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Abstract: The paper considers the multi-criteria decision-making problem based on linguistic picture
fuzzy information. Firstly, we propose the concept of linguistic picture fuzzy set(LPFS), where the
positive-membership, the neutral-membership and the negative-membership are represented by
linguistic variables, and its operation rules are also discussed. The linguistic picture fuzzy weighted
averaging (LPFWA) operator and linguistic picture fuzzy weighted geometric (LPFWG) operator are
developed based on the proposed operation rules. Secondly, we propose the generalized weighted
distance measure, the generalized weighted Hausdorff distance measure, and the generalized hybrid
weighted distance measure between LPFSs and discuss their properties. Thirdly, we extend the
technique for order of preference by similarity to the ideal solution (TOPSIS) method and the TODIM
(an acronym in Portuguese of interactive and multi-criteria decision-making) method to the proposed
distance measure, and the linguistic picture fuzzy entropy method is proposed to calculate the weights
of the criteria. Finally, an illustrative example is given to verify the feasibility and effectiveness of the
proposed methods, the comparative analysis with other existing methods and sensitivity analysis of
the proposed methods are also discussed.

Keywords: linguistic picture fuzzy set; hybrid distance measure; entropy; multi-criteria
decision-making

1. Introduction

In 1965, Zadeh [1] proposed the fuzzy set (FS) F = {(x, µF(x))|x ∈ X}, where µF(x) represents
the membership degree of x ∈ X to the set F. Since it was put forward, it was extended in many aspects.
One of the generalizations of FS is intuitionistic fuzzy set (IFS), which was introduced by Atanassov [2]
by adding the non-membership degree to the FS. The IFS was defined as E = {(x, µE(x), vE(x))|x ∈ X},
where µE(x) and vE(x) represent the the membership degree and the non-membership degree of
x ∈ X to the set E. Although the IFS has been successfully applied in many fields, they cannot
represent all decision information. For example, the voters are divided into four groups of those
who: vote for, abstain, vote against, and refusal of the voting, which cannot be expressed by the FS
and the IFS. In order to express such information, Cuong [3] proposed the concept of picture fuzzy
set (PFS) P = {(x, µP(x), ηP(x), vP(x))|x ∈ X}, where µP(x), ηP(x) and vP(x) represent the positive
membership degree, the neutral membership degree, and the negative membership degree of x ∈ X
to the set P, respectively. The PFS is suitable to represent the decision information involving more
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answers: yes, abstain, no, refusal. Comparing with IFS, the hesitancy degree of PFS is dividend into
two parts: neutral degree and refusal degree.

In traditional multi-criteria decision-making problems, the decision makers use numerical values
to evaluate the alternatives. However, in many practical decision-making problems, due to the
complexity of the decision-making environment, the decision makers may prefer to use linguistic
variables [4–6] to represent evaluation information, which is more aligned to human being’s cognition.
Since the introduction of linguistic variable, the linguistic term set (LTS) and its extension have been
studied and applied to many fields [7–17]. For example, Chen et al. [12] proposed the concept
of linguistic intuitionistic fuzzy set (LIFS) where the membership degree and the non-membership
degree are represented by linguistic terms. However, the LIFS has some limitations in representing
the decision maker’s opinions in qualitative evaluation involving more answers: yes, abstain, no,
refusal. Although some scholars have studied the picture linguistic term set [13–15], but its positive
membership, neutral membership, and negative membership represent the element of X to a certain
linguistic term, they are expressed by numerical values. In some situations, the evaluation is suitable
to be represented by linguistic terms.

The linguistic picture fuzzy set has effective reliability to demonstrate the questionable and
probable datum which emerge in real decision-making problems. The motivations and goals of the
paper are given as follows: (1) Introduce the concept of linguistic picture fuzzy set; (2) Put forward
some new operational laws for linguistic picture fuzzy set and discuss their properties; (3) Propose the
linguistic picture fuzzy weighted average operator and the linguistic picture fuzzy weighted geometric
average operator; and (4) Establish the multi-criteria decision-making method on the basis of the
TODIM method and TOPSIS method under linguistic picture fuzzy environment, which can deal with
uncertainty information effectively.

2. Literature Review

2.1. Application of Picture Fuzzy Set in Decision-Making Methods

PFS has more degrees of freedom to express the uncertain information in practical decision-making
problems, which is more realistic and computational driven. Recently, many scholars applied the
PFS to multi-criteria decision-making problems. Wei [18] proposed the picture fuzzy cross entropy
and utilized it to rank the alternatives in real decision-making problems. Furthermore, Wei [19]
introduced the operations of PFSs and proposed picture 2-tuple Bonferroni mean operator according
to the proposed operations. Considering the sum of degrees of PFSs in [19] exceeds 1, Wang [20]
proposed some new operations of PFSs and applied them into multi-criteria decision-making problems.
Wang [21] constructed a multi-criteria decision-making framework for risk evaluation of construction
project with picture fuzzy information. For many other applications of PFS in decision-making
methods, we can refer to [22–26].

On the other hand, we know that the distance measure can describe the difference between FSs,
which is an important aspect in multi-criteria decision-making problems. Many distance measures
between FSs have been proposed in the past few years. The common distance measures are the
Hamming distance measure, the the Euclidean distance measure, generalized distance measure,
and the Hausdorff distance measure [27–31]. These distance measures are widely used with TOPSIS
method, TODIM method, et al.

2.2. An Overview of the TOPSIS Method with the Recent Development

As we know, the TOPSIS method is an important multi-criteria decision-making method proposed
by Hwang and Yoon [32], which select the best alternative based on its closest distance to the positive
ideal solution and the farthest distance to the negative ideal solution. In recent years, many scholars
have carried out extensive research on it. For example, Sajjad et al. [33] developed the TOPSIS
method to interval-valued Pythagorean fuzzy set. Liu et al. [34] introduced the concept of Fermatean
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fuzzy linguistic term sets based on linguistic scale function and extended the TOPSIS method to the
proposed Fermatean fuzzy linguistic term sets. Furthermore, Chen et al. [35] proposed the proportional
interval type-2 hesitant fuzzy set based on Hamacher aggregation operators and extended the TOPSIS
method to its fuzzy decision environment. The TOPSIS is a ranking method based on the concept of
compromised solution. In realistic decision-making problems with a TOPSIS method, an important
step is how to balance the separations of an alternative from the positive ideal solution and the negative
ideal solution.

The TOPSIS method is not only reasonable but also implicitly considered the relative importance
of the alternative to positive ideal solution and negative ideal solution.

2.3. An Overview of the TODIM Method with the Recent Development

The TODIM method was proposed by Gomes and Lima [36] based on the prospect theory,
which considered the behavior of decision makers. Many scholars have studied the TODIM
decision-making methods. For example, Gomes and Rangel [37] defined a reference value for
the rents by the TODIM method of multi-criteria decision aiding. Zhang and Xu [38] developed
the TODIM method to hesitant fuzzy environment based on the decision maker’s psychological
behavior. Furthermore, Ji et al. [39] introduced a projection-based TODIM method under neurotrophic
environments and applied it to personnel selection. Liu et al. [40] extended the TODIM method
to the distance measure under Fermatean fuzzy linguistic environment. According to the existing
studies about the TODIM methods, we know that the TODIM method is an acronym in Portuguese
of interactive and multi-criteria decision-making, which considers the behavior of decision makers.
The advantage of TODIM method is the potential value of gains and losses can be used to reflect
risk preferences.

In general, this paper developed the TOPSIS method and TODIM method to the proposed LPFSs.
There are several contributions of the paper, which are given as follows:

(1) We give the concept of LPFS and define the operation rules between LPFSs, which have more
advantages to deal with the uncertainty in multi-criteria decision-making problems.

(2) We propose the linguistic picture fuzzy weighted averaging operator, the linguistic picture fuzzy
weighted geometric operator, and the hybrid distance measures between LPFSs.

(3) We define the linguistic picture fuzzy entropy to calculate the objective weights of the criteria
in multi-criteria decision-making problems, then we develop the TOPSIS method and TODIM
method with linguistic picture fuzzy entropy to the proposed distance measures.

The rest of the paper is organized as follows: In Section 2, we briefly review some basic concepts
and operation laws about IFS, PFS, and LTS. In Section 3, we first give the definition of LPFS and define
its basic operation rules, then the LPFWA operator and the LPFWG operator are developed. In Section 4,
we propose the generalized weighted distance measure, the generalized weighted Hausdorff distance
measure and the generalized hybrid weighted distance measure between LPFSs and discuss their
properties. In Section 5, we extend the TOPSIS and TODIM method to the proposed distance measure,
and the corresponding decision-making methods are established based on entropy weight to deal with
the multi-criteria decision-making problems. In Section 6, an illustrative example is given to verify the
feasibility and effectiveness of the proposed methods, the comparative analysis with other existing
methods and sensitivity analysis of the proposed methods are also discussed. Finally, the conclusions
and future studies are given in Section 7.

3. Preliminaries

In this section, we review some basic concepts and operations related to IFS, PFS, and LTS.
Throughout the paper, let X = {x1, x2, ..., xn} be a finite and discrete set.
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3.1. Intuitionistic Fuzzy Set

Definition 1. [2] Let X be a fixed set, and an IFS E is defined as follows:

E = {(x, µE(x), vE(x))|x ∈ X},

where µE(x)(0 ≤ µE(x) ≤ 1) and vE(x)(0 ≤ vE(x) ≤ 1) represent the membership degree and the
non-membership degree of x ∈ X to the set E, respectively, and they satisfy the condition: 0 ≤ µE(x) + vE(x) ≤
1 for any x ∈ X. πE(x) = 1− µE(x)− vE(x) is the hesitant degree of x ∈ X to the set E.

3.2. Picture Fuzzy Set

Definition 2. [3] Let X be a fixed set, and a PFS P is defined as follows:

P = {(x, µp(x), ηp(x), vp(x))|x ∈ X},

where µP(x)(0 ≤ µP(x) ≤ 1), ηP(x)(0 ≤ ηP(x) ≤ 1) and vP(x)(0 ≤ vP(x) ≤ 1) represent the positive
membership degree, the neutral membership degree, and the negative membership degree of x ∈ X to the set
P, respectively, and they satisfy with the follow condition: 0 ≤ µP(x) + ηP(x) + vP(x) ≤ 1 for any x ∈ X.
The refusal membership degree ξP(x) = 1− µP(x)− ηP(x)− vP(x).

The PFS is a generalization of FS and IFS. If the set X has only one element, the PFS is reduced to
P = (µP, ηP, vP), we call it a picture fuzzy number (PFN).

Definition 3. [3] Letting P1 = {(x, µP1(x), ηP1(x), vP1(x))|x ∈ X} and P2 = {(x, µP2(x), ηP2(x), vP2(x))|x ∈
X} be any two PFSs on X, the consequent operations of PFSs are given as follows:

(1) P1 ⊆ P2 iff ∀x ∈ X, µP1(x) ≤ µP2(x), ηP1(x) ≤ ηP2(x) and vP1(x) ≥ vP2(x);
(2) P1 = P2 iff P1 ⊆ P2 and P2 ⊆ P1;
(3) P1 ∪ P2 = {(x, max(µP1(x), µP2(x)), min(ηP1(x), ηP2(x)), min(vP1(x), vP2(x)))|x ∈ X};
(4) P1 ∩ P2 = {(x, min(µP1(x), µP2(x)), max(ηP1(x), ηP2(x)), max(vP1(x), vP2(x)))|x ∈ X};
(5) P̄1 = {(x, vP1(x), ηP1(x), µP1(x))|x ∈ X}.

Definition 4. [23] Letting P1 = {(x, µP1(x), ηP1(x), vP1(x))|x ∈ X} and P2 = {(x, µP2(x), ηP2(x), vP2(x))|x ∈
X} be any two PFSs on X, λ > 0, the operations of PFSs are defined as follows:

(1) P1 ⊕ P2 = (µP1(x) + µP2(x)− µP1(x)µP2(x), ηP1(x)ηP2(x), vP1(x)vP2(x));
(2) P1 ⊗ P2 = (µP1(x)µP2(x), ηP1(x) + ηP2(x)− ηP1(x)ηP2(x), vP1(x) + vP2(x)− vP1(x)vP2(x));
(3) λP1 = (1− (1− µP1(x))λ, (ηP1(x))λ, (vP1(x))λ);
(4) Pλ

1 = ((µP1(x))
λ, 1− (1− ηP1(x))λ, 1− (1− vP1(x))λ).

Definition 5. [26] Letting P = (µP, ηP, vP) be a PFN, the score function S(P) and the accuracy function
H(P) can be defined as follows:

S(P) = µP − vP, S(P) ∈ [−1, 1],

H(P) = µP + ηP + vP, H(P) ∈ [0, 1].

Definition 6. [26] For any two PFNs P1 = (µP1 , ηP1 , vP1) and P2 = (µP2 , ηP2 , vP2), S(P1) and S(P2) are the
score functions of P1 and P2, H(P1) and H(P2) are the accuracy functions of P1 and P2, the comparison rules of
P1 and P2 are given as follows:

(1) If S(P1) < S(P2), then P1 ≺ P2;
(2) If S(P1) > S(P2), then P1 � P2;
(3) If S(P1) = S(P2), then
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(a) if H(P1) < H(P2), then P1 ≺ P2;
(b) if H(P1) = H(P2), then P1 ∼ P2.

3.3. Linguistic Term Set

Definition 7. [4] Let S = {si|i = 0, 1, · · · , 2τ} be a finite discrete linguistic term set, which satisfies
the following properties:

(1) The set S is ordered: si ≥ sj if i ≥ j;
(2) Negation operator: neg(si) = sj where j = 2τ − i;
(3) Maximization operator: Max(si, sj) = si if si ≥ sj;
(4) Minimization operator: Min(si, sj) = sj if si ≥ sj.

In order to describe the linguistic evaluation information accurately in multi-attribute
decision-making problems, Xu [41] extended the discrete linguistic term set S to the continuous
linguistic term set S̄[0,2τ] = {si|i ∈ [0, 2τ]}.

4. Linguistic Picture Fuzzy Set

In this section, we first propose the LPFS and its operational rules. The score function and accuracy
function of LPFS are described, which play an important role in comparing linguistic picture fuzzy
numbers. Then, we propose the LPFWA operator and the LPFWG operator, and their properties are
also given. Furthermore, we propose the hybrid distance measure for LPFSs and discuss its properties.

4.1. Linguistic Picture Fuzzy Set and Its Operations

Definition 8. Letting X = {x1, x2, ..., xn} be a fixed set, the LPFS κ is defined as

κ = {(xi, sα(xi), sβ(xi), sθ(xi))|xi ∈ X},

where sα(xi), sβ(xi), sθ(xi) represent the linguistic positive membership degree, the linguistic neutral
membership degree, and the linguistic negative membership degree of xi ∈ X to the set κ, respectively. For any
xi ∈ X, the conditions sα(xi), sβ(xi), sθ(xi) ∈ S[0,2τ] and 0 ≤ α + β + θ ≤ 2τ are always established.
The linguistic refusal membership degree is s2τ−α−β−θ(xi). If the set X has only one element, we call
κ = (sα, sβ, sθ) as a linguistic picture fuzzy number (LPFN).

Definition 9. Let κ = (sα, sβ, sθ) be a LPFN, and the score function LS(κ) is defined as follows:

LS(κ) = α− θ, (1)

and the accuracy function LH(κ) can be given as:

LH(κ) = α + β + θ. (2)

Based on the proposed score function and accuracy function, the comparison rule between two
LPFNs κ1 and κ2 is given as follows:

(1) If LS(κ1) > LS(κ2), then κ1 � κ2;
(2) If LS(κ1) = LS(κ2), then

(a) if LH(κ1) > LH(κ2), then κ1 � κ2;
(b) if LH(κ1) = LH(κ2), then κ1 ∼ κ2.

Example 1. Letting κ1 = (s2, s1, s3), κ2 = (s4, s1, s2) and κ3 = (s1, s1, s2) be three LPFNs defined on
S[0,2τ] = S[0,8], according to (1), we can get LS(κ1) = −1, LS(κ2) = 2 and LS(κ3) = −1. In order to compare
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with these LPFNs, we should continue calculating the score function of κ1 and κ3. According to (2), we can get
LH(κ1) = 6 and LH(κ3) = 4. Thus, κ2 � κ1 � κ3 is obtained based on Definition 9.

4.2. Some Operation Rules and Properties of Linguistic Picture Fuzzy Numbers

Based on the operations of picture fuzzy numbers, we introduce the operation rules of LPFNs
as follows.

Definition 10. Let κ1 = (sα1 , sβ1 , sθ1) and κ2 = (sα2 , sβ2 , sθ2) be two LPFNs, the operation rules between κ1

and κ2 are defined as follows:

(1) κ1 ⊕ κ2 = (s
α1+α2−

α1α2
2τ

, s β1β2
2τ

, s θ1θ2
2τ

);

(2) κ1 ⊗ κ2 = (s α1α2
2τ

, s
β1+β2−

β1β2
2τ

, s
θ1+θ2−

θ1θ2
2τ

);

(3) λκ1 = (s2τ−2τ(1− α1
2τ )

λ , s
2τ(

β1
2τ )

λ
, s

2τ(
θ1
2τ )

λ
);

(4) κλ
1 = (s2τ(

α1
2τ )

λ , s
2τ−2τ(1− β1

2τ )
λ
, s

2τ−2τ(1− θ1
2τ )

λ
);

(5) κ1 ⊆ κ2 iff α1 ≤ α2, β1 ≤ β2 and θ1 ≥ θ2;
(6) κ̄1 = (sθ1 , sβ1 , sα1).

Example 2. Let λ = 2, κ1 = (s2, s1, s4) and κ2 = (s3, s2, s2) be two LPFNs defined on S[0,2τ] = S[0,8],
the operational rules can be shown as follows:

(1) κ1 ⊕ κ2 = (s2+3− 2×3
8

, s 1×2
8

, s 4×2
8
) = (s4.25, s0.25, s1);

(2) κ1 ⊗ κ2 = (s 2×3
8

, s1+2− 1×2
8

, s4+2− 4×2
8
) = (s0.75, s2.75, s5);

(3) 2κ1 = (s8−8(1− 2
8 )

2 , s8( 1
8 )

2 , s8( 4
8 )

2) = (s3.5, s0.125, s2);

(4) κ2
1 = (s8( 2

8 )
2 , s8−8(1− 1

8 )
2 , s8−8(1− 4

8 )
2) = (s0.5, s1.875, s6);

(5) Because 2 = α1 < α2 = 3, 1 = β1 < β2 = 2, 4 = θ1 > θ2 = 2, it is easy to have κ1 ⊆ κ2.

4.3. Linguistic Picture Fuzzy Aggregation Operators

In this subsection, we develop the LPFWA operator and the LPFWG operator based on the
operation rules defined in Definition 10, their properties are also discussed.

Definition 11. Letting κj = (sαj , sβ j , sθj)(j = 1, 2, ..., n) be a number of LPFNs defined on S[0,2τ] and
ω = (ω1, ω2, ..., ωn) be the weighted vector of κj(j = 1, 2, ..., n), satisfying with ∑n

j=1 ωj = 1(0 ≤ ωj ≤ 1),
then the LPFWA operator is defined as follows:

LPFWA(κ1, κ2, ..., κn) =
n⊕

j=1

(ωjκj). (3)

Definition 12. Letting κj = (sαj , sβ j , sθj)(j = 1, 2, ..., n) be a number of LPFNs defined on S[0,2τ] and
ω = (ω1, ω2, ..., ωn) be the weighted vector of κj(j = 1, 2, ..., n), satisfying with ∑n

j=1 ωj = 1(0 ≤ ωj ≤ 1),
the LPFWG operator is defined as follows:

LPFWG(κ1, κ2, ..., κn) =
n⊗

j=1

(κ
ωj
j ).

5. The Distance Measures between Linguistic Picture Fuzzy Sets

In this section, we first develop the generalized weighted distance measure and the generalized
weighted Hausdorff distance measure between LPFSs, respectively, then combing the proposed two
distance measures, we define a generalized hybrid weighted distance measure between LPFSs.
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Definition 13. Letting A = {(sαA(xj), sβA(xj), sθA(xj))|xj ∈ X} and B = {(sαB(xj), sβB(xj), sθB(xj))|xj ∈
X} be two LPFSs defined on X = {x1, x2, ..., xn}, where sαi(xj), sβi(xj) and sθi(xj)∈ S[0,2τ](i = A, B),
the generalized weighted distance measure between LPFSs is defined as follows:

d1w(A, B) =

1
2

n

∑
j=1

ωj

∣∣∣∣∣αA(xj)− αB(xj)

2τ

∣∣∣∣∣
λ

+

∣∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣∣
λ

+

∣∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣∣
λ
 1

λ

,

where λ > 0, ω = (ω1, ω2, · · · , ωn) is the weight vector of xj(j = 1, 2, · · · , n) and satisfies with ∑n
j=1 ωj =

1(0 ≤ ωj ≤ 1).

Definition 14. Let A = {(sαA (xj), sβA (xj), sθA (xj))|xj ∈ X} and B = {(sαB (xj), sβB (xj), sθB (xj))|xj ∈ X} be two
LPFSs defined on X = {x1, x2, ..., xn}, where sαi (xj), sβi (xj) and sθi (xj)∈ S[0,2τ](i = A, B), the generalized
weighted Hausdorff distance measure between LPFSs is defined as follows:

d1WH(A, B) =

 n

∑
j=1

ωj max
( ∣∣∣∣∣αA(xj)− αB(xj)

2τ

∣∣∣∣∣
λ

,

∣∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣∣
λ

,

∣∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣∣
λ ) 1

λ

,

where λ ≥ 1, ω = (ω1, ω2, ..., ωn) is the weight vector of xj(j = 1, 2, ..., n) and satisfies with ∑n
j=1 ωj =

1(0 ≤ ωj ≤ 1).

Definition 15. Let A = {(sαA(xj), sβA(xj), sθA(xj))|xj ∈ X} and B = {(sαB(xj), sβB(xj), sθB(xj))|xj ∈
X} be two LPFSs defined on X = {x1, x2, ..., xn}, where sαi (xj), sβi (xj) and sθi (xj) ∈ S[0,2τ](i = A, B),
the generalized hybrid weighted distance measure between LPFSs is defined as follows:

d1HWY(A, B) =

(
n

∑
j=1

ωj

2

([
max

( ∣∣∣∣ αA(xj)− αB(xj)

2τ

∣∣∣∣λ ,
∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣λ ,
∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣λ )
]

+
1
2

(∣∣∣∣ αA(xj)− αB(xj)

2τ

∣∣∣∣λ +

∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣λ +

∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣λ
))) 1

λ

,

(4)

where λ ≥ 1, ω = (ω1, ω2, ..., ωn) is the weight vector of xj(j = 1, 2, ..., n) and satisfies with ∑n
j=1 ωj =

1(0 ≤ ωj ≤ 1).

6. Results

In this section, we develop the TOPSIS method and TODIM method based on the proposed
distance measure to linguistic picture fuzzy decision-making environment and propose the
corresponding linguistic picture fuzzy multi-criteria decision-making methodology using linguistic
picture fuzzy entropy.

Assuming that a linguistic picture fuzzy multi-criteria decision-making problem has
m alternatives {A1, A2, ..., Am}, each alternative is evaluated based on the criterion {C1, C2, ..., Cn},
and ω = {ω1, ω2, ..., ωj} is the corresponding weight vector of criterion Cj(j = 1, 2, ..., n) and satisfies
with ∑n

j=1 ωj = 1(0 ≤ ωj ≤ 1). The evaluation of alternatives given by the decision-maker is
represented by LPFNs Aij = (sαij , sβij , sθij)(i = 1, 2, ..., m; j = 1, 2, ..., n), and the linguistic picture fuzzy
information matrix A is given as follows:

A = (Aij)m×n =



C1 C2 . . . Cn

A1 (sα11 , sβ11 , sθ11) (sα12 , sβ12 , sθ12) . . . (sα1n , sβ1n , sθ1n)

A2 (sα21 , sβ21 , sθ21) (sα22 , sβ22 , sθ22) . . . (sα2n , sβ2n , sθ2n)
...

...
...

. . .
...

Am (sαm1 , sβm1 , sθm1) (sαm2 , sβm2 , sθm2) . . . (sαmn , sβmn , sθmn)

. (5)
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The purpose of the multi-criteria decision-making problem is to rank the alternatives and
choose the appropriate one. In the following, we develop the TOPSIS and TODIM methods to
LPFSs, respectively.

Multi-Criteria Decision Making with TOPSIS Method Based on Entropy Weight under the Linguistic Picture
Fuzzy Decision Environment

In the following, the proposed distance measure with TOPSIS method and TODIM method under
linguistic picture fuzzy decision environment is summarized by the following algorithmic steps.

Step 1: Normalize the evaluation decision matrix.
In the TOPSIS method, we should choose the alternative that has the shortest distance from

the positive ideal solution and the longest distance from the negative ideal solution. The positive
ideal solution is a solution that maximizes all the benefit criteria and minimizes all the cost criteria.
Firstly, we determine the adjustment method based on the type of attribute criteria. For the benefit
type criterion, we do not need to do anything, but, for the cost type criterion, we apply the negation
operator defined in Definition 10 to adjust the corresponding element Aij = (sαij , sβij , sθij) in decision
matrix, which can be obtained as follows:

Ãij =

{
(sαij , sβij , sθij ), for benefit type criterion;

(sθij , sβij , sαij ), for cost type criterion.
(6)

Step 2: Calculate the weight vector of criteria based on linguistic picture fuzzy entropy.
In order to get the objective weights of the criteria, we first introduce the entropy weight method,

and the corresponding definition of linguistic picture fuzzy entropy is defined as follows.

Definition 16. Let A = {(sαA(x), sβA(x), sθA(x))|x ∈ X} and B = {(sαB(x), sβB(x), sθB(x))|x ∈ X}
be two LPFSs defined on X = {x1, x2, · · · , xn}, where sαi (x), sβi (x) and sθi (x) ∈ S[0,2τ](i = A, B) for any
x ∈ X, if the function Es : LPFSs(X)→ [0, 1] satisfies the following conditions:

(1) Es(A) = 0 if A is a crisp set;
(2) Es(A) = 1 if αA = βA = θA;
(3) Es(A) ≤ Es(B) if |αA − βA|+ |αA − θA|+ |βA − θA| ≥ |αB − βB|+ |αB − θB|+ |βB − θB|;
(4) Es(A) = Es(Ā), where Ā is the complement of A,

then Es is a linguistic picture fuzzy entropy.

Definition 17. Let A = (sαA , sβA , sθA) be a LPFN, where αA, βA and θA ∈ [0, 2τ], the linguistic picture
fuzzy entropy measure is defined as follows:

Es(A) = 1− 1
2τ × 2

(|αA − βA|+ |αA − θA|+ |βA − θA|) . (7)

Example 3. Letting κ1 = (s3, s2, s1) be a LPFN, where s3, s2 and s1 ∈ S[0,2τ] = S[0,8], we can obtain

Es(A) = 1− 1
2× 8× 2

(|3− 2|+ |3− 1|+ |2− 1|) = 0.8438.

Now, we apply (7) to calculate the entropy value of Ãij, and the corresponding entropy value
matrix E = (Eij)m×n is obtained as follows:
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E =


C1 C2 . . . Cn

A1 E11 E12 . . . E1n
A2 E21 E22 . . . E2n
...

...
...

. . .
...

Am Em1 Em2 . . . Emn

. (8)

Aggregate and normalize the entropy value matrix E, which is given as follows:

ξ j =
∑m

i=1 Eij

∑m
i=1 ∑n

j=1 Eij
, (i = 1, 2...m, j = 1, 2...n), (9)

where Eij is the corresponding entropy value.
Calculate the objective weights of criteria, the weight of criterion Cj is obtained by

ωj =
1− ξ j

∑n
i=1(1− ξ j)

, (j = 1, 2, . . . , n), (10)

where ξ j is the normalized entropy value.
Step 3: Obtain the linguistic picture fuzzy positive-ideal solution and negative-ideal solution,

respectively, which can be described as follows:

A+ = {Ã+
1 , Ã+

2 , · · · , Ã+
n }, A− = {Ã−1 , Ã−2 , · · · , Ã−n }, (11)

where Ã+
j = max{Ã1j, Ã2j, · · · , Ãmj} and Ã−j = min{Ã1j, Ã2j, · · · , Ãmj}, which are determined by the

score function and accuracy function of LPFNs defined in Definition 9.
Step 4: Utilize the proposed distance measure to calculate the separation distance measure

D+
i (Ai, A+) and D−i (Ai, A−), which are given by

D+
i = D+

i (Ai, A+) =
n

∑
j=1

ωjd1HWY(Aij, Ã+
j ), D−i = D−i (Ai, A−) =

n

∑
j=1

ωjd1HWY(Aij, Ã−j ). (12)

Step 5: Calculate the closeness coefficient ρi of each alternative Ai, which is obtained by

ρi =
D−i

D−i + D+
i

, (13)

the bigger ρi is, the better alternative Ai will be.
In general, the flow diagram of the proposed TOPSIS method is depicted in Figure 1.
In the following, we extend the TODIM method to the proposed distance measure under linguistic

picture fuzzy decision environment, and the steps of the algorithm are given as follows.
Step 1 and Step 2 are the same as TOPSIS method, and here we do not give the specific steps.
Step 3: Calculate the relative weight of each criteria.
To compare the evaluation of the alternatives with different criteria, we consider the relative

weight of the criterion. Assume that ωrj is the weight of criterion Cj relative to Cr, which can be
calculated by the following formula:

ωrj =
ωj

ωr
, j = 1, 2, ..., n, (14)

where ωr = max{ωj|j = 1, 2, ..., n}.
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Step 4: Calculate the overall dominance degree of the alternative Ai over alternative Ak under
criterion Cj, which is represented as follows:

δ(Ai, Ak) =
n

∑
j=1

φj(Ai, Ak), i, k = 1, 2, ..., m, (15)

where φj(Ai, Ak) is the dominance degree of the alternative Ai over Ak under criterion Cj, and

φj(Ai, Ak) =


q

√
ωrj

∑n
j=1 ωrj

(d1HNY(Aij, Akj))
q, Aij > Akj;

0, Aij = Akj;

− 1
η

q

√
∑n

j=1 ωrj
ωrj

(d1HNY(Aij, Akj))
q, Aij < Akj.

(16)

Experts discussion Preferences

Feedback to experts

Normalize the decision 
matrix by (6.2)

Linguistic picture fuzzy decision 
matrix shown as (6.1)

Calculate the criteria weight 
based on the entropy by (6.6)

Calculate the positive-ideal
and negative-ideal solution by (6.7)

Obtain the closeness coefficient 
and  ranking results by (6.9)

Problem  Set of 
alternatives 

Making decisions

Calculate the separation distance 
measure by (6.8)

Figure 1. The flow diagram of the proposed TOPSIS method.

The hybrid linguistic picture distance d1HNY(Aij, Akj) denotes the distance measure between Aij
and Akj, and the comparison result between Aij and Akj is determined by Definition 9. The parameter
q(q ≥ 1) is a regulating variable that can be determined by the decision maker’s preference, and the
parameter η represents the attenuation factor of the loss.

Step 5: Calculate the overall dominance degree of the alternatives Ai, which is obtained by

Ψ(Ai) =
∑m

k=1 δ(Ai, Ak)−min
i
{∑m

k=1 δ(Ai, Ak)}

max
i
{∑m

k=1 δ(Ai, Ak)} −min
i
{∑m

k=1 δ(Ai, Ak)}
, (17)

where i = 1, 2, · · · , m.
Step 6: Ranking the alternatives according to the value of Ψ(Ai), the bigger Ψ(Ai) is, the better

alternative will be.
The flow diagram of the proposed TODIM method is depicted in Figure 2.
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Preference

Feedback to experts

Experts 
discussion

Linguistic picture fuzzy decision 
matrix shown as (6.1)

Normalize the decision matrix 
by (6.2)

Calculate the criteria weight 
based on entropy by (6.6)

Calculate the relative weight 
by (6.10)

Calculate the overall dominance 
value by (6.13)

Obtain the ranking results

Calculate the  dominance matrices 
under each criterion by (6.11)

Problem  
Set of alternatives 

Making decisions

Figure 2. The flow diagram of the proposed TODIM method.

7. Numerical Example

In this section, we give a numerical example (adapted from Chan and Kumar [42]) to illustrate the
feasibility and effectiveness of the proposed methods. The comparisons with other existing methods
are also discussed to show their advantages.

7.1. Background

A manufacturer wants to choose the best global supplier for the most critical parts used
in its production process. Four suppliers Ai(i = 1, 2, 3, 4) are evaluated based on the criterion
Cj(j = 1, 2, ..., 5), and the criterion Cj(j = 1, 2, ..., 5) stands for “overall cost of the product”, “quality of
the product”, “service performance of supplier”, “supplier’s profile” and “risk factor”, respectively.
The evaluation information of the suppliers Ai(i = 1, 2, 3, 4) is represented by the LPFN (sαi , sβi , sθi ) ∈
S[0,2τ] = S[0,8], and the corresponding linguistic picture fuzzy decision matrix A is shown in Table 1,
where the linguistic term S = {s0 = extremely poor, s1 = very poor, s2 = poor, s3 = slightly poor, s4 = fair,
s5 = slightly good, s6 = good, s7 = very good, s8 = extremely good}.

Table 1. The linguistic picture fuzzy decision matrix A.

C1 C2 C3 C4 C5

A1 (s6, s1, s1) (s4, s3, s1) (s4, s3, s1) (s5, s2, s1) (s4, s3, s1)
A2 (s4, s3, s1) (s4, s2, s2) (s4, s2, s1) (s5, s1, s1) (s6, s1, s1)
A3 (s4, s2, s1) (s5, s2, s1) (s6, s1, s1) (s4, s2, s1) (s4, s1, s2)
A4 (s4, s1, s2) (s5, s1, s1) (s3, s2, s1) (s4, s3, s1) (s3, s2, s2)

In the following, we apply the proposed TOPSIS and TODIM methods in Section 6 to solve the
above multi-criteria decision-making problem, respectively.

7.2. TOPSIS Method

In this subsection, the TOPSIS method based on linguistic picture fuzzy entropy proposed in
Section 6 is used to select the most appropriate alternative.

Step 1: Normalize the linguistic picture fuzzy decision matrix A.
Because the criteria C1 and C5 are the cost-type, we transform the matrix A to normalized matrix

Ã by (6), the corresponding normalized decision matrix Ã is obtained in Table 2.
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Table 2. The normalized linguistic picture fuzzy decision matrix Ã.

C1 C2 C3 C4 C5

A1 (s1, s1, s6) (s4, s3, s1) (s4, s3, s1) (s5, s2, s1) (s1, s3, s4)
A2 (s1, s3, s4) (s4, s2, s2) (s4, s2, s1) (s5, s1, s1) (s1, s1, s6)
A3 (s1, s2, s4) (s5, s2, s1) (s6, s1, s1) (s4, s2, s1) (s2, s1, s4)
A4 (s2, s1, s4) (s5, s1, s1) (s3, s2, s1) (s4, s3, s1) (s2, s2, s3)

Step 2: Calculate the objective weights of each criteria based on linguistic picture fuzzy entropy.
We apply the linguistic picture fuzzy entropy to calculate the weights of each criteria and

the entropy value matrix is obtained in Table 3. The weight vector ω = (ω1, ω2, ω3, ω4, ω5) =

(0.2021, 0.1995, 0.1995, 0.2021, 0.1968) is obtained by using Equations (9) and (10).

Table 3. The entropy matrix of Ã.

C1 C2 C3 C4 C5

A1 0.375 0.625 0.625 0.5 0.625
A2 0.625 0.75 0.675 0.5 0.375
A3 0.625 0.5 0.375 0.625 0.625
A4 0.625 0.5 0.75 0.625 0.875

Step 3: Determine the linguistic picture fuzzy positive-ideal solution A+ and negative-ideal
solution A−, respectively, and the results are obtained as follows:

A+ = {(s2, s1, s4), (s5, s2, s1), (s6, s1, s1), (s5, s2, s1), (s2, s2, s3)},
A− = {(s1, s1, s6), (s4, s2, s2), (s3, s2, s1), (s4, s2, s1), (s1, s1, s6)}.

Step 4: Based on the obtained weight of the criteria in Step 2, we utilize the hybrid linguistic
picture fuzzy distance measure d1HWY(λ = 3) defined in (4) to calculate the separation distance
between Ai and A+, Ai and A−, respectively, the results are obtained in Table 4.

Table 4. The separation distance of each alternative.

A1 A2 A3 A4

D+
i 0.1862 0.2385 0.1024 0.2055

D−i 0.1607 0.1313 0.2366 0.2239

Step 5: Calculate the closeness coefficient of each alternative as follows:

ρ1 = 0.4633, ρ2 = 0.3551, ρ3 = 0.6979, ρ4 = 0.5215,

so the ranking order is A3 � A4 � A1 � A2, that is to say, the best alternative is A3.

7.3. TODIM Method

In the following, we apply the TODIM method to deal with the same numerical example, and the
calculation steps are given as follows:

The results of Step 1 and Step 2 are the same as Section 7.2.
Step 3: Calculate the relative weight.
Since ! = (0.2021, 0.1995, 0.1995, 0.2021, 0.1968), then ωr = ω1 = ω3 = 0.2021. According to

(14), we can obtain the relative weight as follows: ω11 = 1, ω12 = 0.9868, ω13 = 0.9868, ω14 = 1
and ω15 = 0.9738.

Step 4: Calculate the overall dominance degree of the alternative Ai over alternative Ak under
criteria Cj.
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We assume η = 2 and apply the hybrid generalized distance measure d1HWY(λ = 3) defined in
(4) to calculate the overall dominance degree of the alternative Ai over alternative Ak under criteria
Cj(j = 1, 2, 3, 4, 5), which are obtained as follows:

φ1(Ai, Ak) =


0 −0.2780 −0.2501 −0.2501

0.1124 0 0.0511 −0.2561
0.1035 −0.1263 0 −0.1390
0.1035 0.1035 0.0562 0

 ,

φ2(Ai, Ak) =


0 0.0558 −0.1399 −0.2578

−0.1399 0 −0.1399 −0.1507
0.0558 0.0558 0 0.0507
0.1028 0.0601 −0.1271 0

 ,

φ3(Ai, Ak) =


0 0.0507 −0.2799 0.0558

−0.1271 0 −0.2578 0.0507
0.1117 0.1028 0 0.1528
−0.1399 −0.1271 −0.3830 0

 ,

φ4(Ai, Ak) =


0 0.0511 0.0511 0.0562

−0.1263 0 0.0562 0.1035
−0.1263 −0.1390 0 −0.1263
−0.1391 −0.2561 0.0511 0

 ,

φ5(Ai, Ak) =


0 0.1109 −0.2595 −0.1518

−0.2818 0 −0.2595 −0.3871
0.1021 0.1021 0 −0.1409
0.0597 0.1524 0.0555 0

 ,

δ(Ai, Ak) =


0 −0.0095 −0.8843 −0.5537

−0.5627 0 −0.5499 −0.6397
0.2468 −0.0046 0 −0.2027
−0.0129 −0.0672 −0.3473 0

 .

Step 5: Using (17) to calculate the overall dominance degree of the alternative Ai, we have
Ψ(A1) = 0.1701, Ψ(A2) = 0, Ψ(A3) = 1, Ψ(A4) = 0.7394.

Step 6: Ranking the alternatives based on the overall dominance degree of the alternative, it is
obvious that the ranking order of the alternatives is A3 � A4 � A1 � A2, so A3 is the best alternative.

7.4. Comparison Analysis with Other Existing Methods

In this subsection, in order to verify the effectiveness of the proposed methods for solving the
multi-criteria decision-making problems, we utilize the aggregation operators, the different distance
measures, and other existing methods to calculate the same numerical example, and the results are
given in Table 5.
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From Table 5, we can see that the ranking results of the proposed methods are the same as the
method of Krohling et al. [43] and Boran et al. [44], which can demonstrate the feasibility of the
proposed TOPSIS and TODIM methods based on the linguistic picture fuzzy entropy in this paper.

Table 5. Comparison results with other distance measures and existing methods.

Approach Ranking Results

Approach from Krohling et al. [43] A3 � A4 � A1 � A2
Approach from Boran et al. [44] A3 � A4 � A1 � A2
Approach based on LPFWA operator A3 � A4 � A1 � A2
Approach based on LPFWG operator A4 � A3 � A1 � A2
TOPSIS method based on d3ω (shown in Appendix A) A3 � A4 � A1 � A2
TOPSIS method based on d3wH (shown in Appendix A) A3 � A4 � A1 � A2
TODIM method based on d3ω A3 � A4 � A1 � A2
TODIM method based on d3wH A3 � A4 � A1 � A2

If we apply the LPFWA operator and LPFWG operator to aggregate the decision information,
respectively, we can obtain A

′
1 = LPFWA(Ã11, Ã12, Ã13, Ã14, Ã15) = (s3.2820, s2.2136, s1.8869), A

′
2 =

(s3.2820, s1.6464, s2.1621), A
′
3 = (s4.0111, s1.5196, s1.7384) and A

′
4 = (s3.3579, s1.6433, s1.6428). Based on the

score function of LPFS, we can obtain A3 ≥ A4 ≥ A1 ≥ A2. Similarly, we apply the LPFWG
operator to obtain the aggregated decision values as follows: A

′
1 = (s2.4070, s2.4472, s3.1324), A

′
2 =

(s2.4070, s1.8503, s3.2625), A
′
3 = (s2.9895, s1.6220, s2.4005) and A

′
4 = (s2,9949, s1.8477, s2.1491). Using the

score function of LPFS, we have A4 ≥ A3 ≥ A1 ≥ A2. Obviously, the ranking result of the
alternatives based on LPFWG operator is different from that obtained by the proposed method
in this paper. The differences are the ranking orders between A3 and A4. The main reason is that the
operation of geometric operator does not satisfy the closure of operation and may cause the loss of
decision information.

Compared with other existing methods, the proposed decision-making methods have some
advantages in solving multi-criteria decision-making problems. In the methods of Krohling [43]
and Boran [44] et al., they consider the TODIM and TOPSIS methods in IFS, which cannot meet
the needs of decision-making problems involving more answers of types. We can know it from the
following aspects.

Firstly, the proposed LPFS is a generalized form of IFS by incorporating the neutral membership
degree, which can deal with the decision information better under uncertain conditions. Secondly,
the proposed LPFS overcomes the limitations of PFS that represents the decision information with
numerical value, which express the evaluation information with LTS that is closer to human cognitive
ability. Thirdly, considering the weight of criteria is an important component of multi-criteria
decision-making problem, we propose the linguistic picture fuzzy entropy to calculate the objective
weight of criteria and reduce the randomness in decision-making process, which can improve the
rationality of decision-making results. The proposed hybrid distance measures between LPFSs are
constructed based on the geometric interpretation of LPFSs in some extent, which is more suitable for
comparing the alternatives.

7.5. Sensitivity Analysis

In this subsection, we make the sensitivity analysis of parameters in the proposed TOPSIS and
TODIM methods.

Firstly, in the TOPSIS method between LPFSs, we consider the influence of the parameter λ in
hybrid distance measure d1WHY. Letting λ = 1, 2, 10, 55, 100, we can obtain the ranking results
with different λ, which are given in Table 6, and the corresponding change diagram is shown in
Figure 3. According to Figure 3, we can see that the calculation values of A1, A2 and A3 are increasing
as λ increases. However, the calculation values of A4 are decreasing as the value of λ increases,
which shows that the change of λ in the distance measure may affect the decision makers. We can also
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see that the ranking order of the alternatives is A3 � A4 � A2 � A1 for different λ, which illustrates
the stability of the proposed TOPSIS method between LPFSs for different distance measures.

Table 6. Ranking results obtained by TOPSIS method with different λ.

λ ρ1 ρ2 ρ3 ρ4 Ranking Results

λ = 1 0.4470 0.2577 0.7172 0.6037 A3 � A4 � A1 � A2
λ = 2 0.4562 0.3312 0.6963 0.5438 A3 � A4 � A1 � A2

λ = 10 0.4856 0.3902 0.7255 0.5001 A3 � A4 � A1 � A2
λ = 55 0.4974 0.3983 0.7455 0.4999 A3 � A4 � A1 � A2
λ = 100 0.4986 0.3991 0.7475 0.5000 A3 � A4 � A1 � A2

Figure 3. The ranking results by TOPSIS with different λ.

Secondly, we consider the influence of three parameters λ, η and q in the proposed TODIM
method between LPFSs.

(1) We calculate the ranking results of the alternatives with different λ in hybrid distance measure
d1WHY. Assuming η = 2 and q = 2, let λ = 1, 2, 10, 55, 100, the calculation results of the alternatives
with different λ are obtained in Table 7, the corresponding graph with change of parameter λ is shown
in Figure 4. From Figure 4, we can see that the ranking results is always A3 � A4 � A1 � A2,
which also shows the stability of parameter λ in the proposed TODIM method between LPFSs for
different distance measures.

(2) We consider the influence of the parameter η in the TODIM method, which represents the
sensitive coefficient of risk aversion. Assuming λ = 3 and q = 2, let η = 1, 1.5, 2.5, 3, 5, the ranking
results with different η are shown in Table 8, we know the ranking order of the alternatives is
A3 � A4 � A1 � A2. The corresponding graph with change of parameter η is shown in Figure 5,
and it is clear that the ranking results are stable for different η, which illustrates that the decision
maker is not sensitive to risk aversion.

(3) The parameter q in TODIM method is a regulation variable, which represents the preference
of decision makers. Now, we consider the influence of q on decision results. Assuming λ = 3 and
η = 2, let q = 1, 3, 10, 55, 100. The calculation results are obtained in Table 9 and the change graph
corresponding to q is shown in Figure 6. According to Table 9, we can see that the ranking result of the
alternatives is A3 � A4 � A1 � A2, and the change of parameter q does not change the stability of the
TODIM method, which can also be illustrated from Figure 6.

Table 7. Ranking results obtained by TODIM method with η = 2, q = 2 and different λ.

λ Ψ1 Ψ2 Ψ3 Ψ4 Ranking Results

λ = 1 0.1516 0 1 0.7723 A3 � A4 � A1 � A2
λ = 2 0.1641 0 1 0.7480 A3 � A4 � A1 � A2
λ = 10 0.1769 0 1 0.7267 A3 � A4 � A1 � A2
λ = 55 0.1783 0 1 0.7223 A3 � A4 � A1 � A2

λ = 100 0.1784 0 1 0.7218 A3 � A4 � A1 � A2



Symmetry 2020, 12, 1170 16 of 27

Table 8. Ranking results obtained by TODIM method with λ = 3, q = 2 and different η.

η Ψ1 Ψ2 Ψ3 Ψ4 Ranking Results

η = 1 0.1770 0 1 0.7303 A3 � A4 � A1 � A2
η = 1.5 0.1734 0 1 0.7351 A3 � A4 � A1 � A2
η = 2.5 0.1674 0 1 0.7430 A3 � A4 � A1 � A2
η = 3 0.1650 0 1 0.7463 A3 � A4 � A1 � A2
η = 5 0.1574 0 1 0.7564 A3 � A4 � A1 � A2

Table 9. Ranking results obtained by TODIM method with η = 2, λ = 3 and different q.

q Ψ1 Ψ2 Ψ3 Ψ4 Ranking Results

q = 1 0.1674 0 1 0.7430 A3 � A4 � A1 � A2
q = 3 0.1627 0 1 0.7486 A3 � A4 � A1 � A2

q = 10 0.1517 0 1 0.7635 A3 � A4 � A1 � A2
q = 55 0.1482 0 1 0.7686 A3 � A4 � A1 � A2
q = 100 0.1479 0 1 0.7691 A3 � A4 � A1 � A2

Figure 4. The ranking results by TODIM method with η = 2, q = 2 and different λ.

Figure 5. The ranking results by TODIM with λ = 3, q = 2 and different η.

Figure 6. The ranking results by TODIM with λ = 3, η = 2 and different q.

8. Conclusions

In this paper, we proposed the LPFS based on PFS and LTS, where the positive-membership,
the neutral-membership, and the negative-membership are represented by linguistic variables, and the
LPFS can deal with the vague and imprecise information in qualitative environment. Furthermore,
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the operation rules of LPFSs, the LPFWA operator, and LPFWG operator are developed. Then,
we define some distance measures between LPFSs, and the TOPSIS method and TODIM method are
developed to the proposed distance measures based on the linguistic picture fuzzy entropy. Finally,
an illustrative example is given to illustrate the effectiveness of the proposed methods, and the
comparative analysis with other existing methods and sensitivity analysis of the proposed methods
are also discussed.

Although the proposed linguistic picture fuzzy set can solve the multi-criteria decision-making
problems, which still has the following limitations: (1) The linguistic term sets considered in this paper
are calculated based on the subscript of linguistic terms and the subscript is integer, which may cause
a loss of evaluation information. (2) The aggregated operators may not be a linguistic term set, which is
unreasonable and counterintuitive. (3) The proposed hybrid distance measure only considered the
Hausdorff distance measure based on the maximum value, which is susceptible to the extreme values
and it may cause the inaccurate ranking result in the multi-criteria decision-making problems with
extreme evaluation information.

In the future, in order to overcome the above limitations, we will take further studies from
the following aspects: (1) The different semantic situations with linguistic scale function can be
considered into the picture fuzzy sets, and it can be extended to the uncertain linguistic term set.
(2) How to define a new aggregated operator that satisfies the closure of linguistic picture fuzzy
set. (3) The proposed hybrid distance measure can take the mean and variance of linguistic picture
fuzzy set into consideration and it can be extended to the continuous distance measure. Furthermore,
the proposed method can be applied to practical decision-making problems such as pattern recognition,
medical diagnosis et al.
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Appendix A

Theorem A1. Letting κ1 = (sα1 , sβ1 , sθ1), κ2 = (sα2 , sβ2 , sθ2), and κ3 = (sα3 , sβ3 , sθ3) be any three LPFNs
defined on S[0,2τ], and λ, λ1, λ2 > 0, then we have

(1) κ1 ⊕ κ2 = κ2 ⊕ κ1;
(2) κ1 ⊗ κ2 = κ2 ⊗ κ1;
(3) λ(κ1 ⊕ κ2) = λκ1 ⊕ λκ2;
(4) λ1κ1 ⊕ λ2κ1 = (λ1 + λ2)κ1;
(5) (κ1 ⊗ κ2)

λ = κλ
1 ⊗ κλ

2 ;
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(6) κλ1
1 ⊗ κλ2

1 = κ
(λ1+λ2)
1 .

Proof. The proofs of properties are similar, and we only give the proof of (1), (3) and (5) here.
(1) According to Definition 10, we have

κ1 ⊕ κ2 = (s
α1+α2−

α1α2
2τ

, s β1β2
2τ

, s θ1θ2
2τ

) = (s
α2+α1−

α2α1
2τ

, s β2β1
2τ

, s θ2θ1
2τ

) = κ2 ⊕ κ1.

(3) Based on Definition 10, we have

λ(κ1 ⊕ κ2) = (s
2τ−2τ(1− α1+α2−

α1α2
2τ

2τ )λ
, s

2τ(
β1β2
(2τ)2

)λ
, s

2τ(
θ1θ2
(2τ)2

)λ
)

= (s2τ−2τ(1− α1
2τ )

λ(1− α2
2τ )

λ , s
2τ(

β1β2
(2τ)2

)λ
, s

2τ(
θ1θ2
(2τ)2

)λ
).

Because λκ1 = (s2τ−2τ(1− α1
2τ )

λ , s
2τ(

β1
2τ )

λ
, s

2τ(
θ1
2τ )

λ
) and λκ2 = (s2τ−2τ(1− α2

2τ )
λ , s

2τ(
β2
2τ )

λ
, s

2τ(
θ2
2τ )

λ
), then

λκ1 ⊕ λκ2

= (s
2τ−2τ(1− α1

2τ )
λ+2τ−2τ(1− α2

2τ )
λ− (2τ−2τ(1− α1

2τ )λ)(2τ−2τ(1− α2
2τ )λ)

2τ

, s
(2τ(

β1
2τ )λ)(2τ(

β2
2τ )λ)

2τ

, s
(2τ(

θ1
2τ )λ)(2τ(

θ2
2τ )λ)

2τ

)

= (s2τ−2τ(1− α1
2τ )

λ(1− α2
2τ )

λ , s
2τ(

β1β2
(2τ)2

)λ
, s

2τ(
θ1θ2
(2τ)2

)λ
)

= λ(κ1 ⊕ κ2).

(5) Based on Definition 10, we have

(κ1 ⊗ κ2)
λ

= (s2τ(
α1α2
(2τ)2

)λ , s
2τ−2τ(1− β1+β2−

β1β2
2τ

2τ )λ

, s
2τ−2τ(1− θ1+θ2−

θ1θ2
2τ

2τ )λ

)

= (s2τ(
α1α2
(2τ)2

)λ , s
2τ−2τ(1− β1

2τ )
λ(1− β2

2τ )
λ
, s

2τ−2τ(1− θ1
2τ )

λ(1− θ2
2τ )

λ
).

Because κλ
1 = (s2τ(

α1
2τ )

λ , s
2τ−2τ(1− β1

2τ )
λ
, s

2τ−2τ(1− θ1
2τ )

λ
) and κλ

2 = (s2τ(
α2
2τ )

λ , s
2τ−2τ(1− β2

2τ )
λ
, s

2τ−2τ(1− θ2
2τ )

λ
), then

κλ
1 ⊗ κλ

2

=

(
s
[2τ(

α1
2τ )λ ][2τ(

α2
2τ )λ ]

2τ

, s
2τ−2τ(1− β1

2τ )
λ+2τ−2τ(1− β2

2τ )
λ− [2τ−2τ(1− β1

2τ )λ ][2τ−2τ(1− β2
2τ )λ ]

2τ

,

s
2τ−2τ(1− β1

2τ )
λ+2τ−2τ(1− β2

2τ )
λ− [2τ−2τ(1− θ1

2τ )λ ][2τ−2τ(1− θ2
2τ )λ ]

2τ

)
= (s2τ(

α1α2
(2τ)2

)λ , s
2τ−2τ(1− β1

2τ )
λ(1− β2

2τ )
λ
, s

2τ−2τ(1− θ1
2τ )

λ(1− θ2
2τ )

λ
)

= (κ1 ⊗ κ2)
λ.

Thus, Theorem A1 is proved.

Theorem A2. Let κj = (sαj , sβ j , sθj)(j = 1, 2, ..., n) be a number of LPFNs, the aggregated value of LPFNs
based on LPFWA operator is obtained as follows:

LPFWA(κ1, κ2, ..., κn) =

(
s

2τ−2τ ∏n
j=1(1−

αj
2τ )

ωj , s
2τ ∏n

j=1(
βj
2τ )

ωj
, s

2τ ∏n
j=1(

βj
2τ )

ωj

)
, (A1)

where ω = (ω1, ω2, ..., ωn) is the weight vector of κj(j = 1, 2, ..., n) and satisfies with ∑n
j=1 ωj = 1(0 ≤ ωj ≤ 1).
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Proof. We apply the method of mathematical induction to prove Theorem A2.

(1) When n = 2, for κ1 = (sα1 , sβ1 , sθ1) and κ2 = (sα2 , sβ2 , sθ3),

LPFWA(κ1, κ2)

= ω1κ1 ⊕ω2κ2

= (s2τ−2τ(1− α1
2τ )

ω1 , s
2τ(

β1
2τ )

ω1
, s

2τ(
θ1
2τ )

ω1
)⊕ (s2τ−2τ(1− α2

2τ )
ω2 , s

2τ(
β2
2τ )

ω2
, s

2τ(
θ2
2τ )

ω2
)

= (s
2τ−2τ(1− α1

2τ )
ω1+2τ−2τ(1− α2

2τ )
ω2− [2τ−2τ(1− α1

2τ )ω1 ][2τ−2τ(1− α1
2τ )ω1 ]

2τ

, s
[2τ(

β1
2τ )ω1 ][2τ(

β2
2τ )ω2 ]

2τ

, s
[2τ(

θ1
2τ )ω1 ][2τ(

θ2
2τ )ω2 ]

2τ

)

= (s2τ−2τ(1− α1
2τ )

ω1 (1− α2
2τ )

ω2 , s
2τ(

β1
2τ )

ω1 (
β2
2τ )

ω2
, s

2τ(
θ1
2τ )

ω1 (
θ2
2τ )

ω2
).

Thus, (A1) is held for n = 2.
(2) Supposing that (A1) is held for n = m, then

LPFWA(κ1, κ2, ..., κm)

= ω1κ1 ⊕ω2κ2 ⊕ · · · ⊕ωmκm

= (s
2τ−2τ ∏m

j=1(1−
αj
2τ )

ωj , s
2τ ∏m

j=1(
βj
2τ )

ωj
, s

2τ ∏m
j=1(

θj
2τ )

ωj
).

when n = m + 1, we have

LPFWA(κ1, κ2, ..., κm, κm+1)

= ω1κ1 ⊕ω2κ2 ⊕ · · · ⊕ωmκm ⊕ωm+1κm+1

= LPFWA(κ1, κ2, ..., κm)⊕ωm+1κm+1

= (s
2τ−2τ ∏m

j=1(1−
αj
2τ )

ωj , s
2τ ∏m

j=1(
βj
2τ )

ωj
, s

2τ ∏m
j=1(

θj
2τ )

ωj
)

⊕ (s2τ−2τ(1− αm+1
2τ )ωm+1 , s

2τ(
βm+1

2τ )ωm+1
, s

2τ(
θm+1

2τ )ωm+1
)

= (s
2τ−2τ ∏m+1

j=1 (1−
αj
2τ )

ωj , s
2τ ∏m+1

j=1 (
βj
2τ )

ωj
, s

2τ ∏m+1
j=1 (

θj
2τ )

ωj
).

That is to say, (A1) is held for n = m + 1. According to the mathematical induction, (A1) is held
for any n, so Theorem A2 is proved.

In the following, we prove the properties in Theorem A3 by using the LPFWA operator.

Theorem A3. (1) Idempotency: Let κj = (sαj , sβ j , sθj)(j = 1, 2, ..., n) be a number of LPFNs, if κj(j =

1, 2, ..., n) are all equal, that is, κj = κ = (sα, sβ, sθ) for all j, then

LPFWA(κ1, κ2, ..., κn) = κ.

(2) Commutativity: Let κj = (sαj , sβ j , sθj) and κ
′
j = (s

α
′
j
, s

β
′
j
, s

θ
′
j
)(j = 1, 2, ..., n) be two collections of

LPFNs, if κ
′
j(j = 1, 2, ..., n) is any permutation of κj(j = 1, 2, ..., n), then

LPFWA(κ1, κ2, ..., κn) = LPFWA(κ
′
1, κ

′
2, ..., κ

′
n).

(3) Boundedness: Let κj = (sαj , sβ j , sθj)(j = 1, 2, ..., n) be a collection of LPFNs and α− = minj{αj},
α+ = maxj{αj}, β− = minj{β j}, β+ = maxj{β j}, θ− = minj{θj}, θ+ = maxj{θj}, then

(sα− , sβ− , sθ+) ≤ LPFWA(κ1, κ2, ..., κn) ≤ (sα+ , sβ+ , sθ−).
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Proof. (1) Since κj = κ = (sα, sβ, sθ) for all j(j = 1, 2, ..., n), then

LPFWA(κ1, κ2, ..., κn) = LPFWA(κ, κ, ..., κ)

= (s2τ−2τ ∏n
j=1(1−

α
2τ )

ωj , s
2τ ∏n

j=1(
β

2τ )
ωj , s2τ ∏n

j=1(
θ

2τ )
ωj )

= (sα, sβ, sθ) = κ.

(2) According to Definition 11, we have

LPFWA(κ1, κ2, ..., κn) = (s
2τ−2τ ∏n

j=1(1−
αj
2τ )

ωj , s
2τ ∏n

j=1(
βj
2τ )

ωj
, s

2τ ∏n
j=1(

θj
2τ )

ωj
),

LPFWA(κ
′
1, κ

′
2, ..., κ

′
n) = (s

2τ−2τ ∏n
j=1(1−

α
′
j

2τ )
ωj

, s
2τ ∏n

j=1(
β
′
j

2τ )
ωj

, s
2τ ∏n

j=1(
θ
′
j

2τ )
ωj
).

Since κ
′
j is any permutation of κj(j = 1, 2, ..., n), it is easy to know

LPFWA(κ1, κ2, ..., κn) = LPFWA(κ
′
1, κ

′
2, ..., κ

′
n).

(3) Assume that LPFWA(κ1, κ2, ..., κn) = (sαc , sβc , sθc), since
α− = minj{αj}, α+ = maxj{αj}, β− = minj{β j}, β+ = maxj{β j}, θ− = minj{θj}, θ+ = maxj{θj},
we can get

2τ
n

∏
j=1

(
θ−

2τ
)ωj ≤ 2τ

n

∏
j=1

(
θj

2τ
)ωj = sθc ≤ 2τ

n

∏
j=1

(
θ+

2τ
)ωj

and

2τ − 2τ
n

∏
j=1

(1− α−

2τ
)ωj ≤ 2τ − 2τ

n

∏
j=1

(1−
αj

2τ
)ωj = sαc ≤ 2τ − 2τ

n

∏
j=1

(1− α+

2τ
)ωj .

Because sα and sθ are increasing as α and θ increase, then

sα− ≤ sαc ≤ sα+ , sθ− ≤ sθc ≤ sθ+ .

We know LS(sα− , sβ− , sθ+) = α− − θ+ and LS(sα+ , sβ− , sθ−) = α+ − θ−,
then

LS(sα− , sβ− , sθ+) ≤ LS(LPFWA(κ1, κ2, ..., κn)) ≤ LS(sα+ , sβ− , sθ−).

Thus, (sα− , sβ− , sθ+) ≤ LPFWA(κ1, κ2, ..., κn) ≤ (sα+ , sβ− , sθ−) is obtained.

Theorem A4. Letting κj = (sαj , sβ j , sθj)(j = 1, 2, ..., n) be a number of LPFNs, the aggregated value of them
based on LPFWG operator is obtained as follows:

LPFWG(κ1, κ2, ..., κn) = (s
2τ ∏n

j=1(
αj
2τ )

ωj , s
2τ−2τ ∏n

j=1(1−
βj
2τ )

ωj
, s

2τ−2τ ∏n
j=1(1−

θj
2τ )

ωj
),

where ω = (ω1, ω2, ..., ωn) is the weight vector of κj(j = 1, 2, ..., n) and satisfies with ∑n
j=1 ωj = 1(0 ≤ ωj ≤ 1).

Proof. The proof is similar to Theorem A2, and we omit it here.
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Theorem A5. (1) Idempotency: Let κj = (sαj , sβ j , sθj)(j = 1, 2, ..., n) be a number of LPFNs, if κj(j =

1, 2, ..., n) are all equal, that is, κj = κ = (sα, sβ, sθ) for all j, then

LPFWG(κ1, κ2, ..., κn) = κ.

(2) Commutativity: Let κj = (sαj , sβ j , sθj) and κ
′
j = (s

α
′
j
, s

β
′
j′

, s
θ
′
j′
)(j = 1, 2, ..., n) be two collections of

LPFNs, if κ
′
j(j = 1, 2, ..., n) is any permutation of κj(j = 1, 2, ..., n), then

LPFWG(κ1, κ2, ..., κn) = LPFWG(κ
′
1, κ

′
2, ..., κ

′
n).

(3) Boundedness: Let κj = (sαj , sβ j , sθj)(j = 1, 2, ..., n) be a collection of LPFNs and α− = minj{αj},
α+ = maxj{αj}, β− = minj{β j}, β+ = maxj{β j} θ− = minj{θj}, θ+ = maxj{θj}, then

(sα− , sβ− , sθ+) ≤ LPFWG(κ1, κ2, ..., κn) ≤ (sα+ , sβ+ , sθ−).

Proof. The proof is similar to Theorem A3, we omit it here.

Theorem A6. Letting A = {sαA(xj), sβA(xj), sθA(xj)|xj ∈ X}, B = {sαB(xj), sβB(xj), sθB(xj)|xj ∈
X} and C = {sαC (xj), sβC (xj), sθC (xj)|xj ∈ X} be three LPFSs defined on X = {x1, x2, ..., xn},
where sαi (xj), sβi (xj) and sθi (xj)∈ S[0,2τ](i = A, B, C), the generalized weighted distance measure d1w(A, B)
satisfies the following properties:

(1) 0 ≤ d1w(A, B) ≤ 1;
(2) d1w(A, B) = 0⇐⇒ A = B;
(3) d1w(A, B) = d1w(B, A);
(4) If A ⊆ B ⊆ C, then d1w(A, B) ≤ d1w(A, C) and d1w(B, C) ≤ d1w(A, C).

Proof. (1) Based on the definition of LPFSs, we know that αi, βi, and θi ∈ [0, 2τ](i = A, B), and
0 ≤ αi + βi + θi ≤ 2τ(i = A, B). For all xj ∈ X, it is easy to know that

0 ≤ |αA(xj)− αB(xj)| ≤ 2τ ⇐⇒ 0 ≤
∣∣∣ αA(xj)−αB(xj)

2τ

∣∣∣λ ≤ 1;

0 ≤ |βA(xj)− βB(xj)| ≤ 2τ ⇐⇒ 0 ≤
∣∣∣ βA(xj)−βB(xj)

2τ

∣∣∣λ ≤ 1;

0 ≤ |θA(xj)− θB(xj)| ≤ 2τ ⇐⇒ 0 ≤
∣∣∣ θA(xj)−θB(xj)

2τ

∣∣∣λ ≤ 1.
According to the absolute value inequality, we have∣∣∣∣ αA − αB

2τ

∣∣∣∣λ +

∣∣∣∣ βA − βB

2τ

∣∣∣∣λ +

∣∣∣∣ θA − θB

2τ

∣∣∣∣λ
≤
∣∣∣ αA

2τ

∣∣∣λ +
∣∣∣ αB

2τ

∣∣∣λ +

∣∣∣∣ βA

2τ

∣∣∣∣λ +

∣∣∣∣ βB

2τ

∣∣∣∣λ +

∣∣∣∣ θA

2τ

∣∣∣∣λ +

∣∣∣∣ θB

2τ

∣∣∣∣λ
=

∣∣∣∣ (αA)
λ + (βA)

λ + (θA)
λ + (αB)

λ + (βB)
λ + (θB)

λ

(2τ)λ

∣∣∣∣ .

By Mathematical induction, the following inequality can be established,∣∣∣∣ (αA)
λ + (βA)

λ + (θA)
λ + (αB)

λ + (βB)
λ + (θB)

λ

(2τ)λ

∣∣∣∣ ≤ 2.

When λ = 1 because 0 ≤ αi + βi + θi ≤ 2τ(i = A, B), we have∣∣∣∣ αA + βA + θA + αB + βB + θB

2τ

∣∣∣∣ ≤ 2.

When λ = n, assuming that the inequality is held, that is,∣∣∣∣ (αA)
n + (βA)

n + (θA)
n + (αB)

n + (βB)
n + (θB)

n

(2τ)n

∣∣∣∣ ≤ 2.
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When λ = n + 1 because 0 ≤ αi + βi + θi ≤ 2τ(i = A, B), we have∣∣∣ (αA)
n+1+(βA)

n+1+(θA)
n+1+(αB)n+1+(βB)n+1+(θB)n+1

(2τ)n+1

∣∣∣
=
∣∣∣ (αA)

nαA+(βA)
n βA+(θA)

nθA+(αB)nαB+(βB)n βB+(θB)nθB
(2τ)n2τ

∣∣∣
≤
∣∣∣ 2τ((αA)

n+(βA)
n+(θA)

n+(αB)n+(βB)n+(θB)n)
(2τ)n2τ

∣∣∣ ≤ 2.

Thus, 0 ≤
∣∣∣∣ αA(xj)−αB(xj)

2τ

∣∣∣∣λ +

∣∣∣∣ βA(xj)−βB(xj)

2τ

∣∣∣∣λ +

∣∣∣∣ θA(xj)−θB(xj)

2τ

∣∣∣∣λ ≤ 2 is obtained, which implies 0 ≤ d1(A, B) ≤ 1.

(2) d1w(A, B) = 0⇐⇒ |αA(xj)− αB(xj)| = 0, |βA(xj)− βB(xj)| = 0 and |θA(xj)− θB(xj)| = 0 for
all xj ∈ X⇐⇒ αA(xj) = αB(xj), βA(xj) = βB(xj) and θA(xj) = θB(xj) for all xj ∈ X⇐⇒ A = B.

(3) Since ∣∣∣∣ αA(xj)− αB(xj)

2τ

∣∣∣∣ = ∣∣∣∣ αB(xj)− αA(xj)

2τ

∣∣∣∣ ,

∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣ = ∣∣∣∣ βB(xj)− βA(xj)

2τ

∣∣∣∣ ,

and ∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣ = ∣∣∣∣ θB(xj)− θA(xj)

2τ

∣∣∣∣ ,

then d1w(A, B) = d1w(B, A) can be easily obtained.
(4) Because A ⊆ B ⊆ C, then 0 ≤ αA ≤ αB ≤ αC, 0 ≤ βA ≤ βB ≤ βC and θA ≥ θB ≥ θC ≥ 0.

It is easy to know

|αA − αB| ≤ |αA − αC|, |βA − βB| ≤ |βA − βC|, |θA − θB| ≤ |θA − θC|.

For any λ ≥ 0, we have∣∣∣∣ αA − αB

2τ

∣∣∣∣λ +

∣∣∣∣ βA − βB

2τ

∣∣∣∣λ +

∣∣∣∣ θA − θB

2τ

∣∣∣∣λ ≤ ∣∣∣∣ αA − αC

2τ

∣∣∣∣λ +

∣∣∣∣ βA − βC

2τ

∣∣∣∣λ +

∣∣∣∣ θA − θC

2τ

∣∣∣∣λ .

Then,

d1ω(A, B) ≤ d1ω(A, C) is obtained.

Similarly, we have

d1ω(B, C) ≤ d1ω(A, C).

Theorem A7. Letting A = {(sαA(xj), sβA(xj), sθA(xj))|xj ∈ X}, B = {(sαB(xj), sβB(xj), sθB(xj))|xj ∈
X} and C = {(sαC (xj), sβC (xj), sθC (xj))|xj ∈ X} be three LPFSs defined on X = {x1, x2, ..., xn},
where sαi (xj), sβi (xj) and sθi (xj) ∈ S[0,2τ](i = A, B, C), the generalized weighted Hausdorff distance
measure d1WH(A, B) satisfies the following properties:

(1) 0 ≤ d1WH(A, B) ≤ 1;
(2) d1WH(A, B) = 0⇐⇒ A = B;
(3) d1WH(A, B) = d1WH(B, A);
(4) If A ⊆ B ⊆ C, then d1WH(A, B) ≤ d1WH(A, C) and d1WH(B, C) ≤ d1WH(A, C).

Proof. (1) Because 0 ≤ αi + βi + θi ≤ 2τ(i = A, B) for all xj ∈ X and λ ≥ 1, we have

0 ≤ |αA(xj)− αB(xj)| ≤ 2τ ⇐⇒ 0 ≤
∣∣∣ αA(xj)−αB(xj)

2τ

∣∣∣λ ≤ 1;

0 ≤ |βA(xj)− βB(xj)| ≤ 2τ ⇐⇒ 0 ≤
∣∣∣ βA(xj)−βB(xj)

2τ

∣∣∣λ ≤ 1;

0 ≤ |θA(xj)− θB(xj)| ≤ 2τ ⇐⇒ 0 ≤
∣∣∣ θA(xj)−θB(xj)

2τ

∣∣∣λ ≤ 1.
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Then, 0 ≤
[

max
( ∣∣∣ αA(xj)−αB(xj)

2τ

∣∣∣λ ,
∣∣∣ βA(xj)−βB(xj)

2τ

∣∣∣λ ,
∣∣∣ θA(xj)−θB(xj)

2τ

∣∣∣λ )] 1
λ

≤ 1 is obtained, that is,

0 ≤ d1WH(A, B) ≤ 1.
The proofs of properties (2) to (4) are similar to Theorem A6, and we omit it here.

Theorem A8. Let A = {(sαA(xj), sβA(xj), sθA(xj))|xj ∈ X}, B = {(sαB(xj), sβB(xj), sθB(xj))|xj ∈
X} and C = {(sαC (xj), sβC (xj), sθC (xj))|xj ∈ X} be three LPFSs defined on X = {x1, x2, ..., xn},
where sαi (xj), sβi (xj) and sθi (xj) ∈ S[0,2τ](i = A, B, C), the generalized hybrid weighted distance measure
d1HWY(A, B) satisfying the following properties:

(1) 0 ≤ d1HWY(A, B) ≤ 1;
(2) d1HWY(A, B) = 0⇐⇒ A = B;
(3) d1HWY(A, B) = d1HWY(B, A);
(4) If A ⊆ B ⊆ C, then d1HWY(A, B) ≤ d1HWY(A, C) and d1HWY(B, C) ≤ d1HWY(A, C).

Proof. The proof is similarly to Theorem A6, and it can be obtained based on Theorems A6 and A7,
we omit it here.

• The Remarks of Definition 13

Remark A1. If λ = 1, the generalized weighted distance measure d1w(A, B) is reduced to the weighted
Hamming distance measure d2w(A, B) between LPFSs, which is given as follows:

d2w(A, B) =
1
2

n

∑
j=1

ωj

(∣∣∣∣∣αA(xj)− αB(xj)

2τ

∣∣∣∣∣+
∣∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣∣+
∣∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣∣
)

,

where ω = (ω1, ω2, · · · , ωn) is the weight vector of xj(j = 1, 2, · · · , n) and satisfies with ∑n
j=1 ωj = 1(0 ≤

ωj ≤ 1).
If λ = 2, the generalized weighted distance measure d1w(A, B) is reduced to the weighted Euclidean

distance measure d3w(A, B) between LPFSs, which is given as follows:

d3w(A, B) =

1
2

n

∑
j=1

ωj

∣∣∣∣∣αA(xj)− αB(xj)

2τ

∣∣∣∣∣
2

+

∣∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣∣
2

+

∣∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣∣
2
 1

2

,

where ω = (ω1, ω2, · · · , ωn) is the weight vector of xj(j = 1, 2, · · · , n) and satisfies with ∑n
j=1 ωj = 1(0 ≤

ωj ≤ 1).

Remark A2. If ωj = 1
n for all j, the generalized weighted distance measure d1w(A, B) is reduced to the

generalized normalized distance measure d1n(A, B) between LPFSs, which is given as follows:

d1n(A, B) =

 1
2n

n

∑
j=1

∣∣∣∣∣αA(xj)− αB(xj)

2τ

∣∣∣∣∣
λ

+

∣∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣∣
λ

+

∣∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣∣
λ
 1

λ

,

where λ ≥ 1.
If ωj =

1
n for all j and λ = 1, the generalized weighted distance measure d1ω(A, B) is reduced to the

normalized Hamming distance measure d2n(A, B) between LPFSs, which is given as follows:

d2n(A, B) =
1

2n

n

∑
j=1

(∣∣∣∣∣αA(xj)− αB(xj)

2τ

∣∣∣∣∣+
∣∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣∣+
∣∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣∣
)

.
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If ωj =
1
n for all j and λ = 2, the generalized weighted distance measure d1w(A, B) is reduced to the

normalized Euclidean distance measure d3n(A, B) between LPFSs, which is given as follows:

d3n(A, B) =

 1
2n

n

∑
j=1

∣∣∣∣∣αA(xj)− αB(xj)

2τ

∣∣∣∣∣
2

+

∣∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣∣
2

+

∣∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣∣
2
 1

2

.

• The Remarks of Definition 14

Remark A3. If λ = 1, the generalized weighted Hausdorff distance measure d1WH(A, B) is reduced to the
weighted Hamming–Hausdorff distance measure d2WH(A, B) between LPFSs, which is given as follows:

d2WH(A, B) =
n

∑
j=1

ωj max
( ∣∣∣∣∣αA(xj)− αB(xj)

2τ

∣∣∣∣∣ ,

∣∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣∣ ,

∣∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣∣
)

,

where ω = (ω1, ω2, ..., ωn) is the weight vector of xj(j = 1, 2, ..., n) and satisfies with ∑n
j=1 ωj = 1(0 ≤

ωj ≤ 1).
If λ = 2, the generalized weighted Hausdorff distance measure d1WH(A, B) is reduced to the weighted

Euclidean-Hausdorff distance measure d3WH(A, B) between LPFSs, which is given as follows:

d3WH(A, B) =

 n

∑
j=1

ωj max
( ∣∣∣∣∣αA(xj)− αB(xj)

2τ

∣∣∣∣∣
2

,

∣∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣∣
2

,

∣∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣∣
2 ) 1

2

,

where ω = (ω1, ω2, ..., ωn) is the weight vector of xj(j = 1, 2, ..., n) and satisfies with ∑n
j=1 ωj = 1(0 ≤

ωj ≤ 1).

Remark A4. If ωj =
1
n for all j, the generalized weighted Hausdorff distance measure d1WH(A, B) is reduced

to the normalized Hausdorff distance measure d1NH(A, B) between LPFSs, which is given as follows:

d1NH(A, B) =
1
n

 n

∑
j=1

max
( ∣∣∣∣∣αA(xj)− αB(xj)

2τ

∣∣∣∣∣
λ

,

∣∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣∣
λ

,

∣∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣∣
λ ) 1

λ

,

where λ ≥ 1.
If ωj = 1

n for all j and λ = 1, the generalized weighted Hausdorff distance measure d1WH(A, B) is
reduced to the normalized Hamming–Hausdorff distance measure d2NH(A, B) between LPFSs, which is given
as follows:

d2NH(A, B) =
1
n

n

∑
j=1

max
( ∣∣∣∣∣αA(xj)− αB(xj)

2τ

∣∣∣∣∣ ,

∣∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣∣ ,

∣∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣∣
)

.

If ωj =
1
n for all j and λ = 2, the generalized weighted Hausdorff distance measure d1WH(A, B) is reduced

to the normalized Euclidean-Hausdorff distance d3NH(A, B) between LPFSs, which is given as follows:

d3NH(A, B) =

 1
n

n

∑
j=1

max
( ∣∣∣∣∣αA(xj)− αB(xj)

2τ

∣∣∣∣∣
2

,

∣∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣∣
2

,

∣∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣∣
2 ) 1

2

.

• The Remarks of Definition 15

Remark A5. If λ = 1, the generalized hybrid weighted distance measure d1HWY(A, B) is reduced to the hybrid
weighted Hamming distance measure d2HWY(A, B) between LPFSs, which is given as follows:
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d2HWY(A, B) =
n

∑
j=1

ωj

2

([
max

( ∣∣∣∣ αA(xj)− αB(xj)

2τ

∣∣∣∣ ,
∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣ ,
∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣ )]

+
1
2

(∣∣∣∣ αA(xj)− αB(xj)

2τ

∣∣∣∣+ ∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣+ ∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣)) ,

where ω = (ω1, ω2, ..., ωn) is the weight vector of xj(j = 1, 2, ..., n) and satisfies with ∑n
j=1 ωj = 1(0 ≤

ωj ≤ 1).
If λ = 2, the generalized hybrid weighted distance measure d1HWY(A, B) is reduced to the hybrid weighted

Euclidean distance measure d3HWY(A, B) between LPFSs, which is given as follows:

d3HWY(A, B) =

(
n

∑
j=1

ωj

2

([
max

( ∣∣∣∣ αA(xj)− αB(xj)

2τ

∣∣∣∣2 ,
∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣2 ,
∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣2 )
]

+
1
2

(∣∣∣∣ αA(xj)− αB(xj)

2τ

∣∣∣∣2 + ∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣2 + ∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣2
))) 1

2

,

where ω = (ω1, ω2, ..., ωn) is the weight vector of xj(j = 1, 2, ..., n), and satisfies with ∑n
j=1 ωj = 1(0 ≤

ωj ≤ 1).

Remark A6. If ωj =
1
n for all j, the generalized hybrid weighted distance measure d1HWY(A, B) is reduced to

hybrid normalized distance measure d1HNY(A, B) between LPFSs, which is given as follows:

d1HNY(A, B) =

(
1

2n

n

∑
j=1

([
max

( ∣∣∣∣ αA(xj)− αB(xj)

2τ

∣∣∣∣λ ,
∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣λ ,
∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣λ )
]

+
1
2

(∣∣∣∣ αA(xj)− αB(xj)

2τ

∣∣∣∣λ +

∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣λ +

∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣λ
))) 1

λ

,

where λ ≥ 1.
If ωj =

1
n for all j and λ = 1, the generalized hybrid weighted distance measure d1HWY(A, B) is reduced

to hybrid normalized Hamming distance measure d2HNY(A, B) between LPFSs, which is given as follows:

d2HNY(A, B) =
1

2n

n

∑
j=1

([
max

( ∣∣∣∣ αA(xj)− αB(xj)

2τ

∣∣∣∣ ,
∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣ ,
∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣ )]

+
1
2

(∣∣∣∣ αA(xj)− αB(xj)

2τ

∣∣∣∣+ ∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣+ ∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣)) .

If ωj =
1
n for all j and λ = 2, the generalized hybrid weighted distance measure d1HWY(A, B) is reduced

to hybrid normalized Euclidean distance measure d3HNY(A, B) between LPFSs, which is given as follows:

d3HNY(A, B) =

(
1

2n

n

∑
j=1

([
max

( ∣∣∣∣ αA(xj)− αB(xj)

2τ

∣∣∣∣2 ,
∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣2 ,
∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣2 )
]

+
1
2

(∣∣∣∣ αA(xj)− αB(xj)

2τ

∣∣∣∣2 + ∣∣∣∣ βA(xj)− βB(xj)

2τ

∣∣∣∣2 + ∣∣∣∣ θA(xj)− θB(xj)

2τ

∣∣∣∣2
))) 1

2

.
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