and particle physics and find wide experimental confirmation. They have been also extended to
biology and neuroscience [70–78] and to some aspects of linguistics [79] in the generation of meanings,
in the transition from syntax to semantics (see also [80–82] where the openness of the system also plays
a crucial role).

Within the unified vision of nature that then emerges, the realization of the same basic dynamics
into many forms depicts in terms of mathematical structures the metamorphosis of the being into the
existing, its unfolding in the kaleidoscopic variety of the existence, if I am allowed to use metaphoric
images [69,83]. Perhaps, as already done in [46], it might be worth to close by quoting one famous
passage by Darwin “ [...] in this view of life, with its several powers, having been originally breathed
into a few form or into one; [...] from so simple a beginning endless forms most beautiful and most
wonderful have been, and are being, evolved.” [1].
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Appendix A. Spontaneous Breakdown of Symmetry and Nambu-Goldstone Bosons

In terms of the (total) generators S(i) = ∑lS
(i)
ψ (xl), i = 1, 2, 3, the SU(2) algebra (9) becomes

[S(i), S(j)] = iεijkS(k). (A1)

For infinitesimal θi

S(i)
ψ (x)→ S(i)′

ψ (x) = S(i)
ψ (x)− θjεijkS(k)

ψ (x). (A2)

In the functional integral formalism, the generating functional is

W[J, j, n] =
1
N

∫
[dψ][dψ†] exp i

∫
dt{L[ψ(x)] + J(x)ψ(x)

+ ψ†(x)J(x) + j†(x)S(−)
ψ (x) + S(+)

ψ (x)j(x) + S(3)
ψ (x)n(x)− iεS(3)

ψ (x)} . (A3)

The electron fields ψ(x), ψ(x)† and their sources J, J† anticommute; the sources j are commuting
c-numbers. N is the normalization factor

N =
∫
[dψ][dψ†] exp i

∫
dt{L[ψ(x)]− iεS(3)

ψ (x)}, (A4)

S(±)
ψ (x) ≡ S(1)

ψ (x)± iS(2)
ψ (x). The ε-term carries the information of the symmetry breakdown.

At the end of the computation the limit ε→ 0 is taken . The details of the computations are explicitly
given in [17]. The Ward–Takahashi identities relevant to our discussion are

〈S(1)
ψ (x)S(1)

ψ (y)〉ε = 〈S(2)
ψ (x)S(2)

ψ (y)〉ε , (A5)

ε
∫

d4x〈S(2)
ψ (x)S(1)

ψ (y)〉ε = 0 , (A6)

〈S(3)
ψ (y)〉ε = ε

∫
d4x〈S(1)

ψ (x)S(1)
ψ (y)〉ε , (A7)

〈S(3)
ψ (y)〉ε = ε

∫
d4x〈S(2)

ψ (x)S(2)
ψ (y)〉ε , (A8)

〈S(1)
ψ (y)〉ε = 〈S(2)

ψ (y)〉ε = 0. (A9)

〈S(i)
ψ (x)S(i)

ψ (y)〉ε = i
∫ d4 p

(2π)4 e−ip(x−y)ρ(i)(p) ×

×
(

1
p0 −ωp + iεai

− 1
p0 + ωp − iεai

)
+ c.c. , i = 1, 2, (A10)

where p(x− y) = −p · (x− y) + ip0(tx − ty), ai = η/ε; ωp is the energy of the quasiparticle, a bound

state of electrons; the spectral density ρi(p) cannot be negative since S(i)
ψ are hermitian. Equation (A5)

gives ρ1(p) = ρ2(p) ≡ ρ and a1 = a2 ≡ a; continuum contributions (c.c.) come from states with more
than one quasiparticle.

One then derives the result (12).
By observing that M is the local spin density in the third direction, NM is the total spin in such

a direction. N is the number of elementary spin components (lattice points). We have 〈0|S2|0〉 =
NM(NM + 1) . For tk < tl in (A10), we find, for tk → tl , 〈0|SiSi|0〉 = ρN for i = 1, 2 (similarly by
assuming tl < tk). Thus, 〈0|S2|0〉 = 2ρN + (NM)2, ρ = M/2 and a = 1.

The Bethe-Salpeter equation may be used for explicit computations when the specific Lagrangian
model is assigned [5,18].
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Appendix B. Symmetry Rearrangement

In Equations (16) and (17) A(φ, φ†, χ, χ†) is given by

A(φ, φ†, χ, χ†) = (A11)∫
d4x[ρ−1/2χ(x)K(

−→
∂ )S(−)

ψ (x) + ρ−1/2S(+)
ψ (x)K(−

←−
∂ )χ†(x) +

Z−1/2φ†(x)Λ(−
−→
∂ )ψ(x) + Z−1/2ψ†(x)Λ(−

←−
∂ )φ(x)] .

Z is the electron wave function renormalization, ρ = M/2. Under the conditions φθ(x) =

φ(x), χθ(x) = χ(x), at θ = 0, the transformed fields φθ , χθ and their h.c. satisfy the quasiparticle
equations, leave invariant the S-matrix S and induce the transformation (A2) of S(i)(φ, φ†, χ, χ†), i.e.,

Λ(
−→
∂ )φθ(x) = 0, K(

−→
∂ )χ†

θ(x) = 0 , (A12)
∂

∂θl
S(φθ , φ†

θ , χθ , χ†
θ) = 0, (A13)

∂

∂θl
Si(x, φθ , φ†

θ , χθ , χ†
θ) = −εilkSk(x, φθ , φ†

θ , χθ , χ†
θ) , (A14)

respectively. The transformed fields are now used in Equation (A11). Equations (A13) and (A14)
then give

∂

∂θ1
χθ(x) = i

(
M
2

)1/2
,

∂

∂θ1
φθ(x) = 0 , (A15)

∂

∂θ2
χθ(x) = −

(
M
2

)1/2
,

∂

∂θ2
φθ(x) = 0 , (A16)

∂

∂θ3
χθ(x) = −iχθ(x),

∂

∂θ3
φθ(x) = iλ3φθ(x) , (A17)

and their h.c. Solving these equations one obtains the transformations (18)–(20).

Appendix C. Infrared Contributions

χη(x) in Equation (29) has the expression

χη(x) =
1
2

η
∫ +∞

−∞
dte−η|t|χ(x) =

1
2(2π)1/2 η

∫
d3kδη(k)χkeik·x , (A18)

where δη(p)→ δ(p) for η → 0. Use of (29) in (17) gives

S(i)(y, φ, φ†, χ, χ†) = 〈S(i)
ψ (y) : exp[−iA(φ, φ†, χt + χη , χ†

t + χ†
η)] :〉

= s(i)t (y)− iρ−1/2χη

∫
d4x〈S(i)

ψ (y)K(
−→
∂ )S(−)

ψ (x) : e−iAt :〉

− iρ−1/2χ†
η

∫
d4x〈S(i)

ψ (y)S(+)
ψ (x)K(−

←−
∂ ) : e−iAt :〉 , (A19)

where s(i)t (y) = 〈S(i)
ψ (y) : e−iAt :〉 and At contains only hard momenta. Then the spin density operators

in terms of the quasiparticle fields are [17]:
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S(1)(y) = s(1)t (y) +
(

1
2M

)1/2
(χη + χ†

η)s
(3)
t (y), (A20)

S(2)(y) = s(2)t (y)− i
(

1
2M

)1/2
(χη − χ†

η)s
(3)
t (y), (A21)

S(3)(y) = s(3)t (y) +
(

1
2M

)1/2 [
i(χη − χ†

η)s
(2)
t (y)− (χη + χ†

η)s
(1)
t (y)

]
. (A22)

The computation of matrix elements of S(i)(y) between physical states |i〉 and |j〉 are

〈i|S(i)(y)|j〉 = 〈i|s(i)t (y)|j〉 , (A23)

i.e., due to the localized nature of physical states, infrared contributions are missing (η → 0).
Equation (A23) is thus, for i = 3,

〈i|S(3)(y)|j〉 = 〈i|s(3)t (y)|j〉 = M , (A24)

and therefore s(3)t (y) = M+ : s(3)t (y) :. We split also f (x) in hard and soft parts, f (x) = ft(x) + fη(x).
fη(x) vanishes as η → 0. Equations (30)–(32) are then obtained and

[S(1)
f , S(2)

f ] = iM
∫

d3x| f (x)|2 + i
(

1
2

)
[ f ∗η (x) + fη(x) + f ∗η̄ (x) + fη̄(x)] : s(3)t :

−
(

1
2M

)1/2 [
i(χη̄ − χ†

η̄)s
(2)
t − i(χη + χ†

η)s
(1)
t

]
. (A25)

Note that two cutoffs η and η̄ are involved. Let η̄ � η. We can ignore fη̄ and fη̄∗ since | fη̄(x)|2 �
| fη(x)|2. Equations (33)–(36) are then obtained.
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