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Abstract: The aim of this paper is to study the stability of generalized Liouville-Caputo fractional
differential equations in Hyers—-Ulam sense. We show that three types of the generalized linear
Liouville-Caputo fractional differential equations are Hyers—Ulam stable by a p-Laplace transform
method. We establish existence and uniqueness of solutions to the Cauchy problem for the
corresponding nonlinear equations with the help of fixed point theorems.
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1. Introduction

Because fractional calculus has a good global correlation performance to reflect the historical
dependence process of the development of system functions, and can also describe the attributes of the
dynamic system itself, it becomes a powerful mathematical tool to describe some complex movements,
irregular phenomena, memory features, and other aspects. Fractional calculus theory was widely used
by mathematicians as well as chemists, engineers, economists, biologists, and physicists (see [1-5]).
In 1876, Riemann proposed the definition of the Riemann-Liouville derivative. Caputo first proposed
another definition of fractional derivative via a modified Riemann-Liouville fractional integral at
the beginning of the 20th century, namely a Caputo fractional derivative. Caputo and Fabrizio [6]
introduced a new nonlocal derivative without a singular kernel and obtained the new Caputo-Fabrizio
fractional derivative of order 0 < a < 1. Theoretical research and application of Caputo—Fabrizio
fractional can be referred to [7-13]. Butzer et al. [14-18] study properties of the Hadamard fractional
integral and the derivative. In [19,20], Katugampola introduced a new fractional integral and fractional
derivative, which generalizes the Riemann-Liouville and the Hadamard integrals and derivative into
a single form, respectively.

Hyers—Ulam stability has been one of the most active research topics in differential equations,
and obtained a series of results (see [21-30]). Recently, Algifiary et al. [22] obtained generalized
Hyers—Ulam stability of linear differential equations. Razaei et al. [31] proved that the Hyers—Ulam
stability of linear differential equations. Wang et al. [32] proved that two types of fractional linear
differential equations are Hyers-Ulam stable. Shen et al. [33] deal with the Ulam stability of linear
fractional differential equations with constant coefficients. Liu et al. [34] proved the Hyers—-Ulam stability
of linear Caputo—Fabrizio fractional differential equations. Liu et al. [35] studied the Hyers-Ulam
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stability of linear Caputo—Fabrizio fractional differential equations with the Mittag-Leffler kernel. Laplace
transform method is used to deal with linear equations and fixed point approach and Gronwall inequality
are used to deal with nonlinear equations.

For some differential equations describing physical models and practical problems, it is very
difficult to find their exact solutions and the method of finding its exact solution (if they exist) is
also very complicated. In order to construct explicit solutions to differential equations with constant
coefficients and in the frame of Riemann-Liouville, Caputo and Riez fractional derivatives, integral
transforms including Laplace, Mellin, and Fourier were found to be strong tools. One of the main
difficulty is to find some appropriate transformations in order to find analytic solutions to some classes
of fractional differential equations. In order to extend the possibility of working in a large class of
functions, Jarad et al. [36] present a modified Laplace transform that it call p-Laplace transform, study
its properties, and prove its own convolution theorem.

Motivated by [36], we apply the p-Laplace transform method to study the Hyers-Ulam stability
of the following linear differential equations:

(DEPf)(H) = g(t), 0 <a <1, p>0, )

and
(DEFF)(H) = Af(1) = (1), 0<a <1, p>0, @)

and
(DEFF)(H) = ADEP)(1) = g(t), 0<a <1, p >0, 3)

where D f denotes the left generalized « order Liouville-Caputo fractional derivative for f with the
parameter p (see Definition 2).
Next, we study to Cauchy problem for nonlinear equations as follows:

(D)) =gt f(1), 0<a <1, £(0)= fo, 4)

and show the existence and uniqueness of solutions via Banach fixed point theorem and Schaefer’s
fixed point theorem and obtain the generalized Hyers-Ulam-Rassias stability via an extended
Gronwall’s inequality.

2. Preliminaries

Let C(I,R) be the Banach space of all continuous functions from I into R with the norm ||y||¢c :=

sup{|y(x)| : x € I}.

is called the standard

i n
Definition 1. (see [35], Definition 2.1) Let « > 0,t,f € R. Ey(t) := ¥ m
n=0

[e0]
Mittag—Leffler function. By g(t) := ¥ is called two-parameter Mittag—Leffler function.
n=0

tn
T'(an+p)
Definition 2. (see [37], Definition 5) Let f : [0, +00) — R. The Liouville—Caputo generalized derivative of the
function f is expressed in the form

(]D‘é"Pf)(t) - F(ll_‘x) ./Ot(tP;sP)_af/(s)Sf:, t>0,

where the order « € (0,1), p > 0, and T(-) is the Gamma function.



Symmetry 2020, 12, 955 30f18

Definition 3. (see [36]) Let 0 < & < 1, p > 0. The generalized left fractional integrals of the function f is
expressed in the form

AP0 = g [ OSSO > 0,050

Theorem 4. (see [36], Corollary 3.3) Let « € (0,1), p > 0. The p—Laplace transform of the function of the
generalized fractional derivative in the Liouville—Caputo sense is expressed in the following form:

Lo{(DPF) (1)} (s) = s"Lo{f()}(5) =" fo, p >0, f(0) = fo. )

The p—Laplace transform of the function f is given in the form

LAFWHS) = [T R f0) o 0 >0,

and
Lo{f(B)}(s) = L{f((01)?)}(s), p > O, (6)
where L{f} is the usual Laplace transform of f.

Definition 5. (see [36], Definition 2.9) Let f and g be two functions which are piecewise continuous at
each interval [0, T| and of exponential order. The p—convolution of f and g is given by

(Fo )0 = [ £ =) gle) 25, 00, )

Theorem 6. (see [36], Theorem 2.11) Let f and g be two functions which are piecewise continuous at

o
each interval [0, T) and of exponential order e ¢ . Then,

fro8=8%f 0 >0,
and
Lo{f o 8}(s) = Lo{f1Loig}(s).

Lemma 7. Let Re(a) > 0,p > 0,and |4| < 1.

(i) Lo{1}(s)=1,s>0.

i) Lo{e'T}(s) = L.

Proof. It is easy to check the following facts:

O Ll = [ T = L et = 1
i) Lo{e'F)(s) = [T e*s%% -1

The proof is complete. [

Lemma 8. (see [36], Lemma 3.4) Let Re(a) > 0,p > 0,and | 4| < 1.

a—1

(i)  Lo{Ea(A(5)")}(s) = &=
(i) Lo{(5) DEaa(A5))}s) = 7

From Lemma 8, we derive the following result.
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Lemma 9. Let Re(w) > 0,p > 0,and | 4| < 1. Then,

Lo (P B (NGIIE) = 5=
Proof. One can see
/\ P k
£ DEGAGINE) = LG T (kj-; H6)

0 Aktapk+p5 Y

E"{Zo Fak+ pprr 1)

) )\k
= L paok+op—p

k;o Fak 1 plprp1 oo )
_ i Ak akip-1L(1+ka+p—1)

= r(ak 4 ﬁ)pak+ﬁ71p gl+ka+p—1
- i AK I'(ka+ B)
B = T(ak+ B) skatp
— . A
- kX:%) gka+p
1 & A
- S LG

se—B

st — A

The proof is finished. O
Motivated by [34,38], we introduce the following definitions.

Definition 10. The fractional differential equation ¥ (g, f, (D' f),..., (D" f)) = 0 has Hyers—Ulam
stability if there exists a real number K > 0, such that for a given € > 0 and for each solution f € C([0, T],R)
of the inequality

¥(g, £, (DS, ..., (DE"Ff)) <e

there exists a solution f, € C([0, T],R) of the differential equation such that | f(t) — f,(t)| < Ke.

Definition 11. The fractional differential equation ¥ (g, f, (D:*f),..., (D" f)) = 0 has generalized
Ulam—Hyers—Rassias stable with respect to G € C([0, T|, R) if there exists a real numbr cg > 0, such that for
each solution f € C([0, T],R) of the inequality

¥(g f, (D), ..., (DE"f)) < G(t), te[0,T]

there exists a solution f, € C([0, T],R) of the differential equation such that |f(t) — fo(t)| < cgG(t).

Lemma 12. ([39], Corollary 2.4) Let «,p > 0, x(t), a(t) be nonnegative functions and b(t) be nonnegative
and nondecreasing function for t € [to, T), T > 0, b(t) < M, where M is a constant. If

[ —

x(t) < a(t) +v(0) [ (T ()

ty, P Ti-p

7
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then )
t —t

x(t) < a(t)E, (b(t)f(a)( .

)“), t ety T).

3. Hyers-Ulam Stability for Linear Problems

Theorem 13. Let 0 < & < 1,p > 0 and g(t) be a given real continuous function on [0,00). If a function
f :[0,00) — R satisfies the following inequality

(DePf) (1) —g(t)] <& f(0)=fo€R,
foreach t > 0 and e > 0, then there exists a solution f, : [0,00) — R of (1) such that

o

If(t) = fa(t)] < m& (8)

Proof. Let
F(t) = (D¢PF)(t) — g(t), £ > 0. )

Taking the p-Laplace transform of (9) via Theorem 4, we have

L{F(D}s) = L{(DPH() —3(1)}(s)
Lo{(DPF)(0)}s) — Lo{g(H)}(5)
sS"Lo{f(1)}(s) = " fo — Lo{g(1)}(s), (10)

where £,{F(-)} denotes the p-Laplace transform of the function F. From (10), one has

ﬁp{f( )}()
_ 7f0+ ﬁp{g(t)}( +a LP{F()}<

= focp{1}<s>+mcp{<5> 80N + g Ll () FOY)
Set
fl) = fot gy (5) ()
= ot g S 0 an

Taking the p—Laplace transform of (11), one has

Lo{fa(t)}(s)

= ot rgte] [ 05 e

1 t
St el G s o)
tP

Lhsr, {r(l)< e 1}<s>-cp{g<t>}<s>

f0+* Lofg(t)}(s) (12)

1
S
1
S
1
s
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Note that

LA f)()}s) =

6 of 18

s"Lo{ fa(t)}(s) — s“ o
= "o+ L{g()}(s) =" fo
Lo{g(t)}(s),

which yields that f,(+) is a solution of Equation (1), since, according to the one-to-one transformation
of L in (6), we can get that £, is the one-to-one transformation.
From (11) and (12), we have

Lo{f(t) = fa(t)}(s)

This implies that

Thus,

The proof is complete.

= ot 2 L{8N6) + S LoFONE) — o - Lolg(}()

GO0

1 0,

- cp{r(la)ﬁ)“ *pP<t>}<s>

- o [ Dm0 e,

[f(£) = fa(8)]

1 Bl 10 —gP
I'(a) /0 (
)a—l 1

o
I3 bl t0 —sP

<

- F(a)/o( 0 sl=p

E: Pt —sf g 1

_ r(w)/o( ) s
LA — —

< _ € /(t S)a—ldt s
0

I'(a) P P
on

I'(a+1)p~ &

r

1
a—1
o

|F(s)|ds

ds

O

Remark 14. From Definition 10, (8) shows that (1) is Hyers—Ulam stable with the constant K = e
provided that 0 < t < T. (1) is not Hyers—Ulam stable if t = .

Ta+1)p

Theorem 15. Let 0 < a < 1,p > 0, A € R, and g(t) be a given real continuous function on [0, c0). If
a function f : [0,00) — R satisfies the following inequality:

(DEPf)(H) = Af(H) —g(D] <& f(0)=fo€R,
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foreach t > 0and e > 0, then there exists a solution f, : [0,00) — R of (2) such that

) = D] < B pear (A1 (). 13)
1Y Y
Proof. Let
Fi() = (DS £)(1) = Af() — g(8), £ > 0. (14)

Taking the p-Laplace transform of (14) via Theorem 4, we have

Lo{Fi(D}(s) = Lo{(DPf)(H) = Af(£) — (1)} (s)
= Lo{(D7F)(D}s) = AL {f(D)}(s) = Lo{g(1)}(5)
= S"Lp{f(D}(s) =" fo = AL{F (D)} (5) — Lp{g(1)}(5), (15)

where L,{F;(-)} denotes the p-Laplace transform of the function F;.
From (15), one has

Lo{f(H)}(s)

sa—l

- s”‘—/\f0+

pr 1_ 7 Lotg(t)}(s) + ﬁﬁp{ﬁ(t)}(s)

_ fozp{mut:)“)}(s) + cp{<t:>“-1m:a,m<t:>“>}<s> Lo{3(D}(s)

e a—1 t o
+Ep{(5) Ea,a(?\(g) )}(s) - Lo{Fi(£)}(s)

_ fo,cp{EmU:)“)}(s) + cp{(:)“-lm,a(Mt:)“) 40 8(1)}(5)

1 s
FLp{()  Bua(ACD)") % F(D}(5)

= A BN + Lol | (5T B (0 35
N e e ARTOR = )
Set
lt) = A A + [ (5 B M) - 50) (17)
Taking the p-Laplace transform of (17), one has
IRIAOHE
= A BN + Lol || (ST B -0 )

_ fo,cp{mu’*:)“)}(s) + cp{(:)“-llfza,am(t:)“) 40 8(1)}(5)

_ fo.cp{Eam(’*:)“)}(s) + cp{(:)“-lEa,a(A(t:)“)}(s) Lo{3(D}6)
a—1
= T ft s L8 s) (19)
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By Definition 4 and (18), we obtain

Lo{(DEf)(6) = Afa 0} (5)
= S LD} ) — 5 o~ ALp{falD)}6)
a—1
= (A fo (5~ )y Lolg(O}6) o
= L{a(}6)

which yields that f, is a solution of Equation (2) , since £, is one-to-one.
From (16) and (18), we have

Lo{f(1)
= foLp{Ea(r

+£d/ W

Thus,

IN

IN

IN

The proof is complete.

—ﬁ(ﬂ&)

P —sP ds

zp{/t o T s )

P — ds
R (S)Sfp}

t‘o t tp—sp a—1
Exo(A
[y, a

T gl 2

sl-p

£~ ful®)
E0—sf
L Bl

t o — gP
b
t
g
JO

o — P ds
)") 'Pl(s)sfp

P —sP

)ailEa,vAA( |Fl( )’Sd%

)*)
0 —sf 1 0 —sP | ds
(T) Ea,m(}\(T) ) Tp
P gp P gP —
t—s aflsz,a()\(t s, ‘d th—s

(——) 5

p P
oc 12 (tp SP> )k d(fp—sp
= zxk—l—oc 0
- M'k /t tp_sp)ak+a—ld(tp_sp)
= Tk + ) P 4
- |)L|k ﬁ k4o
gkgol"(ockthx—i-l)(p)

v ‘E A v
() Euana (M(2))e

)

tP —sP

O

Remark 16. From Definition 10, (13) shows that (2) is Hyers-Ulam stable with the constant K =

™
pa(k+1)

Eqya+1(|A|T*) provided that 0 < t < T. (2) is not Hyers—Ulam stable if t = oo,
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Remark 17. Let0 < a < 1,p > 0, A € R, and g(t) be a given real continuous function on [0, c0). If a function
f:[0,00) — R satisfies the following inequality
[(DEPA)(H) = Af(H) —8(D] < G(t), f(0)=foER,

then
|Fi(t)] < G(t)

for each t > 0 and some function G(t) > 0, where F; is defined in (14).
From Theorem 15, there exists a solution f, : [0,00) — R of (2) such that

0~ fu)] = \/t o B (M) RO

) i

P —gf
|F1(S)|17_p
P — P

7)“711[‘304,04()\(

IA
S—

S

ds

pET
o — gP

“id

>>\ 2

0 —gP
TSWEW( l
o P o P
<TS>“*1EM<A< ps

IN
@
é“l

IN
|
o
27\1

P
G(t) / ? 201, (A2%)dz
0

= (;) wat1 (| |(5)) (B)-

IN

By Definition 11, (13) shows that (2) is generalized Hyers—Ulam-Rassias stable with the constant cg =
(T) B a1 (1AI(22)) forall t € [0,T)

Theorem 18. Let 0 < p < a < 1,p >0, A € R, and g(t) be a given real continuous function on [0, c0). Ifa
function f : [0,00) — R satisfies the following inequality

|(DEF)(E) = ADEFf) () — gD <& f0)=fo€R,
foreach t > 0 and e > 0, then there exists a solution f, : [0,00) — R of (3) such that
tP tP
f(8) = fa(B)] < (;)“Ea—ﬁ,aﬂ(w(;)“75)8- (19)

Proof. Let

E(t) = (DI £)(t) — A(DEPf)(t) — g(t), ¢ > 0. (20)

Taking the p-Laplace transform of (20) via Theorem 4, we have

LAR(D}(s) = Lo{DEFF)(E) ~ ADEF)(1) — g()}(5)

= Lo{(DEF) (1)) = AL {(DEFF)(D}(5) = AL LF (1)} (5) — Lo{g(1)}(5)

= s"Lo{f(1)}(s) =" fo - ?\Sﬁﬁp{f( )}(s) + AP fo — Lo{g ()} (s)

= (" = AP)Lo{f(D}(s) = ("1 = AsP ) fo — Lo{g ()} (s), (1)

where L,{F(-)} denotes the p-Laplace transform of the function F,.
Note
a—1 a—p—1
T~ o LB (MG,
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513*1 S*l
e ey A (L NIV Y
and
s B
Si _1)\5,5 = =B — ) = ‘CP{(i:)“lEaﬁ,,x()\(t:)“ )(5)
From (21), one has
Lo{f(£)}(s)
=1 _ NgB—1 1 1
iy wa Chabray wol A HOMO Ry WA LEIONC)
Sail Sﬁ*l
R v Ly v L jAsﬁﬁp{g(t)}(s) + ﬁﬁp{Fz(f)}(S)
- foﬁp{EwM(t:)"‘ﬁ)}(s) - Afoﬁp{ﬁ:)“ﬁlaaﬁ,aml(ut;)“ﬁ)}(s)

+cp{<t:>“-1maﬁ,am<t:>“-ﬁ 40 8(D)(5)

() B palA) P 2y Fa6) ()

- focp{EmA(t:)“-ﬁ)}(s) - Aﬁ@{(f)“%ﬁ,a,gH(A(t;)“-ﬁ)}(s)
B o ~g<t>>d"}<s>

o xlr

" . i, pz(t))x‘ffp }(s), (22)

Set

fulh) = foEaﬁ(ufvﬁ)—uo(*:)“ﬁm,s,aﬁH(A(”)“ﬁ><s>

P
P xp P —xP dx
A R L0)

i (23)

Taking the p-Laplace transform of (23), one has

Lo{fa(t)}(s)
# t .

fOLp{Eafﬁ()\(p ) P)}s) _)‘fOEp{(p)a_ﬁEaﬁ,aﬁ+1()\(p)a ’5)(5)}(8)

s [ g 5 e

p
tP tf a

fO'Cp{Etxﬁ(A(t:)aﬁ)}(s) —/\foﬁp{((p )""ﬁE%ﬁ,ﬂfﬁH(?\(g)"‘ #)(s)

() B (M) 3 80

ga—1 N Sﬁfl 1 ’ t
= aoaghAaaEht Tl se)

g1 )1 1
= Tt s L8} 6) @9
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By Definition 4 and (24), we obtain

Lo{(DY fa) (1) — M(DE £2) (1)}

= L {f0}6) — 5 o APLAR}6) + AP o
g—1 _ ygp—1
= AT T o () e L0 6) — (4 - AP o

= Lo{g(®)}(s),

which yields that f, is a solution of Equation (3), since £, is one-to-one.
From (22) and (24), we have

Lo{f(t) — falt _ oA LIy LIy
pf(t) = fa(t)}(s) = S _ AsP fo+ o o18(£)}(s) +m AFR(D)}(s)
a—1 _ yopf—-1
- s“—izﬁ foisa jASﬁEC{g(t)}(S)

= i LelBONO)

= o] [ E 0 ) ),

This implies that

0 — xP
P

0 — xP

)ocflE

£ -l = [« el

SO

£~ folt)
[ paa

P
t
J

0 — xP ﬁ)~1—" dx

0 — xP

IN

(

IN

)a—lE

0 —xf

o — xP
ot
&
|l
)a lE
[y
P — P w (A

a—1
0 ) Ea—ﬁ,a</\<
P — xP
_E/O (
t
_ a—1
- LS B

0
< (OB, pari(A(E )by
0 o

IN

The proof is complete. [

Remark 19. From Definition 10, (19) shows that (3) is Hyers—Ulam stable with the constant K =
(T?p)“]Ea_ﬁ’a+1(|/\|(%P)""ﬁ) provided that 0 <t < T.

Remark 20. If B = 0, then (D¢ f)(t) — /\(ID)E’Pf)(t) = g(t) coincides with (DZPf)(t) — Af(t) =
g(t), and (%)“E“,ﬁ/“H(MK%)“’ﬁ) coincides with (%)“IE“,H1(|)\|(%)"‘)£, so Theorem 18 generalizes
Theorem 15.
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Remark 21. Let 0 < B < a < 1,0 > 0, A € R, and g(t) be a given real continuous function on [0,0c0).
If a function f : [0,00) — R satisfies the following inequality
(D F)(1) = ADEFF)(E) — g(1)] < G(t), F(0)=fo€R,

then
|E2(t)] < G(¢t)

for each t > 0 and some function G(t) > 0, where F, is defined in (14) .

From Theorem 18, there exists a solution f, : [0,00) — R of (2) such that

ap
FO ROl S ppBapan(AFCP)60) (25)

By Definition 11, (25) shows (3) is generalized Hyers—Ulam—Rassias stable with the constant
cc= M%Ea,ﬁﬂﬂﬂ/wﬁ(“’ﬁ))for allt € [0, T].

4. Existence and Stability Results for the Nonlinear Equation

We introduce the following conditions:
[A1] : g:]0,T] x R — R is continuous.
[A2] : There exists a L > 0 such that

g(t,y) =gt I <Lly—fl, Yy, f €R,t€]0,T].

[A3] : There exists a constant L, > 0 such that

g(t, f)l < Lg(1+£1)

foreacht € [0,T] and all t € R.

Theorem 22. Let 0 < & < 1, p > 0. Assume that [A1] and [A2] hold. IfL(%p)“ < 1, then (4) has a unique
solution on [0, T|.

Proof. Consider A : C([0, T],R) — C([0, T],R) as follows:

P B v s
(ANO = fot gy | )8l S(9) 15 t € 0T 6)
Note that A is well defined because of [A1].

Forall f1, f, € C([0,T],R) and all t € [0, T], using [A2], we have

P —sP g ds
ARO - BROL <[5 s A7) - 86O 1
< LSRG - A6l
= LIfi=fle(5)"
TP
< LA flle



Symmetry 2020, 12, 955 13 of 18

which implies

IAf = Af2||c<L( )||f1 fallc-

From the condition L(%p)"‘ < 1, A is a contraction mapping, and, by applying the Banach
contraction mapping principle, we know that the operator A has a unique fixed point on [0, T|. O

Next, we show that the existence of solutions for (4) via Schaefer’s fixed point theorem.
Theorem 23. Assume that [A1] and [A3] hold. Then, (4) has at least one solution.

Proof. Consider A as in (26). We divide our proof into several steps.
Step 1. A is continuous.

Let { f. } be a sequence such that f,, — f in C([0, T|,R). For all t € [0, T|, we get

AR = AFO] = ] [ S s o) [ gl £
< W)/O%”Jp gl <>>—g<s,f<s>>|siif,,
< gt =g Plers [ E=Tr

0
110,
@(?) 18C/ fn) =& Flle-
This shows that A is continuous since ||g(-, fn) — (-, f)||c — 0 when n — oo.

Step 2. A maps bounded sets into bounded sets of C([0, T|, R).

Indeed, we prove that for all » > 0, there exists a k > 0 such that for every f € B, = {f €
C([0,T,R) : |Ifllc < r}, wehave ||Af|lc < k. In fact, for any t € [0, T], from [A3], we have

MO = 1l ) )OS A6 o
< 1hl+ ()/Oﬁp;sp)“ lgls, SIS
L+ Ifle) [ —s y ds
ol + = T
ol + S By,
which implies that
Iafle < 1l ++ 52 ik

Step 3. P maps bounded sets into equicontinuous sets in C([0, T|, R).
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Letty,tp € [0,T], with0 < t; < t, < T, f € B,. From [A3], we have
[Af(t1) — Af(t)]
1 ho#—sP ds b _gp ds
/0 (L——)""g(s, f(5)) (Z2——)"""g(s, f(5))

T(a) P steJo T p str

< Lo(1+7) /fl (tf—sf’)a_l_(tg—sp)a_l ds +/tz(t‘2)—sp)lx_1ds
- T(a) 0 p p st=r Jy o p stop

Le(1+47)
< = 800 P Pya )
= T(a)ap® (tl ty —2(t — ) )

Then, the right-hand side of the above inequality tends to zero as t; — t;. Thus, A
is equicontinuous.

We can conclude that A is completely continuous from Steps 1-3 with the Arzela—Ascoli theorem.

Step 4. A priori bounds.

Now, we show that the set E(A) = {f € C([0,T],R) : f = ¢f for some 1 € (0,1)} is bounded.
Let f € E(A). Then, f = iAf for some : € (0,1)}. For each t € [0, T], we have

L R e E N B e

0 BET
< fo+rﬁi)/0t(tp_sp)“‘1ll +f(s)|£

P sl=e

L L L ds
< 8 7Y 8 a—1 -
S e ey ¢ O

By Lemma 12, we obtain

0

FOL < (ot pyigt™ B s (500
< (fo+ MT“P)EDC(LS(T:)“) < 0.

Then, the set E(A) is bounded.

Schaefer’s fixed point theorem guarantees that A has a fixed point, which is a solution of (4). The
proof is finished. O

For the sake of discussion, the following inequality is given

[(DEPF)(8) =gt f()] < G(1), Yt € [0,T]. (27)

In the following, we consider (4) and (27) to discuss the generalized Ulam—Hyers—Rassias stability.
We need the following condition.

[A4] : Let G € C(]0, T], R4 ) be an increasing function and there exists Ag > 0 such that
t
/ (sP) (t° — sP)*"1G(s)ds < AgG(t), Vt € [0,T].
0

Theorem 24. Assumptions [Al], [A2], and [A4] hold. If L(T?p)"‘ < 1, then (4) is generalized
Ulam—Hyers—Rassias stable with respect to G on [0, T].
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Proof. Let f € C([0, T],R) be a solution of (4). From Theorem 22,

(DEFF) () = g(Lf(1), 0 <a <1, te[0,T],
{ £0) = fa @)

has the unique solution

0 = fot gy ) (0 (s b)) 5

Integrating the inequality (27) from 0 to t and using the condition [A4], we have

£~ o=y | ) sl PO 5

1 P —sf ds
e A OR
- - (;)pa /O () (1 — ) 1G (s)ds
< F(ucl)p“ cG(t)
Thus,
£(t) = k(o)
< 0= ho= g ST st ke
< s -n- g [ESDr st 0+ 1 [EE gt o)
1 PP —sP ds
~Fa o sl k)
< ‘f(t)—fo—r(la)/Ot(tpgsp)”“lg(s,f(s))sfsp
ey o OS5 sl 1660 — (s hlsDI
1 L gt #—sf ds
S FaE oW+ g TS~ HE)
From Lemma 12, we obtain
A L .
FO RO < (S B T G)
°
< (S BalL()MG(), e 0.T]

Set K* = (oS50 )Ea(L(3)*). One has
If(£) = h(£)] < K*G(¢), t € [0,T).

From Definition 11, (4) is generalized Ulam—Hyers—Rassias stable with respect to G on [0, T.
The proof is complete. [
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5. An Example

In this section, an example is given to illustrate our main results.

Example 25. We consider the following fractional problem

1 —2t
@) = 5L re 03, 29)

and the inequality

: e 15
(D 2f)(t)—?m < G(t), t€[0,3].

—Zt

Seta =1,0=2,T=3andg(t f) = Tif (t,f) €10,3] xR. Forallt € [0,3] and f,q € R,

672
86 £0)) — s(t.a()] < o 17| - g1 < 21700) — q(0).

Set L =1 Then, L(T')* = 1\/3 = 32 <1,
Let G(t) = ¢, t € [0,3] nd)tG:%>O.Note

t t
/ (sP) (# — ) 1G(s)ds :/ 25(2 — $2)"2e%ds < %tet < AG(b), Vte[0,3].
0 0

Thus, all the assumptions in Theorem 22 and Theorem 24 being satisfied, our results can be applied to the
problem (29).
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