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Abstract: In this paper, we consider the degenerate Cauchy numbers of the second kind were defined
by Kim (2015). By using modified polyexponential functions, first introduced by Kim-Kim (2019),
we define the degenerate poly-Cauchy polynomials and numbers of the second kind and investigate some
identities and relationship between various polynomials and the degenerate poly-Cauchy polynomials
of the second kind. Using this as a basis of further research, we define the degenerate unipoly-Cauchy
polynomials of the second kind and illustrate their important identities.

Keywords: polylogarithm functions; unipoly functions; Cauchy polynomials; poly-Cauchy polynomials;
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1. Introduction

We first introduce the Cauchy polynomials Cn(x) (or the Bernoulli polynomials of the second kind)
derived from the integral as follows ( see References [1–4] ):

∫ 1

0
(1 + t)x+ydy =

t
log(1 + t)

(1 + t)x =
∞

∑
n=0

Cn(x)
tn

n!
, (1)

When x = 0, Cn = Cn(0) are called the Cauchy numbers. The Daehee polynomial Dn(x) was defined
by Kim as the following generating function (see References [5–10] ):

log(1 + t)
t

(1 + t)x =
∞

∑
n=0

Dn(x)
tn

n!
, (2)

When x = 0, Dn = Dn(0) are called the Daehee numbers. Kim [2] defined the degenerate Cauchy
polynomials Cn,λ(x) as follows:

∫ 1

0

(
1 + log(1 + λt)

1
λ

)x+y
dy =

1
λ log(1 + λt)

log
(

1 + 1
λ log(1 + λt)

) (1 + log(1 + λt)
1
λ

)x

=
∞

∑
n=0

Cn,λ(x)
tn

n!
. (3)
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When x = 0, Cn,λ = Cn,λ(0) are the degenerate Cauchy numbers. The degenerate Cauchy polynomials
Cn,λ,2(x) of the second kind are introduced by Kim to be (see References [11–13] ):

t

log
(

1 + 1
λ log(1 + λt)

) (1 +
1
λ

log(1 + λt)
)x

=
∞

∑
n=0

Cn,λ,2(x)
tn

n!
, (4)

When x = 0, Cn,λ,2 = Cn,λ,2(0) are called the degenerate Cauchy polynomials of the second kind.
Here, we note that a major study is to define these polynomials formal with more interesting conditions.
From now on, we introduce the following polynomials studied by many researchers to find the identity
and relationship between the various polynomials and new defined polynomials. Pyo-Kim-Kim defined
the degenerate Cauchy polynomials Cn,λ,3(x) of the third kind as follows (see References [11–13]):

λ
(
(1 + λ log(1 + t))

1
λ − 1

)
log(1 + λ log(1 + t))

(1 + λ log(1 + t))
x
λ =

∞

∑
n=0

Cn,λ,3(x)
tn

n!
, (5)

and also defined the degenerate Cauchy polynomials Cn,λ,4(x) of the fourth kind as follows (see References
[14–16] ):

λt
log(1 + λ log(1 + t))

(1 + λ log(1 + t))
x
λ =

∞

∑
n=0

Cn,λ,4(x)
tn

n!
, . (6)

Let us introduce the following numbers to find the identity and relationship between various
polynomials and new defined polynomials. It is well known that the Stirling numbers of the first kind are
defined by (see References [3,11,17,18] ):

(x)n =
n

∑
l=0

S1(n, l)xl , , (7)

where (x)0 = 1, (x)n = x(x − 1) . . . (x − n + 1), (n ≥ 1). From (7), it is easy to see that (see
References [3,17] ):

1
k!
(log(1 + t))k =

∞

∑
n=k

S1(n, k)
tn

n!
, (8)

In the inverse expression to (7), for n ≥ 0, the Stirling numbers of the second kind are defined by (see
References [4,6,19–24] ):

xn =
n

∑
l=0

S2(n, l)(x)l , (9)

From (10), it is easy to see that (see References [17,25] ):

1
k!
(et − 1)k =

∞

∑
n=k

S2(n, k)
tn

n!
, (10)

In this paper, we consider the degenerate Cauchy numbers of the second kind were defined by Kim
(2015). By using modified polyexponential functions, first introduced by Kim-Kim (2019), we define the
degenerate poly-Cauchy polynomials and numbers of the second kind and investigate some identities and
relationship between various polynomials and the degenerate poly-Cauchy polynomials of the second
kind. Using this as a basis of further research, we define the degenerate unipoly-Cauchy polynomials of
the second kind and illustrate their important identities.
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2. The Degenerate Poly-Cauchy Polynomials of the Second Kind

For k ∈ Z, it is well known that the polylogarithm function Lik(x) is defined by a power series in x to
be (see References [8,18,19,26] ):

Lik(x) =
∞

∑
n=1

xn

nk = x +
x2

2k +
x3

3k + · · · , (11)

The polyexponential function was first studied by Hardy and then the polyexponential function
modified by Kim-Kim was studied (see Reference [15]). Recently, Kim-Kim [19] considered the
polyexponential function in the view of an inverse type of the polylogarithm function to be

Eik(x) =
∞

∑
n=1

xn

(n− 1)!nk . (12)

In (12), when k = 1, we get Ei1(x) = ex − 1. By using the modified polyexponential function, they
also introduced type 2 poly-Bernoulli polynomials and unipoly-Bernoulli polynomials [19] .

In the same motivation of type 2 poly-Bernoulli polynomials arising from modified polyexponential
function, we define the degenerate poly-Cauchy polynomials of the second kind as follows:

Eik(log(1 + t))

log
(

1 + 1
λ log(1 + λt)

) (1 +
1
λ

log(1 + λt)
)x

=
∞

∑
n=0

C(k)
n,λ,2(x)

tn

n!
. (13)

When x = 0, C(k)
n,λ,2 = C(k)

n,λ,2(0) are called the degenerate poly-Cauchy numbers of the second kind.
For k = 1, by (12), we note that

Ei1(log(1 + t)) =
∞

∑
n=1

(log(1 + t))n

(n− 1)!n

= elog(1+t) − 1 = t. (14)
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By (13) and (14), we see that C(1)
n,λ,2 = Cn,λ,2. From (13) with x = 0, we observe that

∞

∑
n=0

C(k)
n,λ,2

tn

n!
=

Eik(log(1 + t))

log
(

1 + 1
λ log(1 + λt)

)
=

t

log
(

1 + 1
λ log(1 + λt)

) 1
t

∞

∑
m=1

(log(1 + t))m

(m− 1)!mk

=
t

log
(

1 + 1
λ log(1 + λt)

) 1
t

∞

∑
m=0

(log(1 + t))m+1

(m + 1)!(m + 1)k−1

=
t

log
(

1 + 1
λ log(1 + λt)

) 1
t

∞

∑
m=0

1
(m + 1)k−1

∞

∑
l=m+1

S1(l, m + 1)
tl

l!

=
t

log
(

1 + 1
λ log(1 + λt)

) ∞

∑
m=0

1
(m + 1)k−1

∞

∑
l=m

S1(l + 1, m + 1)
tl

(l + 1)!

=

(
∞

∑
s=0

Cs,λ,2
ts

s!

)(
∞

∑
l=0

l

∑
m=0

1
(m + 1)k−1

S1(l + 1, m + 1)
l + 1

tl

l!

)

=
∞

∑
n=0

(
n

∑
l=0

l

∑
m=0

(
n
l

)
Cn−l,λ,2

S1(l + 1, m + 1)
(l + 1)(m + 1)k−1

)
tn

n!
. (15)

Therefore, by (15), we obtain the following theorem which is an identity between the Stirling numbers
of the first kind and the degenerate poly-Cauchy numbers of the second kind.

Theorem 1. For n ≥ 0, k ∈ Z, we have

C(k)
n,λ,2 =

n

∑
l=0

l

∑
m=0

(
n
l

)
Cn−l,λ,2

S1(l + 1, m + 1)
(l + 1)((m + 1)k−1 . (16)

Let us take k = 1. From (16), we get a very interesting recurrence relation as follows.

n

∑
l=1

l

∑
m=0

(
n
l

)
Cn−l,λ,2

S1(l + 1, m + 1)
(l + 1)

= 0. (17)

In Reference [19], it is well known that

d
dx

Eik(log(1 + x)) =
1

(1 + x) log(1 + x)
Eik−1(log(1 + x)). (18)

From (18), we note that

Eik(log(1 + x)) =
∫ x

0

1
(1 + t) log(1 + t)

Eik−1(log(1 + t))dt

=
∫ x

0

1
(1 + t) log(1 + t)

∫ t

0

1
(1 + t) log(1 + t)

∫ t

0
· · ·

∫ t

0︸ ︷︷ ︸
(k−2)times

t
(1 + t) log(1 + t)

dtdt · · · dt.

(19)
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It is well known that

t
(1 + t) log(1 + t)

=
∞

∑
l=0

B(l)
l

tl

l!
. (20)

The above formula is very important and is used at the core of finding the relational formula. From
(14), (19), and (20), we can find the following relational formula.

∞

∑
n=0

C(k)
n,λ,2

xn

n!
=

Eik(log(1 + x))

log
(

1 + 1
λ log(1 + λx)

)
=

1

log
(

1 + 1
λ log(1 + λx)

) ∫ x

0

1
(1 + t) log(1 + t)

Eik−1(log(1 + t))dt

=
1

log
(

1 + 1
λ log(1 + λx)

) ∫ x

0

1
(1 + t) log(1 + t)

×
∫ t

0

1
(1 + t) log(1 + t)

∫ t

0
· · ·

∫ t

0︸ ︷︷ ︸
(k−2)times

t
(1 + t) log(1 + t)

dt · · · dtdt.

(21)

Let us take k = 2. Then we can find a clearer case relationship in Equation (21)

∞

∑
n=0

C(2)
n,λ,2

tn

n!

=
1

log
(

1 + 1
λ log(1 + λx)

) ∫ x

0

t
(1 + t) log(1 + t)

dt

=
1

log
(

1 + 1
λ log(1 + λx)

) ∞

∑
l=0

B(l)
l
l!

∫ x

0
tldt

=
x

log
(

1 + 1
λ log(1 + λx)

) ∞

∑
l=0

B(l)
l

l + 1
xl

l!

=

(
∞

∑
m=0

Cm,λ,2
xm

m!

)(
∞

∑
l=0

B(l)
l

l + 1
xl

l!

)

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
Cn−l,λ,2B(l)

l
l + 1

)
xn

n!
. (22)

Therefore, by (22), we found an identity equation that could calculate the degenerate poly-Cauchy
numbers of the second kind from the degenerate Cauchy numbers of the second kind when k = 2 as the
following theorem.

Theorem 2. Let n ≥ 0. Then we have

C(2)
n,λ,2 =

n

∑
l=0

(
n
l

)
Cn−l,λ,2B(l)

l
l + 1

. (23)
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From (13), we observe that

∞

∑
n=0

C(k)
n,λ,2(x)

tn

n!

=
Eik(log(1 + t))

log
(

1 + 1
λ log(1 + λt)

) (1 +
1
λ

log(1 + λt)
)x

=

(
∞

∑
l=0

C(k)
l,λ,2

tl

l!

)(
∞

∑
m=0

(
x
m

)(
1
λ

log(1 + λt)
)m
)

=

(
∞

∑
l=0

C(k)
l,λ,2

tl

l!

)(
∞

∑
m=0

(x)mλ−m
∞

∑
s=m

S1(s, m)λs ts

s!

)

=

(
∞

∑
l=0

C(k)
l,λ,2

tl

l!

)(
∞

∑
s=0

s

∑
m=0

(x)mλ−mS1(s, m)λs ts

s!

)

=
∞

∑
n=0

(
n

∑
l=0

n−l

∑
m=0

(
n
l

)
C(k)

l,λ,2(x)mλn−l−mS1(n− l, m)

)
tn

n!
. (24)

By comparing the coefficients on both sides of (24), we found an recurrence relation between the
degenerate poly-Cauchy polynomials of the second kind as the following theorem.

Theorem 3. Let n ≥ 0 and k ∈ Z. Then we have

C(k)
n,λ,2(x) =

n

∑
l=0

n−l

∑
m=0

(
n
l

)
C(k)

l,λ,2(x)mλn−l−mS1(n− l, m). (25)

3. The Degenerate Unipoly-Cauchy Polynomials of the Second Kind

Let p(n) be any arithmetic function which is a real or complex valued function defined on the set of
positive integers N. Then Kim-Kim [19] defined the unipoly function attached to p by

uk(x|p) =
∞

∑
n=1

p(n)xn

nk , (k ∈ Z). (26)

It is well known that

uk(x|1) =
∞

∑
n=1

xn

nk = Lik(x) (27)

is ordinary polylogarithm function, and for k ≥ 2,

d
dx

uk(x|p) = 1
x

uk−1(x|p), (28)

and

uk(x|p) =
∫ x

0

1
t

∫ t

0
· · ·

∫ t

0︸ ︷︷ ︸
(k−2)times

1
t

u1(t|p)dt · · · dtdt, (see Reference [19] ). (29)
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By using (26), we define the degenerate unipoly-Cauchy polynomials of the second kind as follows:

uk(log(1 + t)|p)
log
(

1 + 1
λ log(1 + λt)

) (1 +
1
λ

log(1 + λt)
) x

λ

=
∞

∑
n=0

C(k,p)
n,λ,2(x)

tn

n!
. (30)

When x = 0, C(k,p)
n,λ,2 = C(k,p)

n,λ,2(0) are called the degenerate unipoly-Cauchy numbers of the second kind.
Let us take p(n) = 1

Γ(n) . Then we have

∞

∑
n=0

C(k,p)
n,λ,2(x)

tn

n!
=

uk

(
log(1 + t)| 1Γ

)
log
(

1 + 1
λ log(1 + λt)

) (1 +
1
λ

log(1 + λt)
) x

λ

=
1

log
(

1 + 1
λ log(1 + λt)

) ∞

∑
m=1

(log(1 + t))m

mk(m− 1)!

(
1 +

1
λ

log(1 + λt)
) x

λ

=
Eik(log(1 + t))

log
(

1 + 1
λ log(1 + λt)

) (1 +
1
λ

log(1 + λt)
) x

λ

=
∞

∑
n=0

C(k)
n,λ,2(x)

tn

n!
. (31)

Thus, by (31), we have the following theorem.

Theorem 4. Let n ≥ 0 and k ∈ Z, and Γ(n) be the Gamma function. Then, we have

C(
k, 1

Γ )
n,λ,2 (x) = C(k)

n,λ,2(x). (32)

From (30), we get

∞

∑
n=0

C(k,p)
n,λ,2

tn

n!
=

uk(log(1 + t)|p)
log
(

1 + 1
λ log(1 + λt)

)
=

1

log
(

1 + 1
λ log(1 + λt)

) ∞

∑
m=1

p(m)

mk (log(1 + t))m

=
1

log
(

1 + 1
λ log(1 + λt)

) ∞

∑
m=0

p(m + 1)(m + 1)!
(m + 1)k

∞

∑
l=m+1

S1(m + 1, l)
tl

l!

=

(
∞

∑
j=0

Cj,λ,2
tj

j!

)(
∞

∑
l=0

l

∑
m=0

p(m + 1)(m + 1)!
(m + 1)k S1(m + 1, l)

tl

l!

)

=
∞

∑
n=0

(
∞

∑
l=0

l

∑
m=0

(
n
l

)
p(m + 1)(m + 1)!

(m + 1)k
S1(m + 1, l)Cn−l,λ,2

l + 1

)
tn

n!
. (33)

Therefore, by comparing the coefficients on both sides of (33), we found an recurrence relation
between the degenerate unipoly-Cauchy numbers of the second kind as the following theorem.
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Theorem 5. Let n ∈ N and k ∈ Z. Then we have

C(k,p)
n,λ,2 =

∞

∑
l=0

l

∑
m=0

(
n
l

)
p(m + 1)(m + 1)!

(m + 1)k
S1(m + 1, l)Cn−l,λ,2

l + 1
. (34)

In particular,

C(k, 1
Γ )

n,λ,2 = C(k)
n,λ,2 =

∞

∑
l=0

l

∑
m=0

(
n
l

)
S1(m + 1, l)Cn−l,λ,2

(m + 1)k−1(l + 1)
. (35)

From (30), we observe that

∞

∑
n=0

C(k,p)
n,λ,2(x)

tn

n!
=

uk(log(1 + t)|p)
log
(

1 + 1
λ log(1 + λt)

) (1 +
1
λ

log(1 + λt)
) x

λ

=
uk(log(1 + t)|p)

log
(

1 + 1
λ log(1 + λt)

) ∞

∑
m=0

( x
λ

m

)(
1
λ

log(1 + λt)
)m

=

(
∞

∑
l=0

C(k,p)
l,λ,2

tl

l!

)(
∞

∑
m=0

(x)m,λλ−2m
∞

∑
s=m

S1(s, m)
ts

s!

)

=

(
∞

∑
l=0

C(k,p)
l,λ,2

tl

l!

)(
∞

∑
s=0

s

∑
m=0

(x)m,λλ−2mS1(s, m)
ts

s!

)

=
∞

∑
n=0

(
n

∑
l=0

n−l

∑
m=0

C(k,p)
l,λ,2 (x)m,λλ−2mS1(n− l, m)

)
tn

n!
. (36)

From (36) , we found an recurrence relation between the degenerate unipoly-Cauchy polynomials of
the second kind as the following theorem.

Theorem 6. Let n ≥ 0 and k ∈ Z. Then we have

C(k,p)
n,λ,2(x) =

n

∑
l=0

n−l

∑
m=0

C(k,p)
l,λ,2 (x)m,λλ−2mS1(n− l, m). (37)
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From (30), we observe that

∞

∑
n=0

C(k,p)
n,λ,2

tn

n!

=
uk(log(1 + t)|p)

log
(

1 + 1
λ log(1 + λt)

)
=

1

log
(

1 + 1
λ log(1 + λt)

) ∞

∑
m=0

p(m + 1)
(m + 1)k

m!
m!

(log(1 + t))m+1

=
log(1 + t)

log
(

1 + 1
λ log(1 + λt)

) ∞

∑
m=0

p(m + 1)
(m + 1)k

m!
m!

(log(1 + t))m

=
log(1 + t)

log
(

1 + 1
λ log(1 + λt)

) ∞

∑
m=0

p(m + 1)
(m + 1)k

m!
m!

(log(1 + t))m

=
log(1 + t)

t
t

log
(

1 + 1
λ log(1 + λt)

) ∞

∑
m=0

p(m + 1)m!
(m + 1)k

∞

∑
l=m

S1(l, m)
tl

l!

=

(
∞

∑
s=0

Ds
ts

s!

)(
∞

∑
a=0

Ca,λ,2
ta

a!

)(
∞

∑
l=0

l

∑
m=0

p(m + 1)m!
(m + 1)k S1(l, m)

tl

l!

)

=

(
∞

∑
b=0

b

∑
a=0

(
b
a

)
Db−aCa,λ,2

tb

b!

)(
∞

∑
l=0

l

∑
m=0

p(m + 1)m!
(m + 1)k S1(l, m)

tl

l!

)

=
∞

∑
n=0

(
n

∑
l=0

n−l

∑
a=0

l

∑
m=0

(
n
l

)
Dn−l−aCa,λ,2

p(m + 1)m!
(m + 1)k S1(l, m)

)
tn

n!
. (38)

By comparing coefficients on both sides of (38), we obtain the following theorem which is a
relationship between Daehee numbers and the degenerate unipoly-Cauchy numbers of the second kind.

Theorem 7. Let n ≥ 0 and k ∈ Z. Then we have

C(k,p)
n,λ,2 =

n

∑
l=0

n−l

∑
a=0

l

∑
m=0

(
n
l

)
Dn−l−aCa,λ,2

p(m + 1)m!
(m + 1)k S1(l.m). (39)

4. Conclusions

In 2019 Kim-Kim considered the polyexponential functions and poly-Bernoulli polynomials and
Kim [2] introduced the degenerate Cauchy numbers of the second kind. In the same view as these
functions and polynomials, we defined the degenerate poly-Cauchy polynomials of the second kind
Equation (13) and obtained some identities of the degenerate poly-Cauchy numbers of the second kind
(Theorems 1 and 2 ). In particular, we obtained an identity of the degenerate poly-Cauchy polynomials of
the second kind in Theorem 3. Furthermore, by using the unipoly functions, we defined the degenerate
unipoly-Cauchy polynomials of the second kind Equation (30) and obtained some properties of the
degenerate unipoly-Cauchy numbers of the second kind (Theorems 4 and 5). Finally, we obtained an
identity of the degenerate unipoly-Cauchy polynomials of the second kind in Theorem 6 and gave the
identity indicating the relationship of the degenerate unipoly-Cauchy numbers of the second kind and the
Daehee numbers and degenerate Cauchy numbers of the second kind in Theorem 7. In Bayad-Hamahata
studied the multi-poly-Bernoulli polynomials [27] , defined in analogy with the poly-case, using instead
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the multiple polylogarithm functions. In addition, as a good application of the results of this paper, we
would recommend readers to see to references [28–30].
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