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Abstract: In view of the probabilistic quantizer–dequantizer operators introduced, the qubit states
(spin-1/2 particle states, two-level atom states) realizing the irreducible representation of the
SU(2) symmetry group are identified with probability distributions (including the conditional
ones) of classical-like dichotomic random variables. The dichotomic random variables are spin-1/2
particle projections m = ±1/2 onto three perpendicular directions in the space. The invertible
maps of qubit density operators onto fair probability distributions are constructed. In the
suggested probability representation of quantum states, the Schrödinger and von Neumann
equations for the state vectors and density operators are presented in explicit forms of the linear
classical-like kinetic equations for the probability distributions of random variables. The star-product
and quantizer–dequantizer formalisms are used to study the qubit properties; such formalisms
are discussed for photon tomographic probability distribution and its correspondence to the
Heisenberg–Weyl symmetry properties.

Keywords: quantum tomography; probability representation; quantizer–dequantizer; qubit

1. Introduction

In conventional formulation of quantum mechanics, the states of quantum systems are identified
either with wave functions [1,2] and state vectors [3] (in the case of pure states) or with density
matrices [4] and density operators [5] (in the case of mixed states). The unitary time evolution of
quantum states is described by the Schrödinger equation for the wave function and the von Neumann
equation for the density operator. An important role in the description of quantum states is played by
the symmetry properties of quantum systems. They are determined by the operators of Lie groups
(or Lie algebras) associated with Hamiltonian operators of the system. The solutions of the Schrödinger
equation (wave functions) realize the irreducible representations of the symmetry groups. For spin
systems, the rotation symmetry group O(3) and SU(2) group and their representations provide the
description of wave functions and Hamiltonian spectra, as well as the unitary evolution of wave
functions and density matrices.
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Over recent decades, the probability representation of quantum states, where the states are
identified with fair probability distributions of random variables, was suggested and elaborated
(see, for example, the review [6]); it is connected with the approach based on quantum tomography
of photon states [7] (see also [8]). The state quantum tomograms, being the tomographic-probability
distributions of photon quadratures, are measured experimentally and, by means of its Radon
transform [9], the Wigner function of the photon state [10,11] is reconstructed. Since the Wigner function
and the density matrix are completely determined by the tomographic-probability distribution, it was
suggested in [12] to identify any quantum state with the probability distribution as a primary object.

The Schrödinger equation for the photon tomogram was written in the form of a kinetic equation
for the probability distribution [13–15]. An analogous representation of spin states by probability
distributions was discussed in [16–20] and the connection of quantum states with probabilities was
considered in [21]. In view of the introduced probability representation of quantum states, it is worth
clarifying the role of symmetries in the probability representation of quantum mechanics.

The other aspect of quantum states, as well as quantum observables and their relation to classical
mechanics, is associated with the quantization procedure. Physical observables, which conventionally
are identified with Hermitian operators acting in the Hilbert space of system states are mapped
onto functions called symbols of operators, e.g., in the phase space. The quantum nature of the
observables is described by a specific rule of products of these functions (called the star-product),
which is noncommutative but associative. The associative product is determined by structure constants
satisfying the equations of associativity corresponding to the associativity condition of the product
of operators identified with physical observables. The structure constants of the associative product
determine the Lie algebra structure constants. Thus, the symmetries (Lie algebras, Lie groups) of
quantum system Hamiltonians are connected with the star-product structure constants.

One of the goals of our work is to discuss the quantization procedure presented within the
framework of star-product formalism relating this approach to the probability representation of
quantum mechanics. We introduce the approach to Lie algebras and corresponding symmetries of
systems with the star-product structure constants associated with quantization procedure providing
the description of states by probability distributions.

The aim of our work is to point out the role of the SU(2) symmetry group and its fundamental
two-dimensional irreducible representation used to describe the quantum state of the spin-1/2
systems (also qubits, two-level atoms) in the context of the probability representation of quantum
mechanics [12–17] and the star-product quantization formalism [22,23]. In addition, we consider the
Heisenberg–Weyl symmetry group for systems with continuous variables like oscillator. The pure
states of spin-1/2 systems are identified with Pauli spinors, which provide the basis of two-dimensional
unitary irreducible representation of the SU(2) group used to explain the behavior of the spin-1/2
particle related to rotations connected with the O(3) symmetry group. The mixed states of the spin-1/2
particle are identified with the density 2 × 2-matrices, which are Hermitian matrices with unit trace
and nonzero eigenvalues.

Recently [16,17,24,25], the possibility to construct the invertible map of the density matrices onto
probability distributions of classical-like random variables was suggested. This possibility to construct
such probability representation of quantum states provides a generalization of the quasidistribution
phase-space representations [26–31] (including the case of systems with discrete variables), where the
states are described by the functions on the system phase space similar to classical probability
distributions but, due to the Heisenberg uncertainty relations [32] and Schrödinger–Robertson
uncertainty relations [33,34], the functions cannot be the probability distributions of conjugate variables
like the position and momentum. For systems with discrete spin variables, the corresponding functions
like Wigner functions were studied in [31,35]. An analog of such Wigner functions is the symbol of
density operator in the spin-projection mean-value representation, which is the description of the state
by the Bloch parameter.
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One can use other methods of quantization to construct the formalism of quantum mechanics,
in view of the application of associative star-product, where the product of functions is associative but
not commutative. Such a product can be introduced by applying recently developed method [22,23,36]
of the quantizer–dequantizer operators. The quantizer operators were used [30,31,35] to construct
quasidistributions describing the quantum system states, and the pairs of quantizer–dequantizer
operators were found to construct symplectic tomographic probability distributions identified with the
system states with continuous variables [37]. The associative product is given if the structure constants
of the product are found; these constants satisfy nonlinear associativity relations.

In this study, we concentrate on the product (quantization procedure) namely for the case of
probabilistic formulation of states on examples of the qubit system and the system with continuous
variables like oscillator. The quantum system dynamics is closely related with the symmetry of systems.
We consider systems with Hermitian Hamiltonian dynamics and unitary evolution [38]. It is worth
noting that there exist the models with non-Hermitian dynamics [39–42].

This paper is organized as follows.
In Section 2, we review a generic formalism of the quantization procedure based on introducing

pairs of quantizer–dequantizer operators determining the structure constants of the associative product
of functions. In Section 3, we discuss the Lie algebra structure constants and their connection with the
associative product structure constants. In Section 4, we consider the SU(2) symmetry of spin-1/2
states in the quantization picture based on the probability representation of these states. In Section 5,
the von Neumann evolution equation for density matrix is given in vector form. In Section 6, we present
the von Neumann equation for the unitary evolution of the spin-1/2 state density matrix in the
probability representation. In Sectionn 7, the O(3) rotation group of transforms of probabilities and
spin-projection mean values are discussed. Unitary transforms of quantizer–dequantizer operators
are given in Section 8. The systems with continuous variables like, for example, photons or harmonic
oscillator, are considered in Section 9 using the Heisenberg–Weyl formalism, and our conclusions are
presented in Section 10.

2. Quantizer–Dequantizer Operators and Structure Constants of Associative Products

In this section, we consider a Hilbert space H with operators Û(x) and D̂(x) acting in this
Hilbert space, where x = (x1, x2, . . . , xn) and xj are real numbers, either continuous or discrete ones.
The operators Û(x) and D̂(x) are called the dequantizer and quantizer, respectively [22,23]. They satisfy
the following conditions: For an arbitrary operator Â acting in the Hilbert space, we construct the
function fA(x) called the symbol of operator

fA(x) = Tr
(

ÂÛ(x)
)

. (1)

Using the quantizer operator D̂(x), we reconstruct the operator Â, in view of the relation

Â =
∫

fA(x)D̂(x) dx; (2)

if some parameters xj are discrete ones, the integral (2) is replaced by the corresponding sum over
discrete parameters.

Relations (1) and (2) are self-consistent if the quantizer–dequantizer operators satisfy the condition

Tr
(

ÂÛ(x)
)
=
∫

Tr
(

ÂÛ(x′)
)

Tr
(
Û(x)D̂(x′)

)
dx′ (3)

for any operator Â in the Hilbert spaceH. Relation (3) is valid if there exists the equality

Tr
(
Û(x′)D̂(x)

)
= δ(x− x′); (4)
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where δ(x− x′) is the reproducing kernel. Equality (4) is not the necessary condition for relation (3)
but it is the sufficient condition.

We point out an important partial case of choosing the pair of quantizer–dequantizer operators,
for which the function fA(x), being the symbol of operator Â, has the following properties:

If the operator Â is taken to be a density operator ρ̂, i.e., ρ̂† = ρ̂, Tr ρ̂ = 1, and ρ̂ has nonnegative
eigenvalues, the function fρ(x) ≥ 0 and it is normalized, i.e.,∫

fρ(x) d[x] = 1, d[x] ≡ dx1dx2 · · · dxj. (5)

The integral over the parameters [x] in (5) means that we integrate (or sum) only over the first part
of parameters x1, x2, . . . , xj; j < n, and parameters xj+1, xj+2, . . . , xn are considered as fixed parameters,
while the indices j are determined according the physical properties of the system under consideration
(for example, in Section 9, x = x1, x2, x2 and j = 1). This property means that, in this case, the function
fρ(x) can be interpreted as a conditional probability distribution, and we introduce the notation

fρ(x) = P
(

x1, x2, . . . , xj | xj+1, xj+2, . . . , xn
)

. (6)

For this case, parameters x1, x2, . . . , xn can be interpreted as classical-like random variables.
In view of Bayes’ formula [43], one can introduce the joint probability distribution Π(x) of n

random variables x1, x2, . . . , xn written as

Π(x) = fρ(x)P
(

xj+1, xj+2, . . . , xn
)

, (7)

where the function P
(

xj+1, xj+2, . . . , xn
)
≥ 0 and∫

P
(

xj+1, xj+2, . . . , xn
)

dxj+1 dxj+2 · · · dxn = 1. (8)

If some of the variables in (8) are discrete ones, the integral over these variables is replaced by the
corresponding sum over these variables.

The possibility to find the quantizer–dequantizer pair, D̂(x) and Û(x), with properties (5)–(8)
means that one can construct an invertible map of density operators of quantum states onto probability
distributions. This possibility realized in [22] provides the formulation of quantum mechanics in the
form of classical-like statistics, where quantum states are identified with probability distributions
obeying classical-like kinetic equations. In this paper, we consider particular examples of the
above approach for qubit states and photon states, where the number of random variable is not
larger than three.

3. Structure Constants of Lie Algebras and Their Relation to Associative Product
Structure Constants

The product of operators ÂB̂ has the symbol, which is the function fAB(x) of the form

fAB(x) = Tr
(

ÂB̂Û(x)
)
=
∫

fA(x1) fB(x2) Tr
(

D̂(x1)D̂(x2)Û(x)
)

dx1 dx2. (9)

Functions
K(x1, x2, x) = Tr

(
D̂(x1)D̂(x2)Û(x)

)
(10)

are called the structure constants of the associative product or the star-product of functions fA(x) and
fB(x) defined as

( fA ? fB) (x) = fAB(x). (11)
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This product is associative, i.e.,

(( fA ? fB) ? fC) (x) = ( fA ? ( fB ? fC)) (x), (12)

since the product of operators is associative, i.e., (ÂB̂)Ĉ = Â(B̂Ĉ). The associativity condition provides
nonlinear integral relation for the structure constants∫

dz K(x1, x2, z)K(z, x3, x) =
∫

dz K(x2, x3, z)K(x1, z, x). (13)

If variables x1, x2, x3, x4, and z are discrete variables and functions K(x1, x2, z) are denoted as
K(x1 = i, x2 = j, z = k) ≡ Ck

ij; i, j, k = 1, 2, . . . , N, Equation (13) takes the form

N

∑
k=1

(
Ck

ijC
n
km − Ck

jmCn
ik

)
= 0. (14)

The solutions to Equations (13) and (14) provide the structure constants for associative algebras
either in the case of functions of continuous variables (the case of (13)) or in the case of functions of
discrete variables (the case of (14)).

If one uses antisymmetrized structure constants (10), one has the structure constants L(x1, x2, z)
of Lie algebras determining the Lie products of functions. The constants satisfying Jacobi equation are

L(x1, x2, z) = K(x1, x2, z)− K(x2, x1, z). (15)

For discrete variables, we have the finite or infinite Lie algebra with structure constants

`k
ij = Ck

ij − Ck
ji. (16)

Thus, the symmetry of systems described by Lie groups, e.g., O(4, 2) symmetry of the hydrogen
atom [44–47] can be associated with the corresponding associative algebras, that provides the
possibility to relate the spectra of system’s Hamiltonians with the associative products of symbols of
physical-observable operators. The symmetrized structure constants are the structure constants of
Jordan product of the functions. The constants are

sk
ij = Ck

ij + Ck
ji for discrete variables, (17)

S(x1, x2, z) = K(x1, x2, x) + K(x2, x1, x) for continuous variables. (18)

We point out that the formalism of quantizer–dequantizer operators can be used to describe the
Lie group symmetry of physical systems, if the associative product structure constants are found in
explicit form.

4. SU(2) Symmetry and the Probability Representation of Spin-1/2 States

We consider a construction of the probability representation of quantum states on a simplest
example of spin-1/2 states (qubit states), which are connected with unitary irreducible representation
of the SU(2) Lie group (and Lie algebra su(2)).

For this, first we recall that the pure state of spin-1/2 particle |ψ〉 is a vector in a two-dimensional
Hilbert space H with complex components ψk; k = 1, 2. The vector is normalized ∑2

k=1 |ψk|2 = 1
and depends on three real parameters. The density 2 × 2-matrix ρkj = ψkψ∗j of the pure state |ψ〉 is

Hermitian 2 × 2-matrix with the properties ρ† = ρ, Tr ρ = 1, and two eigenvalues λ1 = 1 and λ2 = 0.
This matrix (projector) satisfies the condition ρ2 = ρ, i.e., Tr ρ2 = Tr ρ = 1, and this means that, in view
of the gauge invariance of quantum states, the above state vector can be presented in the form [48–50]
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ψ1 =
√

p3 and ψ2 =
√
(1− p3) eiϕ, (19)

where

cos ϕ =
p1 − 1/2√
p3(1− p3)

, sin ϕ =
p2 − 1/2√
p3(1− p3)

,

0 ≤ p1, p2, p3 ≤ 1, (p1 − 1/2)2 + (p2 − 1/2)2 = p3(1− p3).

Numbers p1, p2, and p3 can be expressed as follows:

p1 =
1
2
+

1
2

sin θ cos ϕ, p2 =
1
2
+

1
2

sin θ sin ϕ, p3 =
1
2
+

1
2

cos θ; 0 ≤ θ ≤ π; 0 ≤ ϕ ≤ 2π.

One should emphasize that p1, p2, and p3 are used to pass from a sphere of radius 1 centered
at the origin to a sphere of radius 1/2 centered at (1/2, 1/2, 1/2). In such a way, all coordinates are
positive and smaller or equal to 1. In (19), p3 = cos θ/2 and (1− p3) = sin θ/2.

The density matrix of the pure state depends on real parameters p1, p2, and p3, which are
interpreted as the probabilities of spin projections m = +1/2 on the x, y, and z directions, respectively.
Thus, the identification of spin-1/2 pure states with the Pauli spinor |ψ〉 is equivalent to the
identification of the state with three probability distributions (p1, 1− p1), (p2, 1− p2), and (p3, 1− p3)

of dichotomic random variables.
In the case of mixed states, the density matrix depends on three real parameters p1, p2, and p3,

which satisfy the inequality

(p1 − 1/2)2 + (p2 − 1/2)2 + (p3 − 1/2)2 ≤ 1/4; (20)

for the pure states, this inequality converts into the equality.
We formulated above results using the map of the density matrix ρkj onto the vector |R〉 with four

components Rα; α = 1, 2, 3, 4. The map is given by the following rule.
The pairs of numbers k and j, where k, j = 1, 2, are replaced by one number, which takes values

α = 1, 2, 3, 4, namely, 1, 1⇐⇒ 1, 1, 2⇐⇒ 2, 2, 1⇐⇒ 3, 2, 2⇐⇒ 4.
Any state density matrix ρ is identified with a vector

|R〉 =


ρ11

ρ12

ρ21

ρ22

 , such that 〈R|R〉 =
2

∑
j,k=1
|ρjk|2. (21)

For pure states, the vector reads

|Rψ〉 =


p3√

p3(1− p3) e−iϕ√
p3(1− p3) eiϕ

1− p3

 ; eiϕ =
(p1 − 1/2) + i(p2 − 1/2)√

p3(1− p3)
. (22)

We have 〈R0| = (1, 0, 0, 1), where 〈R0|Rψ〉 = 1 and |Rψ〉 is the state vector (22).
In (21), the components of four-vector |R〉 obey the constraints, corresponding to the properties:

Im ρkk = 0, ∑k ρkk = 1, and ρkj = ρ∗jk. One has 〈Rψ|Rψ〉 = 1. The Hermitian 4 × 4-matrix
|R〉 〈R| has 16 matrix elements Rαβ in the notation using the components Rα and Rβ of the vector
|R〉 ; α, β = 1, 2, 3, 4 applied in (21). For pure states, the 4 × 4-matrix |Rψ〉 〈Rψ| depends on three
parameters p1, p2, and p3 satisfying equality in (20).
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We present the density 2 × 2-matrix ρ [24]

ρ =

(
p3 (p1 − 1/2)− i(p2 − 1/2)

(p1 − 1/2) + i(p2 − 1/2) 1− p3

)
(23)

in the vector form (21)

|R〉 =


p3

(p1 − 1/2)− i(p2 − 1/2)
(p1 − 1/2) + i(p2 − 1/2)

1− p3

 . (24)

One sees that
〈R|R〉 = 2

[
p2

1 + p2
2 + p2

3 − p1 − p2 − p3 + 1
]

. (25)

We have the following form of the 4 × 4 matrix |R〉 〈R| =
(

A C
B D

)
, where

A =

(
p2

3 p3 [(p1 − 1/2) + i(p2 − 1/2)]
[(p1 − 1/2)− i(p2 − 1/2)] p3 (p1 − 1/2)2 + (p2 − 1/2)2

)
,

B =

(
[(p1 − 1/2)− i(p2 − 1/2)] p3 [(p1 − 1/2) + i(p2 − 1/2)]2

(1− p3)p3 (1− p3) [(p1 − 1/2) + i(p2 − 1/2)]

)
,

C =

(
p3 [(p1 − 1/2)− i(p2 − 1/2)] p3(1− p3)

[(p1 − 1/2)− i(p2 − 1/2)]2 [(p1 − 1/2)− i(p2 − 1/2)] (1− p3)

)
,

D =

(
(p1 − 1/2)2 + (p2 − 1/2)2 [(p1 − 1/2) + i(p2 − 1/2)] (1− p3)

(1− p3) [(p1 − 1/2)− i(p2 − 1/2)] (1− p3)
2

)
.

(26)

One can check that
(
|Rψ〉 〈Rψ|

)2
= |Rψ〉 〈Rψ|.

Thus, we see that the pure state of qubit determined by Pauli spinor |ψ〉 determines the pure
state of the ququart with the density 4 × 4-matrix |Rψ〉 〈Rψ|. This ququart pure state is identified with
the same three probability distributions of dichotomic random variables, which are identified with
the qubit state. Continuing this procedure of vectorizing matrices, one can construct specific states of
qudits with Nn = 22n

; n = 1, 2, 3, . . .
Thus, we showed that the probabilities p1, p2, and p3, determining the density matrix of the qubit

pure state, also determine the infinite set of density matrices of pure states of qudits.
As it is known, for matrices A and B, the trace of their product Tr

(
A†B

)
= 〈A|B〉, where |A〉

and |B〉 are vectors written according to (21). In view of this fact [51], one can formulate the matrix
properties using the vectors corresponding to these matrices. The representation of matrices as sums of
other matrices A = ∑n

k=1 ck Ak can be presented in the corresponding vector forms: |A〉 = ∑n
k=1 ck |Ak〉.

Thus, we can use the vectors |Ak〉, which form the basis in the linear space, with n = 4.

In the case of SU(2)-symmetry, the Pauli matrices σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
,

and σ3 =

(
1 0
0 −1

)
realizing the su(2) Lie algebra and the unity matrix σ0 =

(
1 0
0 1

)
form this

basis. In the vector form, we have the corresponding orthonormal basis

|Σ1〉 =


0

1/
√

2
1/
√

2
0

 , |Σ2〉 =


0

−i/
√

2
i/
√

2
0

 , |Σ3〉 =


1/
√

2
0
0

−1/
√

2

 , |Σ4〉 =


1/
√

2
0
0

1/
√

2

 , (27)
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with 〈Σα|Σβ〉 = δαβ.

An arbitrary matrix A =

(
A11 A12

A21 A22

)
presented in vector form (21) can be decomposed, using

basis vectors (27) and the notation Ã1 = A11, Ã2 = A12, Ã3 = A21, and Ã4 = A22, as follows:

|A〉 =


Ã1

Ã2

Ã3

Ã4

 =
4

∑
α=1
〈Σα|A〉 |Σα〉 . (28)

There exist other normalized basis vectors useful for constructing the probability representation
of spin-1/2 states, such as

|U1〉 =
1
2


1
1
1
1

 , |U2〉 =
1
2


1
−i
i
1

 , |U3〉 =


1
0
0
0

 , |U4〉 =


0
0
0
1

 . (29)

They correspond to the density matrices

ρ1 =
1
2

(
1 1
1 1

)
, ρ2 =

1
2

(
1 −i
i 1

)
, ρ3 =

(
1 0
0 0

)
, ρ4 =

(
0 0
0 1

)
. (30)

In view of Born’s rule, for an arbitrary density matrix ρ, the numbers Tr ρρk = pk are probabilities
to get the properties of states ρk, if one studies these properties in the state ρ. Since vectors (29) form
the basis, one has the probability representation of the state ρ, which is identical with probabilities pk.

We have properties relating bases (27) and (29). Applying the transforms

|U1〉 =
1√
2
(|Σ1〉+ |Σ4〉) , |U2〉 =

1√
2
(|Σ2〉+ |Σ4〉) ,

|U3〉 =
1√
2
(|Σ4〉+ |Σ3〉) , |U4〉 =

1√
2
(|Σ4〉 − |Σ3〉) ,

(31)

we arrive at

|Σ1〉 =
√

2 |U1〉 −
1√
2
(|U3〉+ |U4〉) , |Σ2〉 =

√
2 |U3〉 −

1√
2
(|U3〉+ |U4〉) .

|Σ3〉 =
1√
2
(|U3〉 − |U4〉) , |Σ4〉 =

1√
2
(|U3〉+ |U4〉) .

(32)

Now we introduce four vectors |Dα〉 ; α = 1, 2, 3, 4 of the form

|D1〉 =


0
1
1
0

 , |D2〉 =


0
−i
i
0

 , |D3〉 =


1

(−1 + i)/2
(−1− i)/2

0

 , |D4〉 =


0

(−1 + i)/2
(−1− i)/2

1

 . (33)

These vectors determine four Hermitian matrices Dα,

D1 =

(
0 1
1 0

)
, D2 =

(
0 −i
i 0

)
,

D3 =

(
1 (−1 + i)/2

(−1− i)/2 0

)
, D4 =

(
0 (−1 + i)/2

(−1− i)/2 1

)
.

(34)
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One can check that vectors |Dj〉 and |Uk〉 satisfy the condition

〈Dj|Uk〉 = δjk; (35)

this condition provides the possibility to represent any four-vector |A〉

either as |A〉 =
4

∑
j=1
〈Dj|A〉 |Uj〉 or as |A〉 =

4

∑
j=1
〈Uj|A〉 |Dj〉 . (36)

The matrix A corresponding to the vector |A〉, in view of the above rule, can be written as follows:

A =
4

∑
j=1

[
Tr
(

ADj
)]

Uj, A =
4

∑
j=1

[
Tr
(

AUj
)]

Dj. (37)

Following [22], we call matrices Uj the dequantizers and matrices Dj, the quantizers.

5. The von Neumann Evolution Equation for the Density Matrix ρ in Vector Form

The density matrix ρ(t) of the system with Hamiltonian H obeys the von Neumann evolution
equation [5]

∂ρ(t)
∂t

+ i (Hρ(t)− ρ(t)H) = 0. (38)

This linear matrix equation can be written in the following form of the system of equations for the
matrix elements ρjk(t) of the density matrix ρ(t) of the spin-1/2 particle:

∂ρ11(t)
∂t

+ i [H12ρ21(t)− H21ρ12(t)] = 0,

∂ρ12(t)
∂t

+ i
[(

H11 − H22
)
ρ12(t)− H12

(
ρ22(t)− ρ11(t)

)]
= 0,

∂ρ21(t)
∂t

+ i
[(

H21
(
ρ11(t)− ρ22(t)

)
+
(

H22 − H11
)
ρ21(t)

]
= 0,

∂ρ22(t)
∂t

+ i [H21ρ12(t)− H12ρ21(t)] = 0.

(39)

The system of these equations can be rewritten in the form of equation for the vector |R(t)〉
as follows:

d
dt
|R(t)〉 = M |R(t)〉 , (40)

where the matrix M expressed in terms of Hamiltonian matrix elements reads

M =


0 iH21 −iH12 0

iH12 −i(H22 − H11) 0 −iH12

−iH21 0 −i(H11 − H22) iH21

0 −iH21 iH12 0

 . (41)

The matrix M has the properties Tr M = 0, M† = −M, and the eigenvalues of matrix M
are imaginary numbers, i.e., Re M = 0. The matrix (iM) = H is Hermitian matrix (an analog of
a Hamiltonian), and its diagonal elements are real numbers. If the HamiltonianH does not depend on
time, the solution of Equation (40) for the vector |R(t)〉 reads

|R(t)〉 = exp(Mt) |R(0)〉 = e−iHt |R(0)〉 . (42)

Taking into account the property of matrix M, we state that the 4 × 4-matrix exp(Mt) is
unitary matrix.
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We will show that Equation (40) can be presented in the form of linear kinetic equation for
probability distributions of classical-like random variables.

6. The Probability Representation of the von Neumann Equation

We transform the von Neumann Equation (38) written for the complex vector |R(t)〉 to the

kinetic equation written for the probability vector |P(t)〉 =


p1(t)
p2(t)
p3(t)
p4(t)

, where the functions of time

0 ≤ p1(t), p2(t), p3(t) ≤ 1 are the probabilities of spin-1/2 projections m = +1/2 onto x, y, and z
directions at any moment of time t. Probability p4(t) = 1− p3(t) is the probability of spin projection
m = −1/2 on the z direction.

Using Equations (39)–(42), we introduce the linear invertible transform of vectors |R(t)〉 which
maps this vector onto the probability vector |P(t)〉 of the form

|P(t)〉 = T |R(t)〉+ |Γ〉 . (43)

One can check that the 4 × 4-matrix T and the 4-vector Γ are

T =


0 1/2 1/2 0
0 i/2 −i/2 0
1 0 0 0
0 0 0 1

 , |Γ〉 =


1/2
1/2

0
0

 . (44)

The inverse transform

|R(t)〉 = T−1 (|P(t)〉 − |Γ〉) , T−1 =


0 0 1 0
1 −i 0 0
1 i 0 0
0 0 0 1

 (45)

relates the matrix elements ρjk with probabilities given by (23).
Equation (43) means that

d
dt
|P(t)〉 = T

d
dt
|R(t)〉 . (46)

In view of (40) and (45), we obtain the kinetic equation

d
dt
|P(t)〉 =

(
TMT−1

)
|P(t)〉 −

(
TMT−1

)
|Γ〉 . (47)

Since the 4 × 4-matrix M is given by (41) and is equal to −iH, where the matrix H is the
Hermitian matrix analogous to the Hamiltonian describing the evolution of an artificial ququart, the
matrix TMT−1 is expressed in terms of the Hamiltonian matrix elements of the spin-1/2 system Hjk as
we show in the following.

Equation (39) can be written for a simplest example of the diagonal stationary Hamiltonian, where
H12 = H21 = 0, H12 = E1, and H22 = E2. In this case, the matrix M has only two nonzero matrix
elements M22 = −M33 = −i (E2 − E1) = iω. These equations mean that

ρ̇11(t) = ρ̇22(t) = 0, ρ̇12(t) = iωρ12(t), ρ̇21(t) = −iωρ21(t). (48)

Solutions to these equations provide the constant probability of spin projection m = +1/2 on the
z axis, i.e., ρ11(t) = p3 and ρ22(t) = 1− p3. The off-diagonal matrix elements of the density matrix
ρ12(t) = ρ∗21(t) are
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ρ12(t) = eiωtρ12(0); (49)

that provides the expression for the probabilities p1(t) and p2(t) of the form[
p1(t)− 1/2

]
− i
[
p2(t)− 1/2

]
=
[

cos ωt + i sin ωt
][
(p1 − 1/2)− i(p2 − 1/2)

]
. (50)

The probabilities p1(t), p2(t), and p3(t) read

p1(t) = (1/2) + cos ωt(p1 − 1/2) + sin ωt(p2 − 1/2),

p2(t) = (1/2)− sin ωt(p1 − 1/2) + cos ωt(p2 − 1/2), (51)

p3(t) = p3; p1 = p1(t = 0); p2 = p2(t = 0); p3 = p3(t = 0).

The probabilities satisfy the condition

3

∑
j=1

[
pj(t)− 1/2

]2
=

3

∑
j=1

[
pj − 1/2

]2. (52)

The probabilities p1, p2, and p3, determining the density matrix ρ given in the initial basis
|1/2〉 , |−1/2〉 , are changed to be converted to the probabilities p̃1, p̃2, and p̃3 related to the density
matrix ρu, corresponding to the basis obtained using the unitary transform of the initial basis given by
the matrix u, such that uu† = 1 and uρu† = ρu. The explicit expressions for the probabilities p̃1, p̃2,
and p̃3 read

p̃1 = (1/2) + p1 [Re (u22u∗11 + u21u∗12) + Re (u22u∗11)]

+p2 [−Im (u22u∗11) + Im (u21u∗12)] + p3 [Re (u21u∗11 − u22u∗12)]

−(1/2) [Re (u22u∗11)− Im (u22u∗11) + Re (u21u∗12) + Im (u21u∗12)] + Re (u22u∗12) , (53)

p̃2 = (1/2) + p1 [Im (u22u∗11 + u21u∗12)] + p2 [Re (u22u∗11 − u21u∗12)]

+ p3 [Im (u21u∗11 − u22u∗12)]− (1/2)[Im (u22u∗11) + Re (u22u∗11)

+ Im (u21u∗12)− Re (u21u∗12)] + Im (u22u∗12) , (54)

p̃3 = 2p1 [Re (u∗11u12)] + 2p2 [Im (u11u∗12)] + p3

[
|u11|2 − |u12|2

]
+
{
|u12|2 − [Re (u11u∗12)] + [Im (u∗11u12)]

}
. (55)

We can use formulas (53)–(55) to relate the probabilities p1(t), p2(t), and p3(t) given by (51) to
the probabilities associated with the solution to the kinetic equation determined by generic Hermitian
Hamiltonian matrix Hjk; j, k = 1, 2. For this, we express the matrix elements of the unitary matrix ujk;
j, k = 1, 2 through the matrix elements of the Hamiltonian satisfying the matrix condition

Hu = uHE, HE =

(
E1 0
0 E2

)
, (56)

where the eigenvalues of the Hamiltonian H are

E1,2 =
1
2

{
(H11 + H22)±

[
(H11 + H22)

2 − 4H11H22 + 4|H12|2
]1/2

}
. (57)
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The matrix elements of the unitary matrix u are expressed in terms of the matrix elements of the
Hamiltonian as follows:

u11 =

1 +

∣∣∣∣∣∣H−1
12

H22 − H11

2
+

(
(H11 + H22)

2

4
−
(

H11H22 − |H12|2
))1/2

∣∣∣∣∣∣
2

−1/2

, (58)

u21 = u11H−1
12

H22 − H11

2
+

(
(H11 + H22)

2

4
−
(

H11H22 − |H12|2
))1/2

 , (59)

u22 =

1 +

∣∣∣∣∣∣H−1
21

H11 − H22

2
−
(
(H11 + H22)

2

4
−
(

H11H22 − |H12|2
))1/2

∣∣∣∣∣∣
2

−1/2

, (60)

u12 = u22H−1
21

H11 − H22

2
−
(
(H11 + H22)

2

4
−
(

H11H22 − |H12|2
))1/2

 . (61)

Thus, the unitary matrix u is expressed in terms of the Hamiltonian, and the matrix elements
given by (58)–(61) satisfy the relations

|u11|2 + |u21|2 = |u12|2 + |u22|2 = 1, u∗11u12 + u∗21u22 = 0. (62)

Thus, relations (51) considered in the basis, where the Hamiltonian H has the diagonal form
providing the evolution of the density matrix, can be transformed by means of the matrix u given
by (57)–(61), using the basis where the Hamiltonian has generic form with nonzero off-diagonal
matrix elements.

The constructed invertible map of the density matrix onto probabilities p1, p2, and p3 and of the
von Neumann equation on the system of Equation (47) can be interpreted as follows. The solutions
to the quantum kinetic equations can be considered as trajectories in a real three-dimensional space
satisfying the system of the first-order differential equations. Trajectories of classical mechanical
systems with three degrees of freedom, e.g., classical oscillator, satisfy the system of the second-order
differential equations.

For qubit state, the trajectory satisfying the system of Equation (47) has the constant value[
p1(t)− 1/2

]2
+
[
p2(t)− 1/2

]2
+
[
p3(t)− 1/2

]2, which means the invariance of the purity parameter
of quantum states during the time evolution. In the probability representation, the qubit evolution is
described by the motion of a point with coordinates p1(t), p2(t), and p3(t) on the surface of the sphere
with radius determined by the purity parameter of the state, which is a function of the probabilities.

Now we consider all four-vectors |ρ(β)〉, which can be expressed as linear combinations
(convex sum) of vectors (29),

|ρ(β)〉 =
4

∑
α=1
P (β)

α |Uα〉 , (63)

where 0 ≤ P (β)
α ≤ 1, ∑4

α=1 P
(β)
α = 1, and the set of indices β can be either finite or infinite one.

In view of Born’s rule, the following condition is valid

〈ρ(β1)|ρ(β2)〉 = Πβ2
β1

. (64)

Here, we used the invertible map (21) of the density matrices onto the vectors and calculated
scalar products of vectors (64), which can be interpreted as probabilities satisfying the condition
0 ≤ Πβ2

β1
≤ 1.

Thus, in the four-dimensional Hilbert space of arbitrary vectors |H〉 = ∑4
α=1 Hα |Uα〉, where Hα

are complex numbers, there exists the subset (convex sum of vectors |Uα〉) corresponding to the set
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of density 4 × 4-matrices of physical-system states. We will address the problem of symmetry of
this subset and its relation to the O(3) symmetry group associated with two-dimensional irreducible
representation of the unitary group SU(2).

The SU(2) symmetry plays in our consideration an important role since the Hamiltonian H is
connected with the su(2) Lie algebra, and the matrix u and exp(−iHt) are matrices of irreducible
representation of the unitary group.

7. O(3) Transforms of Probabilities and Spin-Projection Mean Values

In this section, we consider the spin-projection mean-value representation of qubit states.
This representation uses Bloch parameters determining the density matrix of the form

ρ̂ =
1
2

(
1 + z x− iy
x + iy 1− z

)
, x2 + y2 + z2 ≤ 1, (65)

where x, y, and z are mean values of spin projections on the ~X, ~Y, and ~Z axes, respectively.
The probabilities p1, p2, and p3 are the result of measuring the spin projections in state (65) on
the axes given by the basis vectors ~X, ~Y, and ~Z; they are nonnegative and are related to the mean
values x, y, and z as follows:

p1 = (1 + x)/2, p2 = (1 + y)/2, p3 = (1 + z)/2. (66)

In the case of one-qubit state, the relationship between the probabilities and mean values is very
simple, but for N-qubit states, it is more complicated; for details, see [52–55].

In the state space described by the density matrix (65), one can define the action of the
SU(2) group,

˜̂ρ = uρ̂u† =

(
ρ̃11 ρ̃12

ρ̃21 ρ̃22

)
. (67)

The unitary transform u ∈ SU(2) is defined by the matrix parameterized by Euler angles,

u =

(
(cos ϑ/2) ei(ϕ+ψ)/2 (sin ϑ/2) ei(ϕ−ψ)/2

−(sin ϑ/2) ei(−ϕ+ψ)/2 (cos ϑ/2) e−i(ϕ+ψ)/2

)
. (68)

The matrix elements of the density matrix ρ̃ read

ρ̃11 =
1
2
[1 + cos ϑz + sin ϑ(cos ψx + sin ψy)],

ρ̃12 =
1
2
[cos ϕ(− sin ϑz + cos ϑ(cos ψx + sin ψy))− sin ϕ(sin ψx− cos ψy)]

+
i
2
[sin ϕ(− sin ϑz + cos ϑ(cos ψx− sin ψy)) + cos ϕ(sin ψx− cos ψy)],

ρ̃21 =ρ̃∗12, ρ̃22 = 1− ρ̃11.

(69)

The transformed density matrix ρ̃ can be written as

˜̂ρ =
1
2

(
1 + z̃ x̃− iỹ
x̃ + iỹ 1− z̃

)
, (70)
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where the values x̃, ỹ, and z̃ have the sense of mean values of the spin projections on the ~X, ~Y, and ~Z
axes in the case where the state is described by the density matrix (67); these mean values read

x̃ = (cos ϕ cos ϑ cos ψ− sin ϕ sin ψ)x− (cos ϕ cos ϑ sin ψ + sin ϕ cos ψ)y− cos ϕ sin ϑz,

ỹ = (cos ϕ sin ψ + sin ϕ cos ϑ cos ψ)x + (− sin ϕ cos ϑ sin ψ + cos ϕ cos ψ)y− sin ϕ sin ϑz, (71)

z̃ = sin ϑ cos ψx− sin ϑ sin ψy + cos ϑz.

The spin-projection mean values x, y, and z can be mapped onto three vectors in the
three-dimensional configuration space E(3),

~x = x

1
0
0

 , ~y = y

0
1
0

 , ~z = z

0
0
1

 ; (72)

these orthogonal vectors form the basis. Similar vectors can be used for describing the transformed
values x̃, ỹ, and z̃. Then the unitary transform (67) generates an orthogonal transform in the vector spacex̃

ỹ
z̃

 = O

x
y
z

 =

O11 O12 O13

O21 O22 O33

O31 O32 O33


x

y
z

 , (73)

with the orthogonal matrix O of the form

O =

 cos ϕ cos ϑ cos ψ− sin ϕ sin ψ − cos ϕ cos ϑ sin ψ− sin ϕ cos ψ − cos ϕ sin ϑ

cos ϕ sin ψ + sin ϕ cos ϑ cos ψ) − sin ϕ cos ϑ sin ψ + cos ϕ cos ψ − sin ϕ sin ϑ

sin ϑ cos ψ − sin ϑ sin ψ cos ϑ

 . (74)

The orthogonal 3 × 3-matrix O transforms the three-vector ~r = (x, y, z) to the three-vector
~r′ = (x̃, ỹ, z̃). Thus, the unitary transform (67) of the density matrix generates an orthogonal
transform (73) of the mean values x, y, and z.

Now we clarify how the probabilities p1, p2, and p3 are transformed; for this, we apply
relations (66), namely, after substituting (66) into (73), we arrive at the following equations:

p̃1 = O11 p1 + O12 p2 + O13 p3 + (1−O11 −O12 −O13)/2,

p̃2 = O21 p1 + O22 p2 + O23 p3 + (1−O21 −O22 −O23)/2, (75)

p̃3 = O31 p1 + O32 p2 + O33 p3 + (1−O31 −O32 −O33)/2.

In matrix form, the system of equations (75) reads p̃1

p̃2

p̃3

 =

O11 O12 O13

O21 O22 O33

O31 O32 O33


p1

p2

p3

+
1
2

1−O11 −O12 −O13

1−O21 −O22 −O23

1−O31 −O32 −O33

 . (76)

Thus, we conclude that the unitary transform (67) of the density matrix generates an orthogonal
transform (73) of the spin-projection mean values x, y, and z and transform (76), where we applied a
nonuniform orthogonal group (rotation O and shift T ) of probabilities p1, p2, and p3. Transform (76)
corresponds to relations (53)–(55) written in the form of orthogonal transform of the probabilities p1,
p2, and p3.
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As an example, we consider the unitary transform

u =

(
cos ϑ/2 sin ϑ/2
− sin ϑ/2 cos ϑ/2

)
. (77)

In this case, the transformed density matrix ˜̂ρ reads

˜̂ρ =
1
2

(
1 + sin ϑx + cos ϑz cos ϑx + iy

cos ϑx− iy 1− sin ϑx− cos ϑz

)
, (78)

and the orthogonal matrix O and the shift vector T are

O =

cos ϑ 0 − sin ϑ

0 1 0
sin ϑ 0 cos ϑ

 , T =

(1− cos ϑ + sin ϑ)/2
0

(1− cos ϑ + sin ϑ)/2

 . (79)

The mean values of the spin projections are transformed as follows:

x̃ = cos ϑx− sin ϑz, ỹ = y, z̃ = sin ϑx + cos ϑz, (80)

and the probabilities are transformed as follows:

p̃1 = cos ϑp1 − sin ϑp3 + (1− cos ϑ + sin ϑ)/2,

p̃2 = p2, (81)

p̃3 = sin ϑp1 + cos ϑp3 + (1− cos ϑ + sin ϑ)/2.

8. Transforms of Quantizer and Dequantizer Operators

In this section, we consider the other approach to constructing the spin-projection averages and
the projection probabilities; our approach is based on applying the quantizer–dequantizer operators.
As we already mentioned, each set of dequantizers maps any operator onto a scalar function called the
symbol of this operator.

This function can take both continuous and discrete values, and these values can be used to
recover the original operator. As such an operator, we consider the density operator. For a single-qubit
state, the density operator has the form (65) and can be represented as a Hermitian 2 × 2-matrix.
In this case, the minimum set of dequantizers contains four operators, and this set is not unique.
We will use the set of dequantizers (29).

Using these dequantizers, we can find nonnegative values of the probabilities of spin projections
on the ~X, ~Y, and ~Z axes in the state (65); the probabilities read

p1 = Tr ρ̂Û(1) = (1 + x)/2, p2 = Tr ρ̂Û(2) = (1 + y)/2,

p3 = Tr ρ̂Û(3) = (1 + z)/2, p4 = 1− p3 = Tr ρ̂Û(4) = (1− z)/2,
(82)

and the set of quantizers is given by (34).
The sets of operators presented by matrices (29) and (34) satisfy the orthogonality condition

Tr Û(i)D̂(j) = δij; i, j = 1, . . . , 4.
The values p1, p2, p3, and p4 describe the symbol of the density operator (65) constructed

using dequantizers (29). They completely define this operator, and it can be reconstructed using
the quantizers; the reconstruction formula is ρ̂ = ∑4

k=1 pkD̂(k).
If the probabilities p1, p2, p3, and p4 are known, one can reconstruct the density matrix of the

initial state. The probabilities p1, p2, p3, and p4 can be obtained as measured probabilities of spin
projections onto the ~X, ~Y, and ~Z axes. Nevertheless, one can select other axes and measure the
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probabilities of spin projections onto the selected axes. These new probabilities p̃1, p̃2, p̃3, and p̃4

correspond to the other set of dequantizers obtained from the initial operators, using the unitary

transform ˜̂U(i)
= uÛ(i)u†, ˜̂D(j)

= uD̂(j)u†; i, j = 1, . . . , 4. It is easy to see that the orthogonality
condition holds for these new operators. We obtained the probabilities p̃1, p̃2, p̃3, and p̃4, in view of the

relations of these numbers with new dequantizers, i.e., p̃1 = Tr ρ̂ ˜̂U(1)
, p̃2 = Tr ρ̂ ˜̂U(2)

, p̃3 = Tr ρ̂ ˜̂U(3)
,

and p̃4 = 1− p̃3 = Tr ρ̂ ˜̂U(4)
. Using these probabilities and new quantizers, one can reconstruct the

initial density operator ρ̂ = ∑4
k=1 p̃k

˜̂D(k)
.

Thus, we showed that the probabilities of spin projections are determined by the density
operator and dequantizers, and these probabilities can be transformed using the unitary transforms
of dequantizers with which they are constructed. The similar reasoning can be implemented using
other measured values, that is, the average values of spin projections. For this purpose, consider

the following set of dequantizers Û(1)
S =

(
0 1
1 0

)
, Û(2)

S =

(
0 −i
i 0

)
, Û(3)

S =

(
1 0
0 −1

)
, and

Û(4)
S =

(
1 0
0 1

)
. This set of dequantizers provides the set of corresponding quantizers that are

D̂(1)
S =

1
2

Û(1)
S , D̂(2)

S =
1
2

Û(2)
S , D̂(3)

S =
1
2

Û(3)
S , and D̂(4)

S =
1
2

Û(4)
S . These operators satisfy the

orthogonality condition Tr Û(i)
S D̂(j)

S = δij; i, j = 1, . . . , 4. The Bloch parameters in the density

matrix introduced in (65), in view of dequantizers Û(j)
S ; j = 1, 2, 3, 4, read Tr ρ̂Û(1)

S = s1 = x,

Tr ρ̂Û(2)
S = s2 = y, Tr ρ̂Û(3)

S = s3 = z, and Tr ρ̂Û(4)
S = s4 = 1.

One can reconstruct the density matrix (65) using quantizers D̂(k)
S and numbers sk. The result is

ρ̂ =
4

∑
k=1

skD̂(k)
S . (83)

As in the previous case, we consider the unitary transform of operators Û(j)
S and D̂(j)

S

˜̂U(i)
S = uÛ(i)

S u†, ˜̂D(j)
S = uD̂(j)

S u†; i, j = 1, . . . , 4. (84)

Applying this set of dequantizers, one can obtain new Bloch parameters for the density
operator (65); they read

s̃1 = Tr ρ̂ ˜̂U(1)
S , s̃2 = Tr ρ̂ ˜̂U(2)

S , s̃3 = Tr ρ̂ ˜̂U(3)
S , s̃4 = 1 = Tr ρ̂ ˜̂U(4)

S . (85)

Now we are in the position to reconstruct the initial density operator (65) using the discussed
parameters and quantizers as

ρ̂ =
4

∑
k=1

s̃k
˜̂D(k)

S . (86)

Now we recall that the matrix element ρ11 = wρ(+) is the probability that the result of measuring
the spin projection in the state (65) onto the ~Z axis is nonnegative, and the matrix element ρ22 = wρ(−)
of the density matrix is also nonnegative, while the sum of these probabilities is equal to unity.

In the case of the transformed density matrix (67), these probabilities have the form

ρ̃11 = wρ(+) =
1
2
[
1 + cos ϑz + sin ϑ cos ψx + sin ϑ sin ψy

]
=

1
2
[
1 + (~n,~ρ)

]
,

ρ̃22 = wρ(−) =
1
2
[
1− cos ϑz− sin ϑ cos ψx− sin ϑ sin ψy

]
=

1
2
[
1− (~n,~ρ)

]
,

(87)
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where the Bloch vector ~ρ = ~x + ~y + ~z is given by (72) and corresponds to a state with the
density matrix (65), and ~n is a vector with coordinates (sin ϑ cos ψ, sin ϑ sin ψ, cos ϑ). Since ~n is
a unit vector, (~n,~ρ) ≤ 1. In fact, the probabilities are determined by tomographic-probability
distributions of spin-1/2 states introduced in [16,17]; the probabilities (87) take values in the interval
[(1− |~ρ|)/2, (1 + |~ρ|)/2] .

For pure states, the length of the Bloch vector |~ρ| = 1 and probabilities wρ(+) and wρ(−) can take
values in the interval [0, 1], depending on the direction of~n. For mixed states, the interval of acceptable
values is smaller and, in the limit case, it is converted into the point [1/2, 1/2]. Such probabilities
wρ(+) = wρ(−) = 1/2, regardless of the~n direction, correspond to the mixed state with the density

matrix ρ̂ =
1
2

(
1 0
0 1

)
. The length of its Bloch vector is equal to zero.

The state (65) is determined by three numbers; as such numbers, one can take three probabilities
of the spin projections on three axes. These axes can be selected arbitrarily, the only requirement is that
they are not located on the same plane. We fix three probabilities w1(+), w2(+), and w3(+) and write
the following three relations:

w1(+) = [1 + cos ϑ1z + sin ϑ1 cos ψ1x + sin ϑ1 sin ψ1y] /2,

w2(+) = [1 + cos ϑ2z + sin ϑ2 cos ψ2x + sin ϑ2 sin ψ2y] /2, (88)

w3(+) = [1 + cos ϑ3z + sin ϑ3 cos ψ3x + sin ϑ3 sin ψ3y] /2.

Here, angles (ϑ1, ψ1), (ϑ2, φ2), and (ϑ3, φ3) determine directions of the reference-frame axes,
and w1(+), w2(+), and w3(+) are probabilities of spin projections onto these axes. Relations (88) can
be considered as a system of three equations for three unknown quantities, which are Bloch parameters
x, y, and z. The solution of this system of equations provides the density matrix (65).

Now we move to the consideration of the product of three probabilities given by (88),

W123(+ ++) = w1(+)w2(+)w3(+). (89)

The product can be understood as the joint probability of spin projections onto the three axes,
namely, ~n1 ∝ (ϑ1, ψ1), ~n2 ∝ (ϑ2, ψ2), and ~n3 ∝ (ϑ3, ψ3). Probabilities (88) are independent but they
satisfy the nonnegativity condition of the density matrix. One can derive other probabilities:

W12(++) =
1

4π

−
∑

m=+

∫ π

0

∫ 2π

0
W123(+ + m)(ϑ3, ψ3) sin ϑ3 dϑ3 dψ3 = w1(+)w2(+), (90)

w1(+) =
1

(4π)2

−
∑

m, n=+

∫ π

0

∫ π

0

∫ 2π

0

∫ 2π

0
W123(+ n m)(ϑ2, ψ2, ϑ3, ψ3)

× sin ϑ2 sin ϑ3 dϑ2 dϑ3 dψ2 dψ3. (91)

We showed that there are two approaches to describe the probabilities determining the
quantum state. One of them is based on using the properties of the initial density matrix and its
unitary transforms. The other approach applies the interpretation of these probabilities as the symbol
of density operator constructed using a certain set of dequantizers and unitary transforms of these
operators. In the simplest case of one-qubit state, these approaches are equivalent. For multiqubit
states, the problem of their probabilistic description and the symmetries of these discrete characteristics
requires additional study.
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9. Symplectic Tomographic Probability Distribution

Let us consider the example of the probability representation of quantum states with continuous
variables like oscillator states. Using real variables x = (X, µ, ν) where −∞ < X, µ, ν < ∞,
the dequantizer Û(x) ≡ Û(X, µ, ν) is given as

Û(X, µ, ν) = δ(X− µq̂− ν p̂), (92)

with q̂ being the position operator and p̂, the momentum operator. Below we assume Planck’s
constant h̄ = 1.

The quantizer operator D̂(x) ≡ D̂(X, µ, ν) is given as

D̂(X, µ, ν) =
1

2π
exp [i (X− µq̂− ν p̂)] . (93)

In the position representation, the matrix elements of dequantizer (92) are

〈y′| δ(X− µq̂− ν p̂) |y〉 = 1
2π|ν| exp

[
iµ
2ν

(
y2 − y′2

)
− iX

ν

(
y− y′

)]
. (94)

The quantizer operator (93) has the matrix elements of the form

〈y| (2π)−1 exp [i (X− µq̂− ν p̂)] |y′〉 = 1
2π

exp
(

iX− iµν

2
− iµy′

)
δ(y− y′ − ν). (95)

For the pure state ρ̂ψ = |ψ〉 〈ψ|, the symbol of operator ρ̂ψ can be evaluated using (94); it reads

wψ(X | µ, ν) =
1

2π|ν|

∣∣∣∣∫ ψ(y) exp
(

iµy2

2ν
− iXy

ν

)
dy
∣∣∣∣2 . (96)

For the wave function such that
∫
|ψ(y)|2 dy = 1, one has the property

∫
wψ(X | µ, ν) dX = 1. (97)

Formula (96) also provides the nonnegativity of the symbol of operator ρ̂ψ, i.e., wψ(X | µ, ν) ≥ 0.
For an arbitrary density operator which is a convex sum of the pure-state density operators,

one has
wρ(X | µ, ν) = Tr [ρ̂δ(X− µq̂− ν p̂)] ≥ 0, (98)

and the symbol of density operator can be interpreted as the conditional probability distribution of
random variable X called the symplectic tomogram.

The symmetry group which we use to construct the symplectic tomographic probability
distributions is the Heisenberg–Weyl nilpotent group of real 3 × 3-matrices

g(X, µ, ν) =

1 µ X
0 1 ν

0 0 1

 , −∞ < X, µ, ν < ∞; (99)

Lie algebra of the group is realized by operators q̂, p̂ and 1̂. It is known that operators (93) provide
the irreducible unitary ray representation of this group, i.e., the product of the group elements

g(X1, µ1, ν1) g(X2, µ2, ν2) = g(X1 + X2 + µ1ν2, µ1 + µ2, ν1 + ν2) (100)
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provides the product of operators 2πD̂(X1, µ1, ν1) (93) of the form

exp i (X1 − µ1q̂− ν1 p̂) exp i (X2 − µ2q̂− ν2 p̂) = exp [i(X1 + X2) + (µ1 + µ2)q̂ + (ν1 + ν2) p̂]
× exp [(i/2) (µ1ν2 − µ2ν1)] .

(101)

The structure constants of the associative product of symbols of operators given by general
relation (1) with dequantizer (92) read

K(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) = Tr
(

D̂(X1, µ1, ν1)D̂(X2, µ2, ν2)Û(X, µ, ν)
)

, (102)

and we arrive at [22]

K(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) =
δ
(

µ(ν1+ν2)−ν(µ1+µ2)
)

4π2 exp
(

i
2

{
(ν1µ2 − ν2µ1) + 2X1 + 2X2

−
[(

1−
√

1− 4µ2ν2
)

ν1+ν2
ν +

(
1 +

√
1− 4µ2ν2

)
µ1+µ2

µ

]
X
})

.
(103)

In view of properties of Dirac delta-function, one can express the kernel as

K(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) =
δ
(
µ(ν1 + ν2)− ν(µ1 + µ2)

)
4π2

× exp
(

i
2

{
(ν1µ2 − ν2µ1) + 2X1 + 2X2 −

2(ν1 + ν2)

ν
X
})

. (104)

The corresponding Lie algebra structure constants are

C(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) = K(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν)− K(X2, µ2, ν2, X1, µ1, ν1, X, µ, ν); (105)

in explicit form they read

C(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) =
i

2π2 δ [µ(ν1 + ν2)− ν(µ1 + µ2)] sin
(

ν1µ2 − ν2µ1

2

)
× exp

(
i
{

X1 + X2 −
ν1 + ν2

ν
X
})

. (106)

The Lie algebra determined by the structure constants (106) and its connection with the probability
representation of quantum system states were not known in the literature.

The structure constants of Jordan product determined by the kernel (102) are

J(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) = K(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) + K(X2, µ2, ν2, X1, µ1, ν1, X, µ, ν); (107)

in explicit form they read

J(X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) =
1

2π2 δ [µ(ν1 + ν2)− ν(µ1 + µ2)] cos
(

ν1µ2 − ν2µ1

2

)
× exp

(
i
{

X1 + X2 −
ν1 + ν2

ν
X
})

. (108)

Thus, for two examples, namely, spin-1/2 systems and systems of continuous variables like,
for example, the oscillator, we constructed structure constants of associative products of the symbols
of operators and the corresponding Lie algebra structure constants in explicit forms. These examples
correspond to the SU(2) symmetry group and the Heisenberg–Weyl nilpotent group.

The new aspects, we obtained for these examples, are their relations with the probability
representations of quantum system states. We derived the Lie algebra structure constants, in view of the
quantizer–dequantizer operators realizing the description of quantum states by means of probability
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distributions of classical-like random variables. As we showed, the Lie algebras associated to the
physical systems also are related to the probabilistic characteristics of the systems, being described by
the quantizer–dequantizer operators used to construct the probability picture of quantum system states.

10. Conclusions

To conclude, we point out the main results of our work.
We presented the probability representation of qubit states introducing the quantizer–dequantizer

operator formalism in an explicit form and calculating the structure constants of the associative product
of the symbols of spin operators, as well as the Lie algebra structure constants of the systems associated
with SU(2) symmetry.

We obtained in an explicit form the structure constants of the associative algebra and Lie
and Jordan algebras using the quantizer–dequantizer operators determining symplectic tomograms
of quantum states for systems with continuous degrees of freedom (like oscillator systems).
Thus, we found the connection of symmetries (such as Heisenberg–Weyl symmetry) characterized
by Lie algebra structures with probability distributions identified with quantum states. The found
associative structure constants (104) satisfy generic associativity conditions (13), and Lie algebra
structure constants (106) satisfy the Jacobi identity.

The connection of structure constants of Lie algebras with the probability distributions
determining the states of quantum systems of both discrete spin variables and continuous oscillator
variables is not known in the literature.

A concrete explicit result presented in this work is the von Neumann equation for spin-1/2 system
with generic stationary Hamiltonian written in the form of a system of kinetic equations for probability
distributions identified with the system states. The solutions of this kinetic equations are given in the
form of trajectories in the three-dimensional real space satisfying the system of linear equations for
probabilities of spin projections on three perpendicular directions in the configuration space.

The problem of probability representation and symmetry of system evolutions related to
non-Hermitian operators [39–42] needs further study.

The other result is the explicit form of a probabilistic realization of representation of Lie algebra,
which determines the Heisenberg–Weyl symmetry group as well as the structure constants of
associative product and Jordan product connected with this group. The results obtained can be
extended to provide the probabilistic description of quantum states and their dynamics for systems
with higher spins, qudits, and N-level atoms, as well as for two-mode photon states, using their
higher symmetries.

The results obtained follow from the existence of an invertible map of the formalism of
conventional description of quantum states by vectors and density operators in a Hilbert space onto
probability distributions of random variables in the probability representation of quantum mechanics.
The axioms of quantum mechanics [3,5] and all discussed in the literature interpretation problems
of quantum mechanics, including nonlocality and realism, can be also considered in the probability
representation of quantum states. We point out that the probability representation considered in
this work for studying examples of qubits and systems with continuous variables employs Born’s
rule, which is consistent with axioms and principles of quantum mechanics [3,5]. Namely Born’s rule
provides the possibility to construct the mentioned map of conventional Hilbert space formalism of
quantum mechanics onto the formalism of probability distributions and their properties employed in
the probability representation of quantum mechanics. If the dequantizer operators have the properties
of density operators, the Born’s rule applications provide the possibility to construct the map of the
state density operators onto probability distributions identified with the quantum states.

It is worth mentioning some possible merits of our method in quantum information and quantum
information processing. The method provides the possibility to use well-developed in probability
theory information-entropic relations [21,56] to obtain extra characteristics of quantum-state density
matrices. Furthermore, in quantum information processing, gate operations can be formulated as linear
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transforms of probability distributions, for which some mathematical approach known in probability
theory can be applied. We plan to investigate these aspects in future publications.
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