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Abstract: We argue that the usual Bloch sphere is insufficient in various aspects for the representation
of qubits in quantum information theory. For example, spin flip operations with the quaternions
I JK = e

2πi
2 = −1 and J IK = +1 cannot be distinguished on the Bloch sphere. We show that a

simple knot theoretic extension of the Bloch sphere representation is sufficient to track all unitary
operations for single qubits. Next, we extend the Bloch sphere representation to entangled states
using knot theory. As applications, we first discuss contextuality in quantum physics—in particular
the Kochen-Specker theorem. Finally, we discuss some arguments against many-worlds theories
within our knot theoretic model of entanglement. The key ingredients of our approach are symmetries
and geometric properties of the unitary group.

Keywords: knot theory; quantum physics; Kochen-Specker Theorem; many-worlds interpretation;
contextuality

1. Introduction

With the rapidly increasing importance of quantum communication and quantum computation,
and in particular the increasing ability to manipulate systems of entangled qubits, the representation
of qubits and operations with qubits is an important issue, in particular for writing codes for quantum
computers [1]. In this paper, we want to show that the encoding of operations using the Bloch-sphere
representation is insufficient for several reasons. Most importantly, the difference between 2π and
4π-rotations cannot be encoded using the Bloch sphere representation. In this paper, we propose several
generalizations of the Bloch sphere representation from a group theoretical and a knot theoretical
perspective. In our argument, the symmetry of hyperspheres plays an important role—in particular,
the Hopf-mapping S3 → S2 for single quibts, and its generalization S7 → S2 × S2 for entangled qubits.

In Section 2, we start our discussion with an analysis of the group SO(3) and its covering group
SU(2). We introduce the Heegard-splitting of the Lie algebra SU(2), and show that the Dirac belt
construction is just a topological property of rotations in R3, not necessarily related to quantum physics.

In Section 3, we discuss dynamics of a qubit in a constant magnetic field from a group theoretical
perspective. The Dirac belt naturally emerges in the description of amplitudes in S3. We propose a
minimal extension of the Bloch sphere representation to encode spin flip operations using a simple
paper strip model in the (4π)-realm [2].
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In Section 4, we review the topological model of entanglement recently introduced in Reference [3],
and apply this model in Section 5 to give a geometric interpretation of the Kochen-Specker theorem,
which states that even for commuting observables, the eigenvalues of a given quantum state depend
on the context. It turns out that the difference between 2π and 4π-rotations, which cannot be resolved
in the usual Bloch-sphere representation, lies at the heart of contextuality in quantum physics.

In Section 6, we give a geometric argument against many-worlds theories. In particular, we show
how the transition of an entangled state to a mixed state can naturally be modeled using the paper strip
model of entanglement, leading naturally to an ensemble interpretation of amplitudes in quantum
physics. Exactly like the ansatz of many-worlds theories, we only rely on symmetries and geometric
properties of the unitary group.

In the summary and outlook, we discuss further possible applications of this topological approach
to quantum physics, and their merits for physics education.

2. Geometry of Rotations in Real Space R3

In this section, we discuss simple rotations in real space R3. Imagine the unit ball S2 defined by
n2

1 + n2
2 + n2

3 = 1. The coordinates~n0 ≡ ~n(0) = (n0
1, n0

2, n0
3) can be rotated to any other position~n(ϑ) by

acting with a 3× 3-rotation matrix g(~e, ϑ) ∈ SO(3) on the initial vector. As shown in Figure 1, the unit
vector~e defines the rotation axis. After a rotation by an angle ϑ with respect to this axis, the initial
vector~n0 is mapped to

~n(ϑ) = ~n0 cos ϑ +~e (~e~n0)(1− cos(ϑ)) + (~e×~n0) sin ϑ.

Thus, the corresponding group element g(~e, ϑ) in SO(3) is given by

g(~e, ϑ)ik = δik cos ϑ + eiek(1− cos(ϑ)) + εijkej sin ϑ. (1)

On the level of the Lie algebra, we find the simple expression

g(~e, ϑ) = exp[ϑ ekXk],

where X1, X2, X3 are the antisymmetric generators of the Lie algebra SO(3), given by

X1 =

 0 0 0
0 0 1
0 −1 0

 , X2 =

 0 0 1
0 0 0
−1 0 0

 , X3 =

 0 1 0
−1 0 0
0 0 0

 .

Obviously, the complete group can be characterized by three parameters—the direction of the
rotation axis, indicated by the unit vector~e with~e = 1, and the rotation angle −π ≤ ϑ < π. The π-ball
(with radius π) defined by~eϑ represents all possible group elements of SO(3) on the level of the Lie
algebra so(3). Note that the rotations ±π~e are identical rotations in R3, therefore, antipodes of the
π-ball are identified, see Figures 1 and 2.

Consider the vector~n0 in R3. Then, the so-called orbit of this point is defined by g~n(0), where g
runs through all group elements g(~e, ϑ) ∈ SO(3) (that is, the full π-ball parametrizing the Lie algebra
SO(3)). Obviously, this orbit is just the unit sphere S2 in real space R3. Note that there is a subset H of
group elements leaving the initial vector invariant, H~n(0) = ~n(0). In our case, this subset is given by
the rotations h(~e = ~n0, ϑ) with −π ≤ ϑ ≤ π. It is a standard result of coset theory that the coset space
G/H is isomorphic to the orbit, that is,

G/H = SO(3)/SO(2) ' S2.
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Figure 1. Left: The Lie algebra so(3) of the real group of rotations in three dimensions SO(3) can be
parametrized by the π-ball ϑ~e, where~e is the rotation axis, and ϑ is the rotation angle around this axis.
Right: Action of the group element g(~e, ϑ) = exp[ϑ ekXk] on a given vector~n0 in R3. The angle between
~n0 and~e is denoted as θ.

As shown in Figures 1 and 2, the rotation by 2π around a given axis~e is given by the straight
line ~eϑ with −π ≤ ϑ < π. It is a well-known fact from group theory that this closed path is not
equivalent to the Null homotopy. Indeed, as can be seen in Figure 2, only after a second traversal,
the path can be deformed to the Null Homotopy (that is, to the identity element in SO(3) at the origin
of the π-ball). Paul Dirac proposed a fascinating method to illustrate the corresponding motion in real
space R3, that is, on the level of the group SO(3) acting on, say, a unit ball (A simulation program for
the Dirac belt trick can be found in http://ariwatch.com/VS/Algorithms/Antitwister.htm). We attach
this unit ball with elastic ropes (equivalently, with paper strips) to the boundary of a very large fixed
outer sphere. The action of each group element g on the unit ball is encoded in the twists of the ropes
(the paper strips). As shown in Figure 3, each rotation by π can be realized as an inner twist in the
paper strip attached to the rotated unit ball. Indeed, it can be shown that four inner twists can be
undone, but not two. This exactly corresponds to the Null Homotopy shown in Figure 2 with two
traversals, that is, a (4π)-rotation (You can convince yourself of this Null homotopy: Take a paper strip
and rotate it four times. You may untwist it as shown in https://vimeo.com/62228139).

http://ariwatch.com/VS/Algorithms/Antitwister.htm
https://vimeo.com/62228139
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Figure 2. Since a rotation with ±π in R3 leads to the same final state, the points ±π~e in the Lie
algebra of SO(3) are identified. Only after a second traversal, the closed path is isomorphic to the Null
homotopy in SO(3). The Lie algebra of the covering group SU(2) can be described by ϑ

2~e, corresponding
to two π-balls, where the boundaries are identified. This is the so-called Heegard-splitting on the level
of the algebra SU(2). The action of the quaternions I, J, K correspond to rotations around the axis x, y, z
with angle π, respectively.

Figure 3. The equivalence of a 4π-rotation with the Null homotopy in R3 can be illustrated by a ball
which is attached by (elastic) paper strips to an outer sphere with very large radius. Each rotation
by π induces a twist. Two twists cannot be deformed to the identity. In contrast, four twists are
homotopically equivalent to the identity.
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The covering group of SO(3) is SU(2), which reflects this 4π-symmetry. The su(2)-algebra can
be constructed using the quaternions I, J, K defined by I2 = J2 = K2 = −1, and I J = K, J I = −K
(and cyclic). A general quaternion is given by

Q = q0 + q1 J + q2 J + q3K, (2)

with Q2 = q2
0 + q2

1 + q2
2 + q2

3 = 1, which is geometrically just the hypersphere S3. The geometry of the
Lie algebra su(2) of the group SU(2) can be described by the so-called Heegard splitting—the π-ball
describing the so(3)-Lie algebra is doubled, and the boundaries of both copies of the π-ball are
identified with each other. The action of I, J, K can be illustrated using the Heegard splitting as shown
in Figure 2. In the covering group, 2π and 4π rotations can be distinguished as can also be seen in
Figure 2.

Quaternions have been introduced already in the 19th century by Hamilton–much the same as
the Hamiltonian for energy in classical mechanics, the full meaning of these structures became only
visible more than 50 years later, with the advent of quantum physics.

3. Group Theoretic View on a Qubit in a Magnetic Field

3.1. On the Relation between SU(2) and SO(3)

As an illustrative example for the application of quaternions in quantum physics,
consider the Hamilltonian

H = γ
e

2m
~B~S, (3)

where describing spin precession of a qubit with spin operator ~S = h̄
2~σ in a constant magnetic field

~B. Here, γ is the gyromagnetic factor, to be specified depending on the application, and σx,y,z are the
Pauli-matrices. The time development is given by the unitary 2× 2 matrix

U~e(ϑ(t)) = e−iHt/h̄

= [id2 cos(
ϑ(t)

2
)− i~e~σ sin(

ϑ(t)
2

)], (4)

with ϑ(t)/2 = ωLt, and Larmor frequency ωL = γ eB
2m . The unit vector~e describes the direction of the

magnetic field as ~B ≡ B~e.
Next, we want to discuss this time development using group theory similar to Section 2. On the

Bloch sphere S2, the state vector described by ~n rotates on a cone shell around the axis ~e defined
by the direction of the magnetic field ~B = B~e, as shown in Figure 1. The double cover of SU(2)
can be seen explicitly by comparing Equation (1), which corresponds to the point at~eϑ in Figure 2,
with Equation (4). We find

gik(~e, ϑ) =
1
2

tr[U†
~e (ϑ)σiU~e(ϑ)σk], (5)

which just means that the two points~eϑ and (~eϑ + 2π) corresponding to ±U~e(ϑ) are separated in the
two π-balls describing S3 in the Heegard splitting as shown in Figure 2. In SO(3), both points are
identified, leading to the double cover SU(2)/Z2 ' SO(3). Both π-balls of the Heegard splitting are
then merged to a single π-ball, see Figure 2.

3.2. On the Relation between Operators and Amplitudes in the Group SU(2)

Note that the Dirac belt trick, shown in Figure 3, is a priori no quantum feature, but just a
group theoretic fact about Null homotopies in SO(3). The fundamental importance in quantum
physics is due to the application of this topology to a new physical quantity introduced in quantum
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physics: amplitudes arising in the wave function |Ψ〉 = u|0〉 + v|1〉 as complex generalizations of
probabilities. Geometrically, the amplitudes (u, v) are also described by S3, since |u|2 + |v|2 = 1.
However, the interpretation is different - while group elements of SU(2) induce rotations, amplitudes
are used to predict probabilities for observables (probability |u|2 for the detection of |0〉, probability
|v|2 for the detection of |1〉). In what follows, we will exploit the geometric meaning of amplitudes in
more detail. We start with the orbit of the simplest possible amplitude (1, 0), given by

W = (
u −v̄
v ū

), orbit : W(
1
0
) = (

u
v

). (6)

Note that det W = 1. The only group element with h(1, 0) = h is the identity, thus G/H = G ' S3,
leading to an isomorphism between group elements g and amplitudes (u, v). Explicitly, we can map
the eigenstates (1, 0) (or (0, 1)) of the rotation operator ei ϑ

2 σz to group elements in SU(2) as

(Wei ϑ
2 σzW†)(

u
v

) = e+iϑ/2(
u
v

). (7)

The rotation axis is then transformed from the z-axis (1, 0, 0) to the axis~n = (nx, ny, nz), since

hW ≡ Wei ϑ
2 σzW† = ei ϑ

2 WσzW†
(8)

= ei ϑ
2~n~σ.

This rotation axis of the group element is just the direction of spin described by the amplitude
(u, v). This can be seen explicitly using the Hopf mapping S3 → S2

(u, v) → (9)

~n ≡ (Re (2ūv), Im (2ūv), |u|2 − |v|2).

The vector ~n indicates the position where the amplitude of the state is maximal. The antipode
−~n indicates the nodal point of |Ψ〉 = u|0〉 + v|1〉 on the Bloch sphere. Indeed, the state
|Ψorth〉 = −v̄|0〉+ ū|1〉 orthogonal to |Ψ〉 has maximal amplitude at−~n. In contrast to SO(3), a rotation
with angle ϑ of the state |Ψ〉 around the axis given by the vector ~n0 given by (9) leads to the phase
change e±iϑ/2 (e−i±ϑ/2). The isomorphism between group elements and amplitudes is then explicitly

hW ' (u, v), h†
W ' (−v̄, ū). (10)

Similar to the example shown in Figure 3, only after a 4π-rotation, the original state is
reached again.

In view of the symmetry of the hypersphere S3, note that there is another way to define this
isomorphism, given by

hW ' (−v̄, ū), h†
W ' (u, v). (11)

Due to symmetry, there is no physical reason to decide which isomorphism should be used.
Each group element hW is defined by three parameters ϑ

2~n with 0 ≤ ϑ ≤ 4π. A priori, these
parameters have no physical interpretation. It depends on the context, whether the parameters in the
corresponding state |Ψ〉 = u|0〉+ v|1〉 play the role of time development, or of a (space-like) angle in
S2, or just of an irrelevant phase. In the explicit parameterization

u = ei ϑ
2−i φ

2 cos[
θ

2
] (12)

v = ei ϑ
2 +i φ

2 sin[
θ

2
], (13)
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where we find that each phase 0 ≤ ϑ = ωLt < 4π maps to one specific group element
hU in case that |Ψ〉 is an eigenstate of H, that is, for ~B = B~n . On the Bloch sphere,
the equivalence class of states |Ψ(ϑ)〉 = u|0〉 + v|1〉 for any ϑ is represented by the single vector
~n = (cos(θ), sin(θ) cos(φ), sin(θ) sin(φ)) as shown in Figure 4.

Note that hW , h†
W are the only operations which only change a global phase of the state (u, v).

For fixed~n, this is a U(1)-subgroup within SU(2). All other rotations U~e(ϑ(t)) as defined in (4) with
axis~e 6= ~n change the position of the direction of maximal amplitude, that is, lead to spin precession,
as shown in Figure 1 on the Bloch sphere S2. We conclude that SU(2)/U(1) ' S2.

Figure 4. Qubits are isomorphic to the group SU(2): A given qubit can be represented by the vector
~n on the Bloch sphere. The corresponding group elements exp[±iϑ

2 ~n] generate rotations around the
axis~n.

3.3. Spin Flip Operations in a Generalized Bloch Sphere Representation

In this section, we introduce an important class of unitary operations on qubits, the so-called
spin-flip operations. It turns out that the usual Bloch sphere representation will be insufficient for our
purpose, as sign changes in the amplitude of the wave function upon 2π-rotation cannot be displayed
on the Bloch-sphere. For this reason, a knot theoretic model in Hilbert space (in this case, S3) will be
introduced, inspired by the Dirac belt trick.

Spin-flip operations with ϑ = π as in Equation (4) are of special importance in many applications,
for example, in quantum computation. A basis of spin-flips is given by rotations in x, y and z-directions.
For spin j = 1/2, spin flips are described by the quaternions I, J, K as

I ≡ exp(−i
π

2
σx) = −iσx (14)

J ≡ exp(−i
π

2
σy) = −iσy

K ≡ exp(−i
π

2
σz) = −iσz.
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The homotopy I JK = JKI = KI J = e(2πi)/2 = −1 connects the identity operation with negative
identity, as shown in Figure 5, which is different from the Null homotopy IKJ = +1. However,
this sign change is not visible in the Bloch-sphere representation, since both π-balls representing SU(2)
are identified and mapped to the boundary S2 in the Bloch sphere representation. We conclude that
albeit the Bloch-sphere representation is of immense importance in practice, it does not describe the
full dynamics in Hilbert space, since SU(2)/U(1) ' S2 is (2π)-periodic.

Figure 5. The operations I JK = e(2πi)/2 and JKI = 1 in the Heegard splitting: The path between 0 and
2π is not homotopically equivalent to the path between 0 and 4π.

However, similar to Figure 3, we can track the motion of the Bloch sphere by attaching (elastic)
paper strips. It is sufficient to attach just one paper strip at the position of maximal amplitude as
shown in Figure 6. Then, each rotation of the Bloch sphere is tracked, and the difference between a
(2π)-rotation (corresponding to two inner twists in the paper strip) and a (4π)-rotation (corresponding
to four inner twists, which can be undone by the Dirac belt trick) becomes obvious. As shown in
Figure 6, any motion of the Bloch sphere can be tracked using the three basic spin flip operations I, J, K.

Note that ’open’ paper strips (linking the Bloch sphere to an infinitely large outer ball)
track all unitary rotations acting on any quantum state defined on the Bloch sphere. As unitary
operations define time development in quantum physics, the model proposed in Figure 6 combines
a (4π)-representation for time development with a (2π)-representation of the quantum state on the
Bloch sphere. By replacing the spin j = 1/2 state by any other spin j-state on the Bloch sphere,
this model can be generalized to any spin.

In the next section, we replace the (2π)-representation for the quantum state on the Bloch-sphere
by the (4π)-representation, which is related to closed paper strips modeling torus knots in Hilbert
space. In other words, we describe the quantum state in S3, and not after the Hopf-mapping S3 → S2.
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Figure 6. Minimal knot theoretic extension of the Bloch sphere representation of a single qubit: Time
development, described by any unitary operation U~e(ϑ(t)), is tracked by the paper strip attached to the
qubit. In such a way, the Null homotopy JKI can be distinguished from the path I JK = −1 connecting
0 and 2π in the time development described by SU(2).

3.4. Modeling Amplitudes with Closed Paper Strips

We discuss the amplitude of the state |0〉 at position |Ψ〉 (|Ψorth〉). We find

|0〉 = |Ψ〉〈Ψ|0〉+ |Ψorth〉〈Ψorth|0〉 (15)

= u|Ψ〉 − v̄|Ψorth〉.

A global rotation with the corresponding eigenoperator of |0〉 leads to

e−i ϑ
2 σz |0〉 = ue−i ϑ

2 σz |Ψ〉 − v̄e−i ϑ
2 σz |Ψorth〉. (16)

Starting with the equivalence class of states

|Ψ〉 = e+i τ
2 (cos(θ/2), sin(θ/2)), (17)
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where we find for the homotopy λe−i ϑ
2 σz |Ψ〉, weighted with amplitude λ = u

λe−i ϑ
2 σz |Ψ〉 = (18)

λ(e+i τ−ϑ
2 cos(θ/2), e+i τ+ϑ

2 sin(θ/2))

≡ λ(X + iY, U + iW),

with X2 +Y2 + U2 +W2 = 1. As shown in Reference [4], for fixed θ, we obtain a bundle of (1, 2)-torus
knots, that is, a Dirac belt. For simplicity, we choose the torus at θ = π/2, that is, we consider

(X + iY, U + iW) = (
1√
2

e+i τ−ϑ
2 ,

1√
2

e+i τ+ϑ
2 ). (19)

Using stereographic projection as

(X, Y, U, W)→ (
X

1−W
,

Y
1−W

,
U

1−W
), (20)

where we obtain a visualization of the invariant torus with respect to the spin-rotation operator K
as shown in Figure 7. Note that this projection is just done in order to be able to make a plot of the
complex geometry in three dimensions. It is no surprise to find torus knots in the geometry of S3 [5,6].
Indeed, spin j representations are related to (2j, 2) torus knots, which can be represented using the
paper strip model generalizing the Dirac belt to spin j [4]. In Appendix A, we briefly review this
generalization. In the Bloch sphere representation, only the position~n of maximal amplitude (λ = 1) is
shown. However, in Hilbert space S3, at any position an amplitude emerges as shown in Equation (16)
with λ = u at the point |Ψ〉 (λ = −v̄ for |Ψorth〉). In general, any given quantum state is defined by
amplitudes 0 ≤ |λ| ≤ 1 which ’excite’ certain Dirac belts. In other words, the presence of (2j, 2) torus
knots is just a geometric feature of S3, and it is the pattern of amplitudes within S3 which characterizes
the quantum state. Similar to the excitation of piano strings, the changing amplitudes in what we call
’time’ describe the ’quantum melody’ of unitary time development.

As shown in Figure 7, the Dirac belt with four inner twists is mapped to a Möbius strip with one
twist after gluing together the two pieces (0, 2π) and (2π, 4π) of the Dirac belt [4]. This describes the 2:1
Hopf-mapping from the (4π)-realm, that is, the Hilbert space, to the (2π)-realm, that is, observables.

In general, the phase eijφ on the equator of the Bloch sphere is related to 2j twists in the (2π)-realm,
which in the paper strip model in the (4π)-realm lead to (2j, 2) torus knots with 4j + 2 inner twists
for fermions (j half-integer), and 2l × 2l inner twists for bosons (j = l integer) [2]. As shown
in Reference [7], the exchange of two particles is homotopically equivalent to a (2π)-rotation of
one of these particles. Note, that in two dimensions, anyons with any phase upon exchange of two
particles may arise. A (2π)-rotation leads to the phase change e2πij, which is the clue to the bosonic
and fermionic statistics upon exchange of particles.
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Figure 7. In contrast to the minimal extension of the Bloch sphere representation, where only the
unitary time development acting on |Ψ〉 is encoded in knots, we may also represent the quantum state
itself in Hilbert space. The Dirac belts within S3 are weighted by amplitudes 0 ≤ λ ≤ 1. The maximal
amplitude λ = 1 corresponds in the Bloch sphere to the ’direction of spin’~n. For the state |0〉, we show
a representative of the fibre of Dirac belts emerging on the equatorial line with λ = 1/

√
2. The double

traversal of the Dirac belt is equivalent to a Möbius strip [4]

4. Paper Strip Model Model for a Pair of Entangled Qubits

Operations on two qubits are described by the unitary group U(22) = U(4). Due to symmetry,
all points in SU(4) are equivalent from a geometric point of view. It is the Hamiltonian which
creates certain interpretation patterns within this geometry. For a given Hamiltonian, we can define
a basis {|00〉, |01〉, |10〉, |11〉} of pairs of qubits. Pure states are described by the orbit of |00〉, that is,
the hypersphere S7. While product states are only the small subsection S3 × S3 within S7, all other
states are (partially) entangled. The Bell-states represent maximally entangled states. We discuss the
Bell states

|Ψ+〉 =
1√
2
(|01〉+ |10〉) = 1√

2
(|++〉 − | − −〉) (21)

|Ψ−〉 =
1√
2
(|01〉 − |10〉) = 1√

2
(|+−〉 − | −+〉).

While |Ψ+〉 is part of the spin triplet with j = 1, |Ψ−〉 is the antisymmetric spin singlet state with
j = 0, which is basis invariant. As discussed in detail in Reference [3], for any maximally entangled
state, there exists a homotopic loop where the amplitude of |Ψ+〉 remains constant. For |Ψ+〉, this is
the rotation in z-direction

|Ψ+〉 = 1√
2

(|01〉+ |10〉) (22)

= (ei ϑ
2 σz × ei ϑ

2 σz) 1√
2

(|01〉+ |10〉).

Thus, the amplitude upon the z−rotation remains constant, since λz = 〈Ψ+|(ei ϑ
2 σz × ei ϑ

2 σz)Ψ+〉 =
1 In contrast, the rotation in x-direction leads to
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|Ψ+〉 = 1√
2

(|++〉 − | − −〉) (23)

= (ei ϑ
2 σx × ei ϑ

2 σx ) 1√
2

(|++〉 − | − −〉)

= 1√
2

(e+iϑ|++〉 − e−iϑ| − −〉).

Thus, the amplitude upon the x−rotation is given byλx = 〈Ψ+|ei ϑ
2 σx × ei ϑ

2 σx Ψ+〉 = cos(2ϑ).
As discussed in the previous section, these amplitudes have infinitely many topologically equivalent
representations. The paper strip model is one possible method to display these configurations,
as shown in Figure 8.

Figure 8. Homotopic loops around the z-axis and the x-axis of the Bell state |Ψ+〉. For any maximally
entangled pair of qubit, there exists at least one homotopic loop with constant phase.

One merit of the paper strip model is the possibility to visualize topologically equivalent
configurations which represent the same quantum state, or to be more precise, the same amplitude on
a certain homotopic loop in Hilbert space. We discuss the homotopic loop with constant amplitude,
because this provides a nice representation for entanglement—as discussed in detail in Reference [3],
this constant phase is topologically equivalent to a combination of one right twist R and one left twist
L (see Figure 9).

In other words, the quantum phase of the Bell state |Ψ+〉 is much less complicated as it seems—the
states |0〉 and |1〉merge to a constant phase, as their individual properties vanish. Thus, due to our
choice to express the entangled state in the basis |0〉, |1〉, it is necessary to symmetrize and to write the
complicated expression 1√

2
(|01〉+ |10〉) as shown in Figure 10.

As the singlet state |Ψ−〉 remains invariant under any rotation, the amplitude is constant on every
homotopic loop, as expected for the state with a total spin of zero. Due to antisymmetry, the amplitude
must vanish, and |Ψ−〉 is a pseudo-scalar. The exchange of both ’particles’ of the entangled state
amounts to a rotation of 2π which can be done just by exchanging the role of both π-balls in the
Heegard splitting. Indeed, as shown in Figure 9, this leads to a global minus sign in case of |Ψ−〉.
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Figure 9. Exchanging the role of the π-balls in the Heegard splitting leads to a global minus sign for
|Ψ−〉. As a constant phase is homotopically equivalent to a combination of one R and one L twist,
this phase change can also be seen as exchange of this pair of (virtual) particles.

Figure 10. The constant phase is homotopically equivalent to one right (R) and one left (L) twist. In the
superposition 1√

2
(|01〉+ |10〉, the particles loose the individual characteristic, as they together merge to

a single quantum state with constant phase on the homotopic loop (e±i ϑ
2 σz × e±i ϑ

2 σz ) with 0 ≤ ϑ ≤ 4π.

5. Kochen-Specker Theorem

As a first application of the knot theoretic extension the Bloch sphere representation of qubits,
we discuss the Kochen-Specker theorem, which states that noncontextual hidden-variable theories
are incompatible with predictions of quantum theory [8]. We denote by q(A), q(B) the eigenvalues
related to the operators A and B. For a set of commuting observables, noncontextuality implies that the
values of the observables are independent of the context, that is, independent of the other commuting
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observables. In particular, this means q(AB) = q(A)q(B). This assumption contradicts quantum
physics, as was first shown by Kochen and Specker [9]. While the first proof involved 117 vectors
in four dimensions, Peres found a much simpler proof with nine observables in four dimensions in
a system of two qubits [10]. Later, Mermin [8] introduced a set of observables known as Mermin’s
square, and proposed a state-independent proof.

Following Peres and Mermin, we consider a combination of spin-flip operations Q1 ×Q2 acting
on a system of two qubits, as shown in Figure 11. Indeed, in each row and each column, the observables
mutually commute, and can be measured simultaneously. On the level of the spin-flip operators,
the product of all rows and columns is given by

(Aaα)(Bbβ)(Ccγ)(ABC)(abc)(αβγ) = (24)

id5(−id) = −id.

Note that this result crucially relies on the difference between the paths I JK = −1 and J IK = +1,
as shown in Figure 5 on the level of the Lie algebra. The action on a given the quantum state
by the corresponding group element in SU(2) is shown in Figure 6. Concerning the eigenvalues,
the assumption of noncontextuality translates to the statement that the eigenvalues ±i of each spin-flip
operator I, J, K (14) would be independent of the context. This implies that the product of eigenvalues
of all rows and columns is independent of the combination of other observables involved, that is,

p(Aaα)p(Bbβ)p(Ccγ) p(ABC)p(abc)p(αβγ) = (25)

p(A)2 p(a)2 p(α)2 p(B)2 p(b)2 p(β)2 p(C)2 p(c)2 p(γ)2 = +1.

Obviously, the assumption of noncontextuality contradicts the result for the operators (24).

Figure 11. Mermin’s square, expressed with spin-flip operations: The three operators in each row and
in column mutually commute and can be measured simultaneously. The product of all nine operators
is −1, compare also Figure 5 for the corresponding homotopies in the Lie algebra SU(2).

Several experiments revealed that the assumption of noncontextuality is in contradiction with
observation. The Kochen-Specker-Theorem applies to all systems with three or more levels. While
using so-called qutrits as a basis of experimental tests is possible, the use of four level systems seems
to be the more widely applied method. A four-level system can easily be created by joint measurement
of two qubits, regardless whether the two qubits are realised across different particles or as different
degrees of freedom within a single quantum object. An illustrative example for a testing scheme using
single photons is provided by Reference [11], where a polarizing beam splitter is used to associate
polarization (labelled superscript ’p’ with vectors |H/V〉 for horizontal and vertical polarization) and
spatial path information (labelled superscript ’s’ with vectors |t, r〉 for transmission and reflection).
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By implementation of additional rotation and phase shift operations, arbitrary states can be generated
within these two degrees of freedom.

As shown in Figure 11, it is straightforward to show for an appropriate set of observables
that the quantum mechanical prediction is at odds with the idea that each of the observables has
a predefined value of +1 or −1 before measurement. In terms of expectation values obtained by
measurements on statistic ensembles, the contradiction shown in Equations (24) and (26) can be brought
into the form of an inequality which gives a criterion for experimental testing of contextuality [12].
Under the assumption of noncontextuality, the measured expectation values can be expected to obey
the following relation:

χ = 〈ABC〉+ 〈abc〉 − 〈αβγ〉+ 〈Aaα〉+ 〈Bbβ〉+ 〈Ccγ〉 ≤ 4 (26)

while quantum physics as a contextual theory predicts an outcome of χ = 6 (see Figure 11).
The experimental task is therefore to find a suitable sequence of polarization and spatial path
measurements, that is, of some combinations of the observables σ

p
x,y,z and σs

x,yz that correspond
to the nine operators in Equation (26).

It is important to note that even though the concrete choice of combinations of observables leading
to a contradiction might vary with the details of the experimental implementation, Equation (26) is not
dependent on any specific features of the quantum state it is applied to, hence it provides a powerful
tool for testing contextuality in a very broad range of cases and applicable to entangled states as well
as product states and even mixed states of four level systems [13].

Since the first experimental tests for contextuality had been undertaken in the early 2000’s,
different variations of inequalities have been tested in different experimental settings, using various
physical substrates to implement three- or four-level systems. The range of implementations includes
photonic states [13–17], but also trapped ions [18], free neutrons [11] and molecular nucelar spins in
the solid state [19]. Some of these tests rely on inequalities that are explicitly restricted to specific
classes of states [11,15–17], while some experimental settings also allow for testing of state-independent
inequalities like Equation (26), providing experimental evidence of contextuality for a broad range of
states [13,14,18]. Even technological applications based on quantum contextuality have been discussed,
for example the prospect for new methods in cryptography [20] or models of quantum computing
based on contextuality [21].

In a nutshell, the Kochen-Specker theorem is an interesting variant to the fact that Hilbert space
relies on a (4π)-symmetry rather that a (2π)-symmetry, which has already been shown long before with
neutron interferometry of a simple single qubit in a magnetic field with a Hamiltonian similar to that
discussed in Section 3 [22,23]—here, it was shown for the first time experimentally that 2π-rotations
differ from 4π-rotations. Thus, experiments give strong hints that the Hopf mapping between
(2π)-rotations and (4π)-rotations is not just a mathematical curiosity of 19th century mathematics,
but lies at the heart of the quantum nature of the observable universe.

Using this geometric point of view, noncontextuality can also be interpreted as follows: As shown
in Figure 5, the path of the quaternions

h±(ϑ) = e±i ϑ
2~σ~n, (27)

where in the Lie group SU(2) is just a straight line in the Heegard splitting. The sign ± just changes
the direction of the motion along that path. Traversing the Dirac belt in reverse direction, the role of
’left’ and ’right’ twists is exchanged. But is there a way to distinguish left-moving from right-moving
on a microspoic scale? In other words, is there a possibility to refer to a convention (a context) to assign
’left’ and ’right’? On the level of the relation between amplitudes and operators, as already seen in
Equations (10) and (11), the definition of the sign is arbitary due to symmetry. Only a relative sign,
that is in the context of a given convention, can be defined.
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On the level of the paper strip model, suppose you have a Möbius strip (equivalently, a Dirac belt
in the (4π)-realm) at your disposal in a completely empty space, without any reference frame. There
would be no way to assign a le f t- or a right- twist to this Moebius strip (the same is true, of course,
for inner twists of the Dirac belt). Only by comparing this Moebius strip to a second one, it would
be possible to decide whether both are tilted the same way, or in the opposite way. We conclude that
as long as parity symmetry is not violated, a priori, there is no way to define ’ left’ and ’right’ in a
unique manner.

6. Many-Worlds Theories of Quantum Physics

As second application of the knot theoretic extension of the Bloch sphere representation of qubits,
we discuss many-worlds theories.

The original idea by Hugh Everett [24] of a quantum physics without collapse of the wave
function has been published under the title “Relative State Formulation of Quantum Mechanics” in
1957. Only later on, the compelling title “Many-worlds interpretation” was invented by DeWitt,
making this approach more popular since the late 1960s [25]. Albeit of no practical importance, up to
today, the theory attracts much interest and plays an important role in the debate concerning the
interpretation of quantum physics [26]. Even after more than sixty years, there is no generally agreed
set of postulates defining ’the Everett interpretation of quantum theory’, rather, there are ’many worlds’
in the interpretation of the many-worlds theory itself. In any case, the key idea of many-worlds theories
is to consider unitary evolution as sufficient for the description of quantum physics and to avoid the
necessity of a ’collapse’ of the wave function. For example, Carroll states that the many-worlds theory
is the most straightforward approach to quantum mechanics [27]: There is only the unitary group in
quantum physics, with all possible wave functions at disposal. When something is realized in our
world, the other possibilities contained in the wave function do not vanish. Instead, according to
many-worlds theories, new worlds are created, that is, each possibility is a reality.

Interestingly, the paper strip model provides a simple argument against many-world theories,
using the very same argument that only the symmetries of the unitary group are at disposal. Suppose
that the interaction between two qubits causes entanglement. As any kind of interaction causes
entanglement, this is a reasonable assumption to start with. Consider the entangled state

|Ψ+〉 =
1√
2
(|0〉A|1〉B + |1〉A|0〉B), (28)

where in a given basis set (|0〉, |1〉). The transition from the entangled state to a mixed state can easily
be modeled as decoherence due to coupling to an environment of many qubits [28]. The result is the
transition of the entangled state to a mixed state. In any case, measurement leads to the transition into
a state where the states |0〉| and |1〉 become distinguishable.

Many-worlds theory claims that once we measure the state |0〉 at A (Alice) and |1〉 at B (Bob),
this implies that the ’other’ part of the wave function (|1〉 at A and |0〉 at B) is realized in a parallel
universe. However, as shown in Figure 12, in our description there is no ’other part’ of the wave
function. Rather, the labels A, B are meaningless for an entangled state, as all individual properties of
these particles disappear in the state |Ψ+〉. In (28), the superposition of product states is needed to
wash out the significance of the labels A, B, that is, to undo the possibility of two ’parts’ of the wave
function. Indeed, the entangled state can be represented just as a constant phase, which is topologically
equivalent to the combination of two opposite twists [3]. It is impossible to uniquely label A and B to
these twists, as all homotopically equivalent variants coexist, as shown in Figure 10. The same result
comes from the fact that the choice of sign of the homotopy in (23) is arbitrary, thus without context.
The definition of R and L twist is arbitrary. If for some reason, for example, due to decoherence,
two distinguishable particles A, B emerge, it is obvious from Figure 12 that only a single pair |0〉, |1〉 of
qubits can be produced from the original entangled state. What is not yet determined is the labeling A,
B for the pair |0〉, |1〉. In other words, the context where the states |0〉, |1〉 emerge is not determined.
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But i f the eigenvalue of |0〉 is defined +1 in the context A, then it must be −1 for |1〉 in B. Since this
labeling is arbitrary at first, with probability p = 1/2 the labeling is either |0〉A|1〉B or |0〉B|1〉A. This is
just the transition from the entangled state to the mixed state shown in Figure 12, formally given by

|Ψ+〉〈Ψ+| → 1
2
[|0A1B〉〈0A1B|+ |1A0B〉〈1A0B|]. (29)

Due to this transition, the off-diagonal terms of the density matrix vanish, indicating that particles
A and B become distinguishable. Once the particles A, B become distinguishable from each other,
there is no ’parallel universe’ opening with the inverse combination, simply because the association
of the single pair of Dirac belts representing the states |0〉, |1〉 shown in Figure 12 to the qubits A, B
can only be done once. We become aware of these two possibilities only if we observe many particles,
since in the context of the first particle pair, we can only distinguish the sign difference. This leads to
the ensemble interpretation of the wave function by only using symmetries and geometric properties
of the unitary group.

Figure 12. A constant phase is homotopically equivalent to one R and one L twist. As long as the
state is entangled, all homotopically equivalent configurations coexist, which can be expressed as

1√
2
(|0〉A|1〉B + |1〉A|0〉B. After splitting into two particles with phases R and L (corresponding to the

states |0〉, |1〉), there are two possibilities for detection of these states in detector A or B: either |0〉A|1〉B
or |0〉B|1〉A. However, once the labeling is done (with p = 1/2 for each case), no ’remaining’ part in
some parallel universe can emerge, because this would imply that one more pair of particles with
phases R and L would have been created, which is not the case.

More generally, we can reformulate this argument based on a geometric view of quantum
physics [29]: In the unitary group SU(2), there is complete symmetry between all parameters describing
the group. At first, all points on the sphere S3 are equally meaningless. The Hamiltonian (see Section 3
for an example) defines what ’time’ is within S3. For example, as shown in Figure 4, the direction of
the magnetic field defines the parameter ’time’ in S3, and in turn, the interpretation of the parameters
of the quantum states as time-like and space-like, as defined in (13).

In the case of SU(4) relevant for the entanglement of two qubits, the same holds true. At first,
all points on the hypersphere S7 are equally meaningless. In an arbitrary basis, we may introduce
the coordinates
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|Ψ〉 = z00|00〉+ z01|01〉+ z10|10〉+ z11|11〉, (30)

where for a general pure state, equivalent to SU(4)/SU(3). Within S7, infinitely many possibilities
to define two qubits in the six-dimensional subspace S3 × S3 (equivalently, SU(2)× SU(2)) coexist.
We may call this SU(2)× SU(2) transformation ’local’, acting on each separate qubit alone. In terms
of dimensions, within the seven dimensions from S7, one more ’non-local’ dimension is left. As shown
in Reference [30], this dimension can be defined as concurrence c, given by

c = 2|z00z11 − z01z10|. (31)

For c = 0, we obtain the subspace S3 × S3 of two independent qubits, while c = 1 defines the
subspace RP3 of maximally entangled Bell-states as shown in Figure 13. The structure of the interaction
is defined by the Hamiltonian H ∝ Qi×Qj. Here, Q1, Q2 are two quaternions as defined in Equation (2).
It is this Hamiltonian which defines what is ’time’ within S7. As interaction leads to entanglement,
indeed, the concurrence c is intimately related to time development in case of interaction.

Figure 13. All pure qubit states can be described with the hypersphere S7. Within this hypersphere,
slices with fixed concurrence c = 2|z00z11 − z01z10| define the degree of entanglement between two
qubits. For c = 0, the qubits A, B are separate. For c = 1, we obtain the maximally entangled Bell-states.
For c = 1, the labels A, B loose their individual meaning.

The time development with the unitary matrix exp[−i Ht
h̄ ] ∈ SU(4)/(SU(2)× SU(2)) leads to

an oscillation between the states of separate qubits with c = 0, and maximally entangled states with
c = 1 [28]. The ’local’ unitary operations SU(2)A × SU(2)B can then be associated with operations
in ’space’, for example, as angle of a polarizing beam splitter in quantum optics, or as direction
of the inhomogeneous magnetic field for spin measurement in a Stern-Gerlach apparatus. Indeed,
these directions can be defined and manipulated separately at detector A and B.

Geometrically, the time development from c = 0 to c = 1 as shown in Figure 13 describes the
transition from the space of Bell-states (RP3) to the product space S3 × S3 of two qubits (for a review
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of the stratification see Appendix B). This is just the transition shown in the paper strip model in
Figure 12 in relation to the complete space S7 of pure two-qubit states.

As for c = 1, the qubits A and B loose their individual properties, this naturally leads to the
problem of undefined labels A, B under this transition, implying randomness in the association of the
parameters of S3 × S3 to the detectors A and B in space - but not to parallel universes, simply because
within S7, for purely geometric reasons, there is no more ’copy’ of S3 × S3 at disposal for the reverse
labeling, as already anticipated using the paper strip model.

Thus, many-worlds would imply some mechanism for the extension of the unitary group from
U(22) = U(4) to U(24) = U(16) upon transition from c = 0 to c = 1, since the existence of both
possibilities for the separate pairs |1〉A|0〉B and |1〉B|0〉A lead to the necessity for a doubling of
SU(2)A × SU(2)B to {SU(2)A × SU(2)B, SU(2)B × SU(2)A}. In principle, this cannot be excluded.
However, our argument shows that within the usual unitary time development defined by the
Schrödinger equation, such a mechanism is not given. Thus many-worlds theory would need to
define a mechanism which leads to such an extension of the unitary group.

7. Summary And Outlook

Unitary symmetry, and thus in turn the geometry of the unitary group SU(N), is the only
ingredient needed for the knot theoretic model we propose here. It turns out that a geometric view
of quantum physics seems to be useful to develop a haptic models encoding knot theoretic features
incorporated in the unitary operators and in the corresponding quantum states. For a single qubit,
this is just the well-known Hopf-mapping S3 → S2. As shown in Figure 6, a minimal knot theoretic
extension of the Bloch sphere representation is sufficient to track all unitary operations on single qubit.

The relation to observables for a two-qubit system of pure states is described by the (generalized)
Hopf mapping S7 → S2 × S2 leading to a subtle mapping of knots in S7 to observables (for a brief
discussion on an application to W- and GHZ-states, see Appendix C). The paper strip model first
proposed in Reference [2] enables for a surprisingly simple haptic encoding of this mapping, and in
particular, to entanglement.

As for applications, we discussed contextuality (see Figure 11) and many-world theories
(see Figure 13). Albeit our main purpose is a pedagogical introduction to quantum physics using
simple models, as proposed in Figures 6 and 10, it seems that our model might also provide useful
insights into geometric and topological properties of quantum physics itself, which cannot easily be
extracted from the mathematical representation alone.
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Appendix A. The Dirac Belt in S3 for Spin j

We briefly want to discuss the general case of spin j, which can be understood as (2j : 1) mapping
S3 → S3. We introduce the homogeneous coordinates {Z0, Z1, Z2, . . . Z2j}. Explicitly, we may use
the coordinates

Zk =

(
2j
k

)1/2
ukv2j−k (A1)

with

|Z|2 =
2j

∑
k=0

Z̄kZk = (|u|2 + |v|2)2j. (A2)



Symmetry 2020, 12, 1135 20 of 24

In the (4π)-realm, the Dirac belt representation shown in Figure 7 is replaced by the corresponding
representation with (2j, 2)-torus knots emerging in the homotopy loops (A Mathematica-Package for the
construction of (2j, 2)-torus knots is given in http://katlas.org/wiki/Main_Page). The generalization
of the corresponding representation shown in Figure 6 to spin j leads to the stellar representation

∏
2j
K=1(z− zk) on the Bloch sphere projected to the complex plane with z = u/v complex plane and zk

the position of the nodes in the amplitude.

Appendix B. Stratification of S7

Following Reference [29], we review the stratification of S7 leading to Figure 13. We start with the
case of SU(2), where

σ′i = U†
~e σiU~e (A3)

where defines a basis transformation in the Lie algebra su(2), given by the 3× 3 matrix σ′i = gikσk with
g ∈ SO(3). Indeed, Equation (5) follows by taking the trace

tr(σkσ′i ) = tr(σkgilσl) = 2gik. (A4)

This matrix defines the rotations of the Bloch-sphere, which can be tracked by the minimal knot
theoretic extension of the Bloch-sphere as proposed in Figure 6.

For su(4), a similar argument can be repeated. For a general generator uk, (k = 1, . . . 15, written
as quaternion using the definition given in (14)), we define a general U4 ∈ SU(4) transformation as

u′i = U†
4 uiU4 (A5)

where defining a basis transformation in the Lie algebra su(4), given by the 15× 15 matrix u′i = Oikuk
with O ∈ SO(6) with dim su(4) = dim SO(6) = 15. Up to this point, no physical interpretation is
given to the group elements.

The physical interpretation comes into play once we introduce a basis |iAiB〉 defining two qubits,
as given in Equation (30). Doing so, we implicitly assume that it is possible to measure two separate
qubits |iA〉 and |iB〉. It turns out that this assumption is almost never valid in the space defined by
su(4), as almost all states are entangled. Explicitly, the density matrix of pure states

W0 ≡ |Ψ〉〈Ψ| (A6)

is just the hypersphere S7. In the interpretation as subsystem of two qubits in a basis |iA jB〉, we may
introduce the distinction of six local operators li, i = 1, . . . 6 of su(2) × su(2) and nine non-local
generators defined as the complement su(4)/(su(2)× su(2)), see Figure A1. The local transformations
acting on W are given by

W0 → exp (
6

∑
j=1

αjlj)W0 exp (−
6

∑
j=1

αjlj). (A7)

The tangent space of local transformations is spanned by the six matrices

d
dαk

W0 = [lk, W0] ≡W0
k . (A8)

At the point W0 in S7, the dimension of the tangent space can be determined as rank of the real
symmetric 6× 6-Gram matrix

C0
nm =

1
2

trW0
nW0

m (A9)

http://katlas.org/wiki/Main_Page
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Using the coordinates (30), the eigenvalues of C0
nm at the point W0 are determined as [29]

Spec C0
nm = {0, 2c2, 1 + c, 1 + c, 1− c, 1− c}, (A10)

where c is the concurrence as defined in (31). We conclude that local transformations do not affect
the concurrence. As shown in Figure 13, for 0 < c < 1, the tangent space is five dimensional, while
c = 0 describes the space of product states in two independent Bloch spheres S3 × S3 → S2 × S2.
For c = 1, we obtain the maximally entangled Bell-states in RP3. Only the small subset for c = 0
defines the product states in S3 × S3, which are the only qubit states within S7 which can be measured
independently from each other. In this case the Hopf mapping leads to two independent Bloch spheres
as S3 × S3 → S2 × S2. Thus, within S7, no ’parallel universe’ with some additional S3 × S3 with c = 0
is ’hidden’ somewhere.

Figure A1. The 15 non-trivial generators of the Lie algebra su(4) can be decomposed in 6 local
transformations su(2)× su(2) and 9 non-local transformations su(4)/(su(2)× su(2)). Note that the
generators defined in Figure 11 used for the proof of the Kochen-Specker theorem are a subset of
these generators.

Non-local transformations, on the other side, do change the concurrence. We consider as explicit
example the Hamiltonian H = h̄ω(K× K). Due to this interaction, the product state |+〉|+〉with c = 0
is transformed to

exp [ωt(K× K)]|+〉|+〉 = e−itω

2
(|0〉|0〉+ |1〉|1〉) + e+itω

2
(|1〉|0〉+ |0〉|1〉). (A11)

This time development leads to an oscillation of the concurrence as c(t) = | sin(2wt)| (31). Indeed,
this explicitly shows the relation between concurrence c and time t for non-local operations as shown
in Figure 13.

The most general Hamiltonian H = h̄ ∑15
j=1 ωjuj for a system of two qubits leads to the time

development

W(t) = exp [t(
15

∑
j=1

ωjuj)] W0 exp [−t(
15

∑
j=1

ωjuj)]. (A12)

As any interaction necessarily implies non-local interactions, we conclude that any path W(t)
through the space S7 of a system of coupled pure states changes entanglement. Projecting to the
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subspace of two Bloch-spheres S2 × S2 for c = 0 leads to the association with qubits A, B. As shown in
Figure 10, labeling of the two Bloch spheres can only be done once. Note that within S7, no other copy
of S2 × S2 with c = 0 exists, as shown in Figure 13. This is the clue for our geometric argument against
many-world theories, as discussed in Section 6.

Appendix C. Paper Strip Model for W- and GHZ States

Finally, we want to generalize the paper strip representation to entangled states of three qubits.
While the complete unitary group in question is given by U(23) = U(8) with 65 dimension, it was
shown in Reference [31], that there are only two different classes of entangled triple states, given by

|W〉 =
1√
3
[|1A0B0C〉+ |0A1B0C〉+ |0A0B1C〉] (A13)

|GHZ〉 =
1√
2
[|0A0B0C〉+ |1A1B1C〉]

Taking the partial trace on qubit A, we obtain

trA|W〉〈W| =
2
3
[|Ψ+〉〈Ψ+|+ 1

3
[|00〉〈00| (A14)

trA|GHZ〉〈GHZ| =
1
2
[|00〉〈00|+ 1

2
[|11〉〈11|

The corresponding amplitudes for the z−loop are shown in Figure A2. Note that these two types
of entangled states naturally generalize the homotopic loops defined by the x− and z− rotation for the
Bell-state |Ψ+〉 shown in Figure 8.

Figure A2. Homotopic loops emerging upon rotation around the z-axis in case of three entangled
qubits. Taking the partial trace leads to a mixed state, which can directly be read off from the topology
without calculation by summing over all possibilities to trace out one twist. Compare also with Figure 8
for the case of entangled Bell states.
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