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Abstract: Within the framework of differential geometry, we study binary operations in the open, unit
ball of the Euclidean n-space Rn, n ∈ N, and discover the properties that qualify these operations to
the title addition despite the fact that, in general, these binary operations are neither commutative nor
associative. The binary operation of the Beltrami-Klein ball model of hyperbolic geometry, known as
Einstein addition, and the binary operation of the Beltrami-Poincaré ball model of hyperbolic
geometry, known as Möbius addition, determine corresponding metric tensors in the unit ball. For a
variety of metric tensors, including these two, we show how binary operations can be recovered from
metric tensors. We define corresponding scalar multiplications, which give rise to gyrovector spaces,
and to norms in these spaces. We introduce a large set of binary operations that are algebraically
equivalent to Einstein addition and satisfy a number of nice properties of this addition. For such
operations we define sets of gyrolines and co-gyrolines. The sets of co-gyrolines are sets of geodesics
of Riemannian manifolds with zero Gaussian curvatures. We also obtain a special binary operation in
the ball, which is isomorphic to the Euclidean addition in the Euclidean n-space.

Keywords: differential geometry; binary operation; Einstein addition; gyrogroup; gyrovector space;
geodesics

1. Introduction

Let B be the unit, open ball in the Euclidean n-space Rn,

B = {x ∈ Rn : ‖x‖ < 1}, (1)

n ∈ N, where ‖ · ‖ is the Euclidean norm.
Einstein addition is a binary operation, ⊕

E
, in the ball B ⊂ Rn that stems from his velocity

composition law in the ball B ⊂ R3 of relativistically admissible velocities. Seemingly structureless,
Einstein addition is neither commutative nor associative. However, Einstein addition turns out
to be both gyrocommutative and gyroassociative, thus giving rise to the rich algebraic structures that
became known as a (gyrocommutative) gyrogroup and a gyrovector space, the definitions of which
are presented in Definitions 1–3, Section 2.

Einstein addition, ⊕
E
, and its isomorphic copy, Möbius addition, ⊕

M
, are studied in the literature

algebraically, along with applications to the hyperbolic geometry of Lobachevsky and Bolyai. Naturally,
one may expect that the rich algebraic structure of Einstein addition can find home in differential
geometry, giving rise to a novel branch called Binary Operations in the Ball.

Accordingly, the aim of this paper is to develop a differential geometry approach to Einstein
addition and, hence, to discover the resulting novel branch of differential geometry that involves
binary operations in the ball. We thus begin with the study of an arbitrary binary operation in the ball
that satisfies some general conditions.
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A binary operation in B is a function f : B×B→ B. We consider functions f of class C2, that is,
functions f having continuous second derivatives. This operation determines a metric tensor G(x) in
B given by

g(x) =
∂ f (−x, y)

∂y
|y=x, G(x) = g(x)>g(x) ∈ Rn×n, (2)

x ∈ B, where > denotes transposition, and Rn×n is the space of all real n× n-matrices. Then, B is a
Riemannian manifold with a metric tensor G.

We pay special attention to the following three binary operations in the ball, along with their
associated scalar multiplication:

• Einstein addition ⊕
E

in the ball, presented in (136), and the scalar multiplication ⊗E that it admits,
presented in (138), are recovered in Section 5 within the framework of differential geometry.
The triple (B,⊕

E
,⊗E) is an Einstein gyrovector space that forms the algebraic setting for the

Beltrami-Klein ball model of hyperbolic geometry.
• Möbius addition ⊕

M
in the ball, presented in (153), and the scalar multiplication ⊗M that it admits,

presented in (154), are recovered in Section 6 within the framework of differential geometry.
The triple (B,⊕

M
,⊗M ) is a Möbius gyrovector space that forms the algebraic setting for the

Beltrami–Poincaré ball model of hyperbolic geometry.
• A novel, interesting binary operation⊕ in the ball, presented in (199), and the scalar multiplication
⊗ that it admits, presented in (205), are discovered in Section 7 within the framework of differential
geometry. Remarkably, the triple (B,⊕,⊗) is a vector space isomorphic to the Euclidean vector
space (Rn,+, ·). As such, the binary operation⊕ in B is commutative, associative and distributive.
Accordingly, the vector space (B,⊕,⊗) forms the algebraic setting for a novel n-dimensional
Euclidean geometry ball model.

A procedure that we present in this paper enables binary operations in the ball, like ⊕
E
, ⊕

M
and ⊕,

to be obtained from corresponding metric tensors G. Interestingly, a metric tensor G is determined by
the behavior of the function f in a neighborhood of the set D = {(−x, x) : x ∈ B}, rather than in the
whole of the space B×B. Hence, the global operations turn out to be determined by local properties
of the functions f and their second derivatives in the set D.

The procedure is formulated in terms of geodesics and a parallel transport. It is applied to
a wide class of metric tensors that satisfy three properties: (i) smoothness, (ii) rotation invariance,
and (iii) plane invariance.

For Einstein addition ⊕
E

the operation of scalar multiplication t⊗E a with a ∈ B, t ∈ R is well
defined [1]. It gives rise to a structure called a gyrovector space. For each metric tensor considered
in this paper we define an operation t ⊗ a of scalar multiplication, which leads to corresponding
gyrovector spaces.

For every a, b ∈ B the set { f (b, t⊗ a) : t ∈ R} is called a gyroline. The set of gyrolines defines
a metric tensor G. The sets { f (t⊗ a, b) : t ∈ R} are called co-gyrolines. It is proved in the paper
that for operations f isomorphic to Einstein addition, the co-gyrolines are gyrolines for other binary
operations, fco, with metric tensors that we denote by Gco. The Gaussian curvatures of spaces with
metric tensors Gco are equal to zero.

Various algebraic and geometric properties of the operations ⊕
E

and ⊕
M

have been intensively
studied in recent papers and monographs; see, for instance, References [1–10]).

Einstein addition and Möbius addition are neither commutative nor associative. As such, they do
not form group operations. Yet, the lack of the commutative and associative laws is compensated by
the gyrocommutative and gyroassociative laws that these binary operations obey. As such, these binary
operations give rise to the algebraic objects known as gyrogroups and gyrovector spaces. Remarkably,
gyrovector spaces form the algebraic setting for various models of analytic hyperbolic geometry, just as
the standard vector spaces form the algebraic setting for analytic Euclidean geometry; see, for instance,
References [4,5,9,11–13].
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The special interest of our study of both Einstein addition and Möbius addition within the
framework of differential geometry stems from the result that they are gyrocommutative gyrogroup
operations. Indeed they give rise to (i) Einstein gyrogroups (B,⊕

E
) and Einstein gyrovector spaces

(B,⊕
E
,⊗E); and to (ii) Möbius gyrogroups (B,⊕

M
) and Möbius gyrovector spaces (B,⊕

M
,⊗M ).

The definitions of the abstract (gyrocommutative) gyrogroup and gyrovector space are presented
in Section 2.

The organization of the paper is as follows. In Section 2 we present the definitions of the
abstract (gyrocommutative) gyrogroup and gyrovector space. In Section 3 we introduce metric tensors
satisfying three properties: (i) smoothness; (ii) rotation invariance; and (iii) plane invariance. Then we
derive the equations for geodesics and parallel transport. In Section 4 we (i) introduce binary operations
defined by metric tensors G; (ii) define corresponding operations of scalar multiplication; and (iii)
introduce distances and gyronorms. In Section 5 we prove that the operation f , defined in terms of the
metric tensor of Einstein addition, coincides with Einstein addition. In Sections 6 and 7 similar results
are obtained for Möbius addition and for a novel addition. Section 8 is devoted to properties of binary
operations similar to those of Einstein addition: (i) left cancellation law; (ii) existence and properties of
unitary gyrators; and (iii) a gyrocommutative law.

In the paper, we use the following notation—R is the set of real numbers. I is the identity matrix.
A real square matrix U is called unitary [14] if U>U = I. The function sign is the signum function in
R. Components of an n-vector x are denoted by xj, j = 1, . . . , n.

2. Gyrogroups and Gyrovector Spaces

Definition 1 ((Gyrogroup), [4] Definition 2.5). A groupoid (S,⊕) is a nonempty set S with a binary
operation. A groupoid (S,⊕) is a gyrogroup if its binary operation satisfies the following axioms. In S there is at
least one element, 0, called a left identity, satisfying
(G1) 0⊕a = a,
for all a ∈ S. There is an element 0 ∈ S satisfying axiom (G1) such that for each a ∈ S there is an element
	a ∈ S, called a left inverse of a, satisfying
(G2) 	a⊕a = 0 .
Moreover, for any a, b, c ∈ S there exists a unique element gyr[a, b]c ∈ S such that the binary operation obeys
the left gyroassociative law
(G3) a⊕(b⊕c) = (a⊕b)⊕gyr[a, b]c .
The map gyr[a, b] : S→ S given by c 7→ gyr[a, b]c is an automorphism of the groupoid (S,⊕), that is,
(G4) gyr[a, b] ∈ Aut(S,⊕) ,
and the automorphism gyr[a, b] of S is called the gyroautomorphism, or the gyration, of S generated by a, b ∈ S.
The operator gyr : S× S → Aut(S,⊕) is called the gyrator of S. Finally, the gyroautomorphism gyr[a, b]
generated by any a, b ∈ S possesses the left reduction property
(G5) gyr[a, b] = gyr[a⊕b, b] ,
called the reduction axiom.

The gyrogroup axioms (G1) – (G5) in Definition 1 split up into three classes:

1. The first pair of axioms, (G1) and (G2), is a reminiscent of the group axioms.
2. The last pair of axioms, (G4) and (G5), presents the gyrator axioms.
3. The middle axiom, (G3), is a hybrid axiom linking the two pairs of axioms in (1) and (2).

As in group theory, we use the notation a	b = a⊕(	b) in gyrogroup theory as well.
In full analogy with groups, gyrogroups split up into gyrocommutative and

non-gyrocommutative ones.

Definition 2 ((Gyrocommutative Gyrogroup), [4] Definition 2.6). A gyrogroup (S,⊕) is
gyrocommutative if its binary operation obeys the gyrocommutative law
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(G6) a⊕ b = gyr[a, b](b⊕ a),
for all a, b ∈ S.

The first concrete example of a gyrogroup was discovered in 1988 [15]. It became known as
an Einstein gyrogroup. Einstein gyrogroups are employed, for instance, in References [5,16–21].
Möbius gyrogroups are employed as well, for instance, in References [4,22–24]. In full analogy with
groups, there are topological gyrogroups, studied in References [25,26]. Gyrogroups share remarkable
analogies with groups studied, for instance, in References [27–32]. Applications of gyrogroups in
harmonic analysis are found in References [17,23,33]. For other interesting studies of gyrogroups see
References [34–39]. Einstein gyrogroups and gyrovector spaces are extended to Einstein bi-gyrogroups
and bi-gyrovector spaces in References [10,40], along with an application to relativistic quantum
entanglement of multi-particle systems.

The gyrocommutative gyrogroups that we study in this paper admit scalar multiplication,
turning themselves into gyrovector spaces, the formal definition of which follows.

Definition 3 ((Gyrovector space), [4] Definition 6.2). A real inner product gyrovector space (G,⊕,⊗)
(gyrovector space in short) is a gyrocommutative gyrogroup (G,⊕) that obeys the following axioms:

(1) G is a subset of a real inner product vector space V called the carrier of G, G ⊂ V, from which it
inherits its inner product, ·, and norm, ‖ · ‖, which are invariant under gyroautomorphisms, that is,
(V0) gyr[u, v]a · gyr[u, v]b = a · b for all a, b, u, v ∈ G.

(2) G admits a scalar multiplication, ⊗, possessing the following properties. For all real numbers r, r1, r2 ∈
R and all points a ∈ G:
(V1) 1⊗ a = a,
(V2) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a,
(V3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a),
(V4) |r|⊗a

‖r⊗a‖ =
a
‖a‖ , a 6= 0, r 6= 0,

(V5) gyr[u, v](r⊗ a) = r⊗ gyr[u, v]a,
(V6) gyr[r1 ⊗ v, r2 ⊗ v] = I,
(V7) ‖r⊗ a‖ = |r| ⊗ ‖a‖,
(V8) ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖.

Like gyrogroups, also gyrovector spaces are studied in the literature. The papers [41–45] are
devoted to various aspects of Möbius gyrovector spaces. Einstein and Möbius gyrovector spaces in
the context of a gyrovector space approach to hyperbolic geometry are the subject of Reference [6].
Generalized gyrovector spaces are studied in References [46–48]. Interesting results about the
differential geometry of some gyrovector spaces may be found in Reference [49]. Other interesting
studies of gyrovector spaces are found in References [50–55].

In this paper we introduce, within the framework of differential geometry, a large number
of gyrocommutative gyrogroup operations, which enjoy key properties of Einstein addition and
Möbius addition. Furthermore, we present corresponding scalar multiplications that turn these
gyrocommutative gyrogroups into gyrovector spaces.

3. Metric Tensors

In this section we consider metric tensors that satisfy certain conditions, and derive equations for
geodesics and parallel transports for these tensors.

3.1. Parametrization of Metric Tensors

For every smooth binary operation f ∈ C1: B×B→ B,

f (a, b) = a⊕ b, (3)
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we determine a matrix function G ∈ Rn×n by the equations

g(x) =
∂

∂y
[(−x)⊕ y]|y=x

G(x) = g(x)>g(x) ,
(4)

for all x ∈ B.
We consider three conditions on the tensors G. These are—(i) rotation invariance;

(ii) two-dimensional plane invariance; and (iii) smoothness.
Rotation invariance. For every unitary n× n-matrix U and x ∈ B we have

G(Ux) = U>G(x)U. (5)

Plane invariance. For every a, b ∈ B and every two-dimensional plane that contains a and b, the
whole geodesic x(·) with initial conditions x(0) = a and ẋ(0) = b belongs to this plane.

Smoothness. The function G is differentiable in B.
The first property means invariance with respect to rotations. The second property means that

every geodesic belongs to a plane that contains its initial data. In particular, if a and b belong to the
same line l, then f (a, b) ∈ l. The third property is a standard assumption that allows to derive the
differential equations for geodesics.

These three properties are valid if there exist differentiable functions m0, m1: [0, 1)→ (0, ∞) such
that m0(0) = m1(0), m′0(s) > 0, m′1(s) > 0 for all s ∈ [0, ∞), and

G(x) = {gij(x)}n
i,j=1 = m0(‖x‖2)(I − xx>

‖x‖2 ) + m1(‖x‖2)
xx>

‖x‖2 . (6)

The inverse matrix G−1(x) of G(x) in (6) exists, being given by

G−1(x) = {gjs(x)}n
j,s=1 =

1
m0(‖x‖2)

(I − xx>

‖x‖2 ) +
1

m1(‖x‖2)

xx>

‖x‖2 . (7)

We say that the metric tensor G(x) in (6) is parametrized by the two functions m0 and m1.
Special attention will be paid to two parametrizations of G(x).

The first parametrization of G(x) is when m0 and m1 are given by

m0(r2) =
1

1− r2 , m1(r2) =
1

(1− r2)2 , ∀r ∈ [0, 1), (8)

which will be associated with Einstein addition. Einstein addition, in turn, is the binary operation
that results from Einstein’s addition law of relativistically admissible velocities in special relativity
theory [1].

The second parametrization of G(x) is when m0 and m1 are given by

m0(r2) =
1

(1− r2)2 , m1(r2) =
1

(1− r2)2 , ∀r ∈ [0, 1), (9)

which will be associated with Möbius addition. Möbius addition, in turn, is a natural generalization to
the ball of a well known Möbius transformation of the disc [4].

In order to construct binary operations that result from metric tensors G we will find the
differential equations for geodesics and parallel transports. To this end we have to calculate the
Christoffel symbols in Section 3.3.
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3.2. Geodesics

Assume x: [0, 1]→ B is a curve in B. The length of this curve is

l =
∫ 1

0

√
ẋ(s)>G(x(s))ẋ(s)ds. (10)

Denote G(x) = {gij(x)}n
i,j=1, a = x(0), b = x(1), and

F(x(s), ẋ(s)) =
√

ẋ(s)>G(x(s))ẋ(s). (11)

Assume x(·) minimizes l over all smooth curves x such that x(0) = a, x(1) = b. Use a
new parametrization

dt =
F(x(s), dx(s)

ds )ds∫ 1
0 F(x(u), ẋ(u))du

. (12)

Then, F(x(t), dx
dt (t)) ≡ const.

According to Euler-Lagrange equations for all k = 1, . . . , n we have

∂F
∂xk
− d

dt
∂F
∂ẋk

= 0. (13)

This equation takes the form

n

∑
i=1

n

∑
j=1

∂gij(x)
∂xk

dxi(t)
dt

dxj(t)
dt
− d

dt

n

∑
j=1

gkj(x)
dxj(t)

dt
= 0. (14)

Denote the entries of the matrix G−1(x) by gkp(x). Then (14) is equivalent to the following. For all
p = 1, . . . , n

ẍp +
1
2

n

∑
k=1

n

∑
i=1

n

∑
j=1
{

∂gkj(x)
∂xi

+
∂gki(x)

∂xj
−

∂gij(x)
∂xk

}gkp(x)ẋi ẋj = 0. (15)

Denote

Γp
ij(x) =

1
2

n

∑
k=1
{

∂gkj(x)
∂xi

+
∂gki(x)

∂xj
−

∂gij(x)
∂xk

}gkp(x). (16)

Then (15) and (16) yield the well known equations of geodesics [56],

ẍp +
n

∑
i=1

n

∑
j=1

Γp
ij(x)ẋi ẋj = 0. (17)

Note that along every geodesic the function

F(x(t), ẋ(t)) =

√√√√ n

∑
i=1

n

∑
j=1

gij(x(t))ẋi(t)ẋj(t) (18)

is constant.

3.3. Christoffel Symbols

For the sake of brevity we omit the arguments of the functions mj: mj = mj(‖x‖2), and of the
derivatives of these functions,

m′j(r
2) =

dmj(z)
dz

|z=r2 . (19)
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We also use the Kronecker delta δij which is equal to one if i = j, and to zero otherwise.
The elements gij(x) of the metric tensor G(x) in (6) have the form

gij(x) = m0(δij −
xixj

‖x‖2 ) + m1
xixj

‖x‖2 . (20)

Then

∂mj

∂xk
= m′j2xk

∂

∂xk

( xixj

‖x‖2

)
= −

2xixjxk

‖x‖4 +
δikxj + δjkxi

‖x‖2 .

(21)

The partial derivatives of gij(x) are given by

∂gij(x)
∂xk

= m′02xk(δij −
xixj

‖x‖2 ) + m′12xk
xixj

‖x‖2

+ (m1 −m0)(
δikxj + δjkxi

‖x‖2 −
2xixjxk

‖x‖4 ) .
(22)

Now we introduce the functions Γijk(x),

Γijk(x) =
1
2
(

∂gik
∂xj

+
∂gjk

∂xi
−

∂gij

∂xk
)

= m′0(δikxj + δjkxi − δijxk −
xixjxk

‖x‖2 )

+ m′1
xixjxk

‖x‖2 + (m1 −m0)(
δijxk

‖x‖2 −
xixjxk

‖x‖2 ).

(23)

Therefore, Christoffel symbols Γs
ij(x) are given by

Γs
ij(x) =

n

∑
k=1

Γijk(x)gks(x)

=
m′1
m1

xixjxs

‖x‖2 +
m′0
m0

(δisxj + δjsxi −
2xixjxs

‖x‖2 )

+
m1 −m0 − ‖x‖2m′0

‖x‖2m1
(δijxs −

xixjxs

‖x‖2 ) .

(24)

Having the Christoffel symbols Γs
ij(x), we are in the position to calculate the equation of geodesics

in Section 3.4.

3.4. Geodesics

The well known differential equation of geodesics is (17). Substituting the values of Christoffel
symbols Γs

ij(x) from (24) into (17) yields

ẍ +
m′0
m0

2(x> ẋ)ẋ + [(
m′1
m1
−

2m′0
m0

)
(x> ẋ)2

‖x‖2 +
m1 −m0 − ‖x‖2m′0

‖x‖2m1
(‖ẋ‖2 − (x> ẋ)2

‖x‖2 )]x = 0 . (25)
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In the special case when the initial values x(0) and ẋ(0) are parallel, that is, x(0) = λ1a and
ẋ(0) = λ2a for some vector a and numbers λ1, λ2, the solution of (25) has the form

x(t) = r(t)a . (26)

Here, the scalar function r, to be determined, satisfies the initial conditions r(0) = λ1 and
ṙ(0) = λ2, along with the differential equation

r̈ +
m′0
m0

2‖a‖2rṙ2 + (
m′1
m1
−

2m′0
m0

)‖a‖2rṙ2 = 0 (27)

or, equivalently,

r̈ +
m′1
m1
‖a‖2rṙ2 = 0 . (28)

Noting the notation m1 = m1(‖x‖2) = m1(‖a‖2r(t)2) that we use, (28) can be integrated, obtaining

ln |ṙ(t)|+ 1
2

ln |m1(‖a‖2r(t)2)| = C1, (29)

where C1 is an arbitrary constant.
The resulting first order Equation (29) can be written as

ṙ(t) =
C√

m1(‖a‖2r(t)2)
, (30)

where
C = ṙ(0)

√
m1(‖x(0)‖2) . (31)

Equation (30) is separable, giving rise to the equation√
m1(‖a‖2r2)dr = C dt . (32)

Integrating (32) yields ∫ r(1)

r(0)

√
m1(‖a‖2s2)ds = C , (33)

so that, finally, by (31) and (33),

ṙ(0) =
∫ r(1)

r(0)

√
m1(‖a‖2s2)

m1(‖a‖2r(0)2)
ds . (34)

Let us now consider the important special case when r(0) = 0 and r(1) = 1 (this means x(0) = 0
and x(1) = a). In this special case (34) reduces to

ṙ(0) =
∫ 1

0

√
m1(‖a‖2s2)

m1(0)
ds =

1
‖a‖

∫ ‖a‖
0

√
m1(s2)

m1(0)
ds. (35)

Formula (35) will prove useful in the definition of special binary operations and in the introduction
of norms associated with these operations.



Symmetry 2020, 12, 1178 9 of 44

3.5. Parallel Transport

The well known differential equation for a parallel transport of a vector X = {Xs}n
s=1 along a

curve x is [56]

Ẋs +
n

∑
i=1

n

∑
j=1

Γs
ij ẋiXj = 0, s = 1, . . . , n. (36)

Substituting the values of Christoffel symbols Γs
ij(x) from (24) into (36) yields

Ẋ +
m′1
m1

(x> ẋ)(x>X)

‖x‖2 x + {
m′0
m0

[(x>X)(I − xx>

‖x‖2 )ẋ

+(x> ẋ)(I − xx>

‖x‖2 )X] +
m1 −m0 − ‖x‖2m′0

‖x‖2m1
ẋ>(I − xx>

‖x‖2 )X} x = 0 .

(37)

If the curve x is linear, joining the origin and a point a ∈ Rn, then x(t) = at, and (37) takes
the form

Ẋ +
m′1
m1

ta>X a +
m′0
m0

[−ta>X a + t‖a‖2X] = 0 . (38)

With the initial condition X(0) = X0, (38) has the solution

X(t) =

√
m0(‖x(0)‖2)

m0(‖x(t)‖2)
(I − aa>

‖a‖2 )X0 +

√
m1(‖x(0)‖2)

m1(‖x(t)‖2)

aa>

‖a‖2 X0 . (39)

In particular, at t = 1, we have

X(1) =

√
m0(0)

m0(‖a‖2)
(I − aa>

‖a‖2 )X0 +

√
m1(0)

m1(‖a‖2)

aa>

‖a‖2 X0. (40)

If the vectors X0 and a are not parallel, then the first term in (39) describes the evolution of X(t)
in a direction orthogonal to a in the plane determined by the vectors X0 and a, and the second term in
(39) describes the evolution of X(t) in a direction parallel to a.

If we multiply the functions m0 and m1 by the same positive number, then equation (25) of
geodesics and (37) of parallel transport remain unchanged. Hence, without loss of generality we may
assume that m0(0) = m1(0) = 1.

Assumption 1. The functions m0 and m1 satisfy m0(0) = m1(0) = 1.

4. Binary Operations

We are now in the position to define a binary operation ⊕ in B that results from the metric tensor
G in (6).

4.1. Vector Addition

In this subsection we define a binary operation ⊕ in the ball B. Let vectors a, b ∈ B be given.
If b = 0, then a⊕ b = a. If a = 0, then a⊕ b = b. For the case b 6= 0, a 6= 0 we perform the following
four steps that lead to the definition of a⊕ b.

Step 1. We calculate the value ṙ(0) using Formula (35) with a replaced by b,

ṙ(0) =
1
‖b‖

∫ ‖b‖
0

√
m1(s2)ds. (41)
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Step 2. We calculate the value X(1) using Formula (40) with initial condition X0 = ṙ(0) b,

X(1) =
1√

m0(‖a‖2)
(I − aa>

‖a‖2 )X0 +
1√

m1(‖a‖2)

aa>

‖a‖2 X0. (42)

Step 3. We solve the second order differential Equation (25),

ẍ +
m′0
m0

2(x> ẋ)ẋ

+ [(
m′1
m1
−

2m′0
m0

)
(x> ẋ)2

‖x‖2 +
m1 −m0 − ‖x‖2m′0

‖x‖2m1
(‖ẋ‖2 − (x> ẋ)2

‖x‖2 )]x

= 0

(43)

with initial conditions x(0) = a, ẋ(0) = X(1).
Step 4. A binary operation a⊕ b is defined by the equation

a⊕ b = x(1). (44)

We say that the binary operation ⊕ in B is generated by the metric tensor G given by (2).

4.2. Elementary Properties of the Binary Operations ⊕

Lemma 1. For every vector v ∈ B
0⊕ v = v, (45)

(−v)⊕ v = 0. (46)

Proof. The first equation stems from the definition of ⊕. Assume a = −v, b = v, v 6= 0. Applying
steps 1-4, we have

X1 =
1√

m1(‖v‖2)
v. (47)

Consider a solution x of Equation (43) with initial conditions x(0) = −v, ẋ(0) = X1. Since the
vectors x(0), ẋ(0) are parallel to v, the solution x has the form x(t) = g(t)v, where g is a scalar function
to be determined. Equation (43) shows that g satisfies the conditions

g̈ +
m′1
m1

(ġ)2g‖v‖2 = 0,

g(0) = −1,

ġ(0) =
1√

m1(‖v‖2)

∫ 1

0

√
m1(s2‖v‖2)ds.

(48)

The solution g of this initial value problem satisfies the equation

∫ g(t)

−1

√
m1(s2‖v‖2)ds = t

∫ 1

0

√
m1(s2‖v‖2)ds. (49)

Obviously, g(1) = 0. Hence, (−a)⊕ a = x(1) = 0.

4.3. Metric Tensors Associated with Binary Operations

In this section we show that the metric tensor G that generates the operation ⊕ can be recovered
from the operation ⊕.
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Theorem 1. Let G be given by (6) and let⊕ be the binary operation (44) generated by G. Furthermore, for every
x0 ∈ B let g(x0) be the n× n-matrix such that

(−x0)⊕ (x0 + ∆x) = g(x0)∆x + o(‖∆x‖) . (50)

Then

g(x0)
>g(x0) = G(x0) = m0(‖x0‖2)

[
I −

x0x>0
‖x0‖2

]
+ m1(‖x0‖2)

x0x>0
‖x0‖2 . (51)

Proof. The matrix

g(x0) =
∂[(−x0)⊕ y]

∂y
|y=x0 (52)

exists since the functions m0 and m1 are smooth. It is sufficient to prove that

g(x0)∆x =
√

m0(‖x0‖2)∆x (53)

when x>0 ∆x = 0, and

g(x0)∆x =
√

m1(‖x0‖2)∆x (54)

when x0‖∆x.
Let’s assume that the vectors x0 and ∆x are parallel, that is, for some number δ we have ∆x = δx0.

We use the procedure described in Section 4.1 with a = −x0 and b = (1 + δ)x0. Then, following (40),

X(1) =
∫ (1+δ)‖x0‖

0

√
m1(s2)

m1(‖x0‖2)
ds

x0

‖x0‖
. (55)

The vectors x(t) and ẋ(t) are parallel. Hence (25) takes the form

ẍ +
m′1
m1
‖ẋ‖2x = 0 (56)

with initial conditions x(0) = −x0, ẋ(0) = X(1). The unique solution of this initial value problem has
the form x(t) = q(t)x0, where the scalar function q satisfies the second order differential equation

q̈ + q̇
1
2

d
dt

[
ln m1(‖x0‖2q2)

]
= 0 (57)

and the initial conditions

q(0) = −1

q̇(0) =
∫ 1+δ

0

√
m1(‖x0‖2s2)

m1(‖x0‖2)
ds .

(58)

Integrating Equation (57) yields

q̇(t) = q̇(0)

√
m1(‖x0‖2)

m1(‖x0‖2q(t)2)
. (59)

Equation (59) is separable. Integrating it over the interval t ∈ [0, 1] yields

∫ q(1)

−1

√
m1(‖x0‖2q2)

m1(‖x0‖2)
dq = q̇(0) =

∫ 1+δ

0

√
m1(‖x0‖2s2)

m1(‖x0‖2)
ds. (60)
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Therefore ∫ 1

−q(1)

√
m1(‖x0‖2q2)dq =

∫ 1+δ

0

√
m1(‖x0‖2s2)ds (61)

and ∫ 0

−q(1)

√
m1(‖x0‖2q2)dq =

∫ 1+δ

1

√
m1(‖x0‖2s2)ds. (62)

Since m1(0) = 1, we get

q(1) = δ
√

m1(‖x0‖2) + o(δ) . (63)

Thus, for ∆x = δx0, and x(1) = (−x0)⊕ (x0 + ∆x) = q(1)x0 we have

x(1) =
√

m1(‖x0‖2)∆x + o(‖∆x‖) , (64)

so that (53) is proved.
We now assume that x>0 ∆x = 0. Then ‖x0 + ∆x‖ − ‖x0‖ = o(‖∆x‖), and

X(1) =
∆x
‖x0‖

1√
m0(‖x0‖2)

∫ ‖x0‖

0

√
m1(s2)ds

+
x0

‖x0‖

∫ ‖x0‖

0

√
m1(s2)

m1(‖x0‖2)
ds + o(‖∆x‖).

(65)

Let us consider the solution x of (25) with initial conditions x(0) = −x0 and ẋ(0) = X(1).
For every t ≥ 0 the vector x(t) belongs to a two-dimensional plane that contains x0 and X(1).
We introduce an orthonormal basis with the first unit vector e1 = x0

‖x0‖
, and the second unit vector

e2 = ∆x
‖∆x‖ , and use the notation x‖(t) = e>1 x(t) and x⊥(t) = e>2 x(t).
Then x(t) = x‖(t)e1 + x⊥(t)e2 for all t ≥ 0. Owing to (25), the functions x‖ and x⊥ satisfy the

same second order differential equation

ÿ + h1(x, ẋ)ẏ + h2(x, ẋ)y = 0 (66)

with initial conditions

x‖(0) = −‖x0‖,

ẋ‖(0) =
∫ ‖x0‖

0

√
m1(s2)

m1(‖x0‖2)
ds + o(‖∆x‖),

(67)

x⊥(0) = 0,

ẋ⊥(0) =
‖∆x‖
‖x0‖

1√
m0(‖x0‖2)

∫ ‖x0‖

0

√
m1(s2)ds + o(‖∆x‖),

(68)

where

h1(x, ẋ) =
m′0(z)
m0(z)

|z=‖x‖22(x> ẋ),

h2(x, ẋ) = [(
m′1(z)
m1(z)

−
2m′0(z)
m0(z)

)
(x> ẋ)2

‖x‖2

+
m1(z)−m0(z)− z m′0(z)

z m1(z)
(‖ẋ‖2 − (x> ẋ)2

‖x‖2 )]|z=‖x‖2 .

(69)
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Since the functions h1(x(·), ẋ(·)) and h2(x(·), ẋ(·)) are bounded on [0, 1] and x⊥(0) = 0, ẋ⊥(0) =
O(‖∆x‖), we have

x⊥(t) = O(‖∆x‖), ẋ⊥(t) = O(‖∆x‖) (70)

uniformly for t ∈ [0, 1]. Denote by x0 a solution of Equation (25) with initial data

x0(0) = −x0, ẋ0(0) =
x0

‖x0‖

∫ ‖x0‖

0

√
m1(s2)

m1(‖x0‖2)
ds. (71)

Then x0
⊥(t) = 0, x0

‖(t) = −‖x(t)‖ for all t ∈ [0, 1], x0
‖(·) is increasing, and

x0(1) = 0, ẋ0(1) =
x0

‖x0‖

∫ ‖x0‖

0

√
m1(s2)ds. (72)

Denote by t̂ the value t ∈ [0, 1] such that ‖x0(t)‖ = ‖∆x‖2/3. Then 1− t̂ = O(‖∆x‖2/3). On the
interval [0, t̂] we have

| (x>(t)ẋ(t))2

‖x(t)‖2 − ẋ2
‖(t)| = |

(x‖(t)ẋ‖(t) + x⊥(t)ẋ⊥(t))2

x2
‖(t) + x2

⊥(t)
− ẋ2
‖(t)| = O(‖∆x‖4/3). (73)

Since ‖x‖2 = x2
‖ + x2

⊥, x> ẋ = x‖ ẋ‖ + x⊥ ẋ⊥, and ‖ẋ‖2 = ẋ2
‖ + ẋ2

⊥, Equations (69) and (70) imply

|hj(x(t), ẋ(t))− hj(x‖(t)e1, ẋ‖(t)e1)| = O(‖∆x‖4/3), j = 1, 2. (74)

On the other hand for every differentiable scalar function w we have

h1(w(t)e1, ẇ(t)e1) =
m′0(z)
m0(z)

|z=w(t)22(w(t)ẇ(t)),

h2(w(t)e1, ẇ(t)e1) = [(
m′1(z)
m1(z)

−
2m′0(z)
m0(z)

)|z=w(t)2 ẇ(t)2.
(75)

Therefore, there exist constants C1 and C2 that are independent of bounded ∆x, and such that

|hj(x‖(t)e1, ẋ‖(y)e1)− hj(x0(t), ẋ0(t))| ≤

≤ C1‖x‖(t)e1 − x0(t)‖+ C2‖ẋ‖(t)e1 − ẋ0(t)‖, j = 1, 2.
(76)

Since x and x0 are solutions of Equation (66), there exist constants C3, C4 and C5 independent on
bounded ∆x and such that

‖ẍ‖e1 − ẍ0‖ ≤ C3‖ẋ‖e1 − ẋ0‖+ C4‖x‖e1 − x0‖+ C5‖∆x‖4/3. (77)

Taking into account that x‖(0)e1 = x0 = −x0, ‖ẋ‖(0)e1 − ẋ0(0)‖ = o(‖∆x‖), we get

‖x‖(t̂)e1 − x0(t̂)‖ = o(‖∆x‖), ‖ẋ‖(t̂)e1 − ẋ0(t̂)‖ = o(‖∆x‖). (78)

Since 1− t̂ = O(‖∆x‖2/3), for t ∈ [t̂, 1] we have

‖ẋ(t)− ẋ0(t)‖ = o(‖∆x‖) + O(t− t̂) = O(‖∆x‖2/3), (79)

‖x(t)− x0(t)‖ = o(‖∆x‖) + O(t− t̂)2 = o(‖∆x‖). (80)
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In particular,

x‖(1) = o(‖∆x‖), ẋ‖(1) =
∫ ‖x0‖

0

√
m1(s2)ds + O(‖∆x‖2/3). (81)

In order to prove (54) we consider the Wronskian

W(t) = det

(
x‖(t) x⊥(t)
ẋ‖(t) ẋ⊥(t)

)
. (82)

It is well known that

W(1) = W(0)e−
∫ 1

0
m′0
m0

2(x> ẋ)dt. (83)

First, we calculate the exponent. Since m1(0) = 1 and ‖x(1)‖ = O(‖∆x‖), we have

∫ 1

0

m′0
m0

2(x> ẋ)dt =
∫ 1

0

d
dt
(ln(m0(‖x(t)‖2))dt

= ln
[

m0(‖x(1)‖2)

m0(‖x(0)‖2)

]
= ln

[
1

m0(‖x0‖2)

]
+ O(‖∆x‖).

(84)

Hence,

e−
∫ 1

0
m′0
m0

2(x> ẋ)dt
= m0(‖x0‖2) + O(‖∆x‖). (85)

Then, we calculate the values of the Wronskian:

W(0) = x‖(0)ẋ⊥(0)− ẋ‖(0)x⊥(0) = −‖∆x‖ 1√
m0(‖x0‖2)

∫ ‖x0‖

0

√
m1(s2)ds, (86)

W(1) = x‖(1)ẋ⊥(1)− ẋ‖(1)x⊥(1) = −x⊥(1)
∫ ‖x0‖

0

√
m1(s2)ds + o(‖∆x‖). (87)

Thus
x⊥(1) =

√
m0(‖x0‖2)‖∆x‖+ o(‖∆x‖). (88)

Taking into account that x‖(1) = o(‖∆x‖) and ∆x||e2, we get

(−x0)⊕ (x0 + ∆x) = x(1) = x‖(1)e1 + x⊥(1)e2 =
√

m0(‖x0‖2)∆x + o(‖∆x‖), (89)

and
g(x0)∆x =

√
m0(‖x0‖2)∆x. (90)

This completes the proof of the theorem.

Theorem 1 shows that there is a one-to-one correspondence between metric tensors G in the form
(6), and binary operations ⊕ that G generates, as defined in Section 4.1.

4.4. Multiplication of Vectors by Numbers

In this subsection we define a function ⊗: R×B→ B (multiplication of vectors by numbers) that
is compatible with the binary operation ⊕ in the sense that

(t1 ⊗ a)⊕ (t2 ⊗ a) = (t1 + t2)⊗ a

(t1 ⊗ (t2 ⊗ a)) = (t1t2)⊗ a
(91)
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for all t1, t2 ∈ R, a ∈ B. Notice that t1 + t2 and t1t2 in (91) are the common addition and multiplication
of t1 and t2 in R. The first identity in (91) is called the scalar distributive law, and the second identity
in (91) is called the scalar associative law.

Let a, b ∈ B be two nonzero parallel vectors (that is, belong to the same line passing through the
origin). We calculate a⊕ b using the four steps described in Section 4.1.

Step 1. We define

ṙ(0) =
1
‖b‖

∫ ‖b‖
0

√
m1(s2)ds . (92)

Step 2. We compute X(1) using (40) with X0 = ṙ(0)b, noting that

(I − aa>

‖a‖2 )b = 0 and a>b = sign(a>b)‖a‖‖b‖ . (93)

Then

X(1) = sign(a>b)
a
‖a‖

∫ ‖b‖
0

√
m1(s2)

m1(‖a‖2)
ds . (94)

Step 3. We integrate Equation (25) with initial data x(0) = a and ẋ(0) = X(1). We parametrize
the solution x as follows: x(t) = p(t)a with scalar function p. Then p(0) = 1, ṗ(0)a = X(1),
x(1) = p(1)a = a⊕ b. Equation (34) implies

ṗ(0) =
∫ p(1)

p(0)

√
m1(‖a‖2s2)

m1(‖a‖2 p(0)2)
ds . (95)

Therefore
sign(a>b)
‖a‖

∫ ‖b‖
0

√
m1(s2)

m1(‖a‖2)
ds =

∫ p(1)

p(0)

√
m1(‖a‖2s2)

m1(‖a‖2 p(0)2)
ds . (96)

Following obvious simplifications we get

∫ p(1)‖a‖

0

√
m1(s2)ds =

∫ ‖a‖
0

√
m1(s2)ds + sign(a>b)

∫ ‖b‖
0

√
m1(s2)ds . (97)

Step 4. We have a⊕ b = p(1)a.
Therefore p(1)‖a‖ = sign((a⊕ b)>a)‖a⊕ b‖. We define a function h as follows. For every number

p we set

h(p) =
∫ p

0

√
m1(s2)ds . (98)

Then, h(p) = sign(p)h(|p|) and

sign((a⊕ b)>a)h(‖a⊕ b‖) = h(‖a‖) + sign(a>b)h(‖b‖) . (99)

The function h is monotonically increasing. Therefore, h is invertible, the inverse of which is
denoted by h−1.

Assumption 2. We assume that ∫ 1

0

√
m1(s2)ds = ∞. (100)

Under this assumption the function h is a bijection (−1, 1) → (−∞, ∞). In particular, h(0) = 0,
and for every t ∈ R and p ∈ (−1, 1) there exists h−1(t h(p)).
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Now for every number t we define

t⊗ a =
a
‖a‖h−1(t h(‖a‖)) . (101)

Then h(‖t⊗ a‖) = |t|h(‖a‖) and (−t)⊗ a = −(t⊗ a). We assume t1 > 0, t2 > 0. Then

sign(a>(t1 ⊗ a)) = sign(a>(t2 ⊗ a))

= sign(a>((t1 + t2)⊗ a)

= 1.

(102)

Now we have

(t1 ⊗ a)⊕ (t2 ⊗ a) =
a
‖a‖h−1(h(‖(t1 ⊗ a)⊕ (t2 ⊗ a)‖))

=
a
‖a‖h−1(h(‖t1 ⊗ a‖) + h(‖t2 ⊗ a‖))

=
a
‖a‖h−1(t1h(‖a‖) + t2h(‖a‖))

=
a
‖a‖h−1((t1 + t2)h(‖a‖))

= (t1 + t2)⊗ a

(103)

and

(t1 ⊗ (t2 ⊗ a)) =
a
‖a‖h−1(t1h(‖t2 ⊗ a‖))

=
a
‖a‖h−1(t1t2h(‖a‖))

= (t1t2)⊗ a .

(104)

Owing to the property (−t) ⊗ a = −(t ⊗ a), the cases with t1 and t2 of arbitrary signs are
considered similarly. Accordingly, the operation of multiplication by a number is well defined.

From the definition of scalar product (101) it is easy to see that

1⊗ a = a (105)

and for all a ∈ B\{0}, r 6= 0
|r| ⊗ a
‖r⊗ a‖ =

a
‖a‖ . (106)

4.5. Distances and Norms

We introduce the standard definition of distance between points a and b of the unit ball B.

Definition 4. The distance between points a, b ∈ B is the minimal length of a curve connecting a and b,

dist(a, b) = min{
∫ 1

0

√√√√ n

∑
j=1

n

∑
i=1

gij(x(t))ẋi(t)ẋj(t) dt} , (107)

where the minimum is taken over all smooth functions x: [0, 1] → B with boundary conditions x(0) = a
and x(1) = b.
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Obviously, dist(a, b) ≥ 0 for all a, b ∈ B, and dist(a, b) = 0 iff a = b since G(x) > 0 for all x ∈ B.
Besides, we have the triangle inequality: for all a, b, c ∈ B

dist(a, b) + dist(b, c) ≥ dist(a, c). (108)

The value dist(0, a) is called the norm of a, denoted by ‖a‖⊕.

Lemma 2. For every a, b ∈ B there exists z ∈ B such that a⊕ z = b.

Proof. Fix arbitrary points a, b ∈ B. Since B is convex, there exist curves in B connecting a and b.
The minimum of the lengths of such curves does exist since G(x)→ ∞ as ‖x‖ → 1. Let this minimum
be attained at a curve q: [0, 1] → B. Then q is a geodesic which connects a and b: q(0) = a, q(1) = b.
Consider the vector q̇(0). Make a parallel transport of this vector along the interval connecting a
and the origin. Denote the vector at the origin by y. Consider a geodesic w: [0, 1] → B with initial
conditions w(0) = 0, ẇ(0) = y. Denote z = w(1). Then according to the steps 1,2,3 described in the
Section 4.1 we have b = a⊕ z. The lemma is proved.

Consider a geodesic x: [0, 1]→ B with boundary conditions x(0) = a and x(1) = b. It is known
that dist(a, b) is equal to the length of this geodesic, and that along the geodesic the integrand on the
right-hand side of (107) is constant [56]. Therefore

dist(a, b) =

√√√√ n

∑
j=1

n

∑
i=1

gij(x(0))ẋi(0)ẋj(0) . (109)

Let us consider a geodesic y: [0, 1]→ B with boundary points y(0) = 0 and y(1) = z. The value
of
√

∑n
j=1 ∑n

i=1 gij(y(t))ẏi(t)ẏj(t) is constant over t ∈ [0, 1]. Hence,

‖z‖⊕ =

√√√√ n

∑
j=1

n

∑
i=1

gij(y(0))ẏi(0)ẏj(0) . (110)

But the vector ẋ(0) is a parallel transport of the vector ẏ(0) along the curve
{as : s ∈ [0, 1]}. Therefore,√√√√ n

∑
j=1

n

∑
i=1

gij(x(0))ẋi(0)ẋj(0) =

√√√√ n

∑
j=1

n

∑
i=1

gij(y(0))ẏi(0)ẏj(0) . (111)

Finally,

dist(a, b) =

√√√√ n

∑
j=1

n

∑
i=1

gij(y(0))ẏi(0)ẏj(0) = ‖z‖⊕ . (112)

In Section 3.4 we found that y(t) = r(t)z, and

ṙ(0) =
1
‖z‖

∫ ‖z‖
0

√
m1(s2)ds . (113)

In view of the equation √√√√ n

∑
j=1

n

∑
i=1

gij(y(0))ẏi(0)ẏj(0) = ṙ(0)‖z‖ (114)
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we have

‖z‖⊕ = dist(a, b) =
∫ ‖z‖

0

√
m1(s2)ds = h(‖z‖) . (115)

Interestingly, the norm ‖ · ‖⊕ does not depend on the function m0. In particular, if we have two
spaces with metric tensors that have the same function m1, then the distances between points (and
hence the norms) in these two spaces coincide, and the operations of multiplication by a number
also coincide. We’ll see this result in several examples, including the spaces with Einstein and
Möbius additions.

Now let us consider a binary operation ⊕ applied to numbers. That is, given functions m0,
m1, we consider the tensor G given by (6), and its resulting binary operation ⊕ introduced in
Section 4.1. Also, let’s consider a tensor with the same functions m0 and m1 in the one dimensional
space. The corresponding operation between numbers is denoted by the same symbol, ⊕.

For arbitrary numbers p, q the value of p⊕ q is defined by the four-steps procedure presented in
Section 4.1. If q = 0, then p⊕ q = p. Assume q 6= 0.

Step 1. We calculate

ṙ(0) =
1
|q|

∫ |q|
0

√
m1(s2)ds. (116)

Step 2. Since 1− qq>

|q|2 = 0, we have

X0 =
∫ q

0

√
m1(s2)ds, X1 =

1√
m1(q2)

∫ q

0

√
m1(s2)ds. (117)

Step 3. If x is a scalar then Equation (25) for geodesics takes the form

ẍ +
m′1
m1

(ẋ)2x = 0. (118)

A solution x of (118) with the initial values x(0) = p, ẋ(0) = X1 satisfies the condition

∫ x(t)

p

√
m1(s2)ds = t

∫ q

0

√
m1(s2)ds. (119)

for all t > 0.
Step 4. Since p⊕ q = x(1), we have

∫ p⊕q

0

√
m1(s2)ds =

∫ p

0

√
m1(s2)ds +

∫ q

0

√
m1(s2)ds. (120)

Thus, taking into account the definition of the function h, we get

h(p⊕ q) = h(p) + h(q). (121)

Similarly, the operation ⊗ for numbers is defined by (101). In particular, for arbitrary numbers r
and p we have

r⊗ p = h−1(r h(p)). (122)

Thus, for every number r and vector a ∈ B

‖r⊗ a‖ = |h−1(r h(‖a‖))| = |r| ⊗ ‖a‖. (123)

Let a, b ∈ B\{0}. The triangle inequality implies

dist(a, 0) + dist(0,−b) ≥ dist(a,−b) (124)



Symmetry 2020, 12, 1178 19 of 44

and equality is attained only if the vectors a and b belong to the same ray, that is, if there exists a
positive number λ such that a = λb.

In terms of the function h, inequality (124) yields

h(‖a‖) + h(‖b‖) ≥ h(‖a⊕ b‖) . (125)

Employing (121), we get

‖a‖ ⊕ ‖b‖ = h−1[h(‖a‖) + h(‖b‖)] ≥ h−1[h(‖a⊕ b‖)] = ‖a⊕ b‖ . (126)

We have thus proved the following theorem.

Theorem 2. For all vectors a, b ∈ B we have the gyrotriangle inequality

‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖, (127)

and equality is attained iff the vectors a, b lie on the same ray, that is, for some nonnegative number λ we have
a = λb or b = λa.

Inequality (127) may be considered as a triangle inequality in the spaces of vectors and numbers
with the same addition operation ⊕.

It is shown below that for Einstein addition and all additions isomorphic to Einstein addition
(for example, Möbius addition) a solution of the equation a⊕ x = b is given by x = (−a)⊕ b. Hence,
we have the following result.

Theorem 3. If a solution x of the equation a⊕ x = b is given by x = (−a)⊕ b, then

dist(a, b) = h(‖(−a)⊕ b‖). (128)

5. Spaces with Einstein Addition

In this section, we consider a special binary operation in the Beltrami-Klein ball model of
hyperbolic geometry that turns out to be Einstein addition [1,5].

We consider the metric tensor G in (6)–(8) parametrized by the functions

m0(r2) =
1

1− r2 and m1(r2) =
1

(1− r2)2 , (129)

so that

G(x) =
1

1− ‖x‖2

[
I − xx>

‖x‖2

]
+

1
(1− ‖x‖2)2

xx>

‖x‖2 . (130)

5.1. Einstein Addition

We follow the four steps described in Section 4:
Step 1. We evaluate

ṙ(0) =
1
‖b‖

∫ ‖b‖
0

ds
1− s2 =

atanh(‖b‖)
‖b‖ . (131)

Step 2. We find a solution of Equation (40) with X0 = atanh(‖b‖)
‖b‖ b,

X(1) =
atanh(‖b‖)
‖b‖ [

√
1− ‖a‖2(I − aa>

‖a‖2 ) + (1− ‖a‖2)
aa>

‖a‖2 ]b . (132)
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Step 3. We solve Equation (25) with initial conditions x(0) = a, ẋ(0) = X(1). Noticing that

m′1(r
2)

m1(r2)
−

2m′0(r
2)

m0(r2)
= 0

m1(r2)−m0(r2)− r2m′0(r
2) = 0 ,

(133)

Equation (25) takes the form

ẍ(t) +
d(ln(m0(‖x(t)‖2))

dt
ẋ(t) = 0 . (134)

The solution to the initial value problem is given by

x(t) = a +
tanh(t atanh(‖b‖))

atanh(‖b‖)
[

1 + a>b
‖b‖ tanh(t atanh(‖b‖))

]X(1) (135)

Step 4. Finally, we obtain the addition

a⊕E b = a +

√
1− ‖a‖2

1 + a>b
[b− a>b√

1− ‖a‖2 + 1
a]

=
1

1 + a>b
{[1 + a>b

‖a‖2 (1−
√

1− ‖a‖2)]a +
√

1− ‖a‖2b} ,

(136)

for all a, b ∈ B, which is recognized as Einstein addition.
The binary operation described in Section 4 enables Einstein addition (136) to be recovered

from the metric tensor (130). Thus, the operation a ⊕E b is determined by its local properties in a
neighborhood of the set {(a, b) : a, b ∈ B, a = −b}.

The binary operation ⊕E in (136) turns out to be the well known Einstein addition in the
ball, studied in special relativity theory, where the speed of light in empty space is normalized
to c = 1 [1,4,5].

5.2. Einstein Multiplication by a Number

To define an operation of multiplication by a number we evaluate the function h in (98) with the
function m1 in (129), obtaining,

h(p) =
∫ p

0

1
1− s2 ds = atanh(p) . (137)

Therefore, by (101),

t⊗E a = atanh(t tanh(‖a‖)) a
‖a‖ . (138)

5.3. Derivation of the Metric Tensor Associated with Einstein Addition

We have derived Einstein addition from the metric tensor (130). According to Theorem 1 we can
make also the reverse procedure, that is, we can recover the metric tensor (130) from Einstein addition.
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In this subsection we demonstrate it directly. Let us consider the Einstein difference in the following
chain of equations.

(−x)⊕E (x + ∆x)

= −x +
1

1− x>(x + ∆x)
[
√

1− ‖x‖2(x + ∆x− x>(x + ∆x)
‖x‖2 x)

+
x>(x + ∆x)
‖x‖2 (1− ‖x‖2)x]

=
1

1− x>(x + ∆x)
[
√

1− ‖x‖2∆x + (1−
√

1− ‖x‖2)
x>∆x
‖x‖2 x]

= g(x)∆x + o(∆x) ,

(139)

where the n× n-matrix g(x) is given by

g(x) =
1

1− ‖x‖2 [
√

1− ‖x‖2(I − xx>

‖x‖2 ) +
xx>

‖x‖2 ] . (140)

Then, the metric tensor G(x) is given by the equation

G(x) = g(x)>g(x)

=
1

1− ‖x‖2 (I − xx>

‖x‖2 ) +
1

(1− ‖x‖2)2
xx>

‖x‖2 ,
(141)

thus recovering (130).

6. Spaces with Möbius Addition

Contrasting (129), let’s assume that

m0(r2) = m1(r2) =
1

(1− r2)2 , (142)

so that the metric tensor G(x) in (6) and (9) takes the form

G(x) =
1

(1− ‖x‖2)2 I . (143)

6.1. Möbius Addition

Again, we follow the four steps described in Section 4.
Step 1. Similar to the case of Einstein addition, we evaluate

ṙ(0) =
1
‖b‖

∫ ‖b‖
0

1
1− s2 ds =

atanh(‖b‖)
‖b‖ . (144)

Step 2. With

X0 =
atanh(‖b‖)
‖b‖ , (145)

we find a solution X(1) to Equation (40),

X(1) = (1− ‖a‖2)
atanh(‖b‖)
‖b‖ b . (146)



Symmetry 2020, 12, 1178 22 of 44

Step 3. We solve the initial value problem

ẍ +
2

1− ‖x‖2 [2(x> ẋ)ẋ− ‖ẋ‖2x] = 0

x(0) = a

ẋ(0) = X(1) ,

(147)

seeking a solution of the form

x(t) = P + R1 cos ϕ(t) + R2 sin ϕ(t) , (148)

with constant vectors P, R1, R2.
The initial value problem (147) has a solution (148) with the following parameters and a function

ϕ, as may be checked directly,

R1 = − (1− ‖a‖2)‖b‖2

2(‖a‖2‖b‖2 − (a>b)2)
a +

(1− ‖a‖2)a>b
2(‖a‖2‖b‖2 − (a>b)2)

b

R2 =
1− ‖a‖2

2
√
‖a‖2‖b‖2 − (a>b)2

b

P = a− R1

ϕ(t) = 2 arctan
[√
‖a‖2‖b‖2 − (a>b)2 tanh(atanh(‖b‖)t)
‖b‖+ a>b tanh(atanh(‖b‖)t)

]
.

(149)

Therefore,

x(1) = P + R1 cos ϕ(1) + R2 sin ϕ(1)

=
(1 + 2a>b + ‖b‖2)a + (1− ‖a‖2)b

1 + 2a>b + ‖a‖2‖b‖2 .
(150)

We notice that
‖R1‖ = ‖R2‖ = ‖P− x(t)‖ , ∀t ≥ 0, (151)

and
‖P‖2 = ‖R1‖2 + 1 . (152)

Therefore, each geodesic is a circular arc centered at P with radius ‖R1‖, which intersects the unit
circle orthogonally, and it tends to one of these two intersections as t→ ∞ and as t→ −∞.

Step 4. Finally, we get

a⊕M b =
(1 + 2a>b + ‖b‖2)a + (1− ‖a‖2)b

1 + 2a>b + ‖a‖2‖b‖2 , (153)

for all a, b ∈ B, which is the well known formula for Möbius addition in the ball [1,4].
Möbius addition is recovered here from the metric tensor (143). Thus, the operation a⊕M b is

determined by its local properties in a neighborhood of the set {(a, b) : a, b ∈ B, a = −b}.
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6.2. Möbius Multiplication by a Number

Since the function m1 is the same for both Einstein and Möbius metric tensors, the multiplication
by a scalar is the same as in (138) in Section 5.2,

t⊗M a = atanh(t tanh(‖a‖)) a
‖a‖ . (154)

6.3. Derivation of the Metric Tensor Associated with Möbius Addition

As for Einstein addition, to recover the underlying metric tensor from its associated Möbius
addition it is possible to use Theorem 1. In this subsection we calculate directly the metric tensor G
that determines the binary operation ⊕M . Let us consider the Möbius difference

(−x)⊕M (x + ∆x)

=
1− 2x>(x + ∆x) + ‖x‖2‖x + ∆x‖2)(−x) + (1− ‖x‖2)(x + ∆x)

1− 2x>(x + ∆x) + ‖x‖2‖x + ∆x‖2

=
(1− ‖x‖2)∆x− ‖∆x‖2x

(1− ‖x‖2)2 − 2x>(1− ‖x‖2) + ‖x‖2‖∆x‖2

= gM (x)∆x + o(∆x) ,

(155)

where
gM (x) =

1
1− ‖x‖2 I . (156)

Then, the metric tensor G(x) is given by the equation

G(x) = gM (x)>gM (x) =
1

(1− ‖x‖2)2 I , (157)

thus recovering (143).

7. A Space with an Operation Isomorphic to Euclidean Addition

Assume
m0(r2) =

1
1− r2 , m1(r2) =

1
(1− r2)3 . (158)

Then the metric tensor (6) takes the form

G(x) =
1

1− ‖x‖2

[
I − xx>

‖x‖2

]
+

1
(1− ‖x‖2)3

xx>

‖x‖2 . (159)

7.1. Binary Operation

We follow the four steps described in Section 4.
Step 1. We calculate

ṙ(0) =
1
‖b‖

∫ ‖b‖
0

1√
(1− s2)3

ds =
1√

1− ‖b‖2
. (160)

Step 2. We find a solution of Equation (40) with X0 = b√
1−‖b‖2

,

X(1) =

√
1− ‖a‖2

1− ‖b‖2

(
b− (a>b)a

)
. (161)
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Step 3. We solve Equation (25) with initial conditions x(0) = a, ẋ(0) = X(1). Noticing that

m′1(r
2)

m1(r2)
−

2m′0(r
2)

m0(r2)
=

1
1− r2 ,

m1(r2)−m0(r2)− r2m′0(r
2)

r2m1(r2)
= 1 ,

(162)

we see that Equation (25) takes the form

ẍ +
2x> ẋ

1− ‖x‖2 ẋ +

[
‖ẋ‖2 +

(x> ẋ)2

1− ‖x‖2

]
x = 0 . (163)

Assume vectors a and b are not parallel. The solution of the initial value problem lies entirely in
the plane containing the vectors a and b. Denote by

b⊥ = b− a>b
‖a‖2 a (164)

the component of vector b orthogonal to a. Denote r(t) = ‖x(t)‖. Then the vector function x may be
presented in the polar coordinates as follows:

x = r cos ϕ
a
‖a‖ + r sin ϕ

b⊥
‖b⊥‖

, (165)

where ϕ is a scalar function, the angle of x in the plane with unit vectors a
‖a‖ and b⊥

‖b⊥‖
. Then r(0) = ‖a‖,

ϕ(0) = 0, ẋ(0) = ṙ(0) a
‖a‖ + r(0)ϕ̇(0) b⊥

‖b⊥‖
, and

‖b⊥‖r(0)ϕ̇(0) = b>⊥ ẋ(0) = b>⊥X(1) =

√
1− ‖a‖2

1− ‖b‖2 b>⊥b > 0. (166)

Therefore ϕ̇(0) > 0. Moreover,

x> ẋ = rṙ, ‖ẋ‖2 = ṙ2 + r2 ϕ̇2, ‖ẋ‖2 − (x> ẋ)2

‖x‖2 = r2 ϕ̇2, (167)

and Equation (163) is equivalent to the following two scalar equations:

r̈ +
3

1− r2 ṙ2r + r(r2 − 1)ϕ̇2 = 0, (168)

and
rϕ̈ + 2ϕ̇

ṙ
1− r2 = 0. (169)

Equation (169) can be written as
d
dt

[
r2 ϕ̇

1− r2

]
= 0. (170)

Hence, there exists a number C such that

r2 ϕ̇

1− r2 = C. (171)

Since ϕ̇(0) > 0, we have C > 0, and ϕ̇(t) > 0 for all t ∈ [0, 1].
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Substituting (171) into (168) yields

r̈ +
3rṙ

1− r2 −
(1− r2)3C2

r3 = 0. (172)

It follows that if ṙ(0) ≥ 0, then ṙ(t) > 0 for all t > 0. If ṙ(0) < 0, then there exists a number t̂ > 0
such that ṙ(t) < 0 for all t ∈ [0, t̂), ṙ(t̂) = 0, and ṙ(t) > 0 for all t > t̂. Notice that

r(0)ṙ(0) = x(0)> ẋ(0) = a>X(1) = a>b
(1− ‖a‖2)3/2

(1− ‖b‖2)1/2 . (173)

Therefore, sign ṙ(0) = sign a>b. Below we consider the case ṙ(0) > 0. The case ṙ(0) ≤ 0 may be
studied in a very similar manner and leads to the same formula for a⊕ b.

Let z = r2. Then
ż = 2rṙ, z̈ = 2rr̈ + 2ṙ2, (174)

and Equation (172) acquires the form

z̈
2
− ż2

4z
+

3ż2

4(1− z)
− (1− z)3C2

z
= 0. (175)

Since

d
dt

[
ż2

z(1− z)3 +
4C2(1− z)

z

]
=

4ż
z(1− z)3

[
z̈
2
− ż2

4z
+

3ż2

4(1− z)
− (1− z)3C2

z

]
= 0, (176)

there exists a constant C1 such that

ż2

z(1− z)3 +
4C2(1− z)

z
= C1. (177)

Equation (177) is autonomous, and therefore separable,

dz√
(1− z)3(C1z− 4C2(1− z))

= dt. (178)

Let’s calculate C and C1 in terms of a and b. Let

p =
∫ ‖b‖

0

ds√
(1− s2)3

=
‖b‖√

1− ‖b‖2
, (179)

and let α ∈ (0, π/2) be the angle between a and b:

cos α =
a>b
‖a‖ ‖b‖ . (180)

Then

x(0) = a

ẋ(0) = X1 = p
√

1− ‖a‖2

(
b
‖b‖ −

a>b
‖b‖ a

)
.

(181)

We have r(0) = ‖x(0)‖ = ‖a‖,

2x(0)> ẋ(0) =
d(‖z‖)2

dt
= 2r(0)ṙ(0) . (182)
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Therefore,

ṙ(0) = p
√
(1− ‖a‖2)3 a>b

‖a‖ ‖b‖ = p
√
(1− ‖a‖2)3 cos α. (183)

For every t we have

ϕ̇2 =
1
‖x‖2

(
‖ẋ‖2 − (x> ẋ)2

‖x‖2

)
. (184)

Therefore

ϕ̇(0) = p

√
1− ‖a‖2

‖a‖ sin α. (185)

From (171) we get

C =
r(0)2 ϕ̇(0)
1− r(0)2 = p

‖a‖ sin α√
1− ‖a‖2

. (186)

Now we calculate the constant C1 using (177),

C1 =
4r(0)2ṙ(0)2

r(0)2(1− r(0)2)3 +
4C2(1− r(0)2)

r(0)2 = 4p2. (187)

We integrate Equation (178) over t ∈ [0, 1] using these values of C, C1 and the equation
z = r2, obtaining ∫ 1

0

ṙ dt√
(1− r2)3

(
1− ‖a‖

2(1−r2)
r2(1−‖a‖2)

sin2 α
) = p. (188)

Changing the variable of integration on the left-hand side, and using the initial condition r(0) =
‖a‖, we have ∫ r(1)

‖a‖

ds√
(1− s2)3

(
1− ‖a‖

2(1−s2)
s2(1−‖a‖2)

sin2 α
) =

∫ ‖b‖
0

ds√
(1− s2)3

. (189)

Both integrals can be evaluated in terms of elementary functions,√
r(1)2

1− r(1)2 −
‖a‖2 sin2 α

1− ‖a‖2 −

√
‖a‖2 cos2 α

1− ‖a‖2 =
‖b‖√

1− ‖b‖2
. (190)

In order to calculate ϕ(1), we solve Equation (171) for ϕ̇,

ϕ̇ = C
1− r2

r2 . (191)

Now we rewrite Equation (178) in terms of r,

ṙ = p

√
(1− r2)3(1− ‖a‖

2(1− r2)

r2(1− ‖a‖2)
sin2 α. (192)
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Then, we multiply and divide the right-hand side of (190) by dr
dt , use Equation (192) and integrate

(190) over [0, 1] taking into account that ϕ(0) = 0, obtaining

ϕ(1) =
∫ 1

0

sin α ṙ dt√
r2(1− r2)2

[
r2

1−r2 −
‖a‖2

1−‖a‖2 sin2 α
)
√
‖a‖2

1− ‖a‖2

=
∫ r(1)

‖a‖

sin α dr√
r2(1− r2)2

[
r2

1−r2 −
‖a‖2

1−‖a‖2 sin2 α
)
√
‖a‖2

1− ‖a‖2

= α− arctan

√√√√ ‖a‖2 sin2 α(1− r(1)2)

(1− ‖a‖2)r(1)2 − (1− r(1)2) ‖a‖
2

1−‖a‖2 sin2 α
.

(193)

Noticing that
r(1)2

1− r(1)2 = ‖ a√
1− ‖a‖2

+
b√

1− ‖b‖2
‖2 (194)

and

r(1)2

1− r(1)2 −
‖a‖2

1− ‖a‖2 sin2 α =

(√
‖a‖2 cos2 α

1− ‖a‖2 +

√
‖b‖2

1− ‖b‖2

)2

, (195)

we have

cos ϕ(1) =

√
r(1)2

1− r(1)2

(√
‖a‖2

1− ‖a‖2 +

√
‖b‖2 cos2 α

1− ‖b‖2

)

sin ϕ(1) =

√
r(1)2

1− r(1)2

√
‖b‖2 sin2 α

1− ‖b‖2 .

(196)

Taking into account (165), (195) and (196), we finally get

x(1) =

a√
1−‖a‖2

+ b√
1−‖b‖2√

1 + ‖ a√
1−‖a‖2

+ b√
1−‖b‖2

‖2
=

γaa + γbb√
1 + ‖γaa + γbb‖2

, (197)

where
γa =

1√
1− ‖a‖2

. (198)

Step 4. We set

a⊕ b = x(1) =
γaa + γbb√

1 + ‖γaa + γbb‖2
. (199)

To see that the novel operation ⊕ in the ball of Rn is isomorphic to the Euclidean vector addition
in Rn, let us consider the mapping f : B→ Rn given by

f (x) = γxx . (200)

Then
1− ‖a⊕ b‖2 =

1
1 + ‖γaa + γbb‖2 (201)
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and
f (a⊕ b) = γaa + γbb = f (a) + f (b). (202)

Equation (202) implies that the novel operation ⊕ in the ball is isomorphic to the Euclidean
operation, +, in Rn and hence it is commutative and associative.

7.2. Multiplication by Numbers

To define the operation⊗ of multiplication by numbers satisfying properties (91) in the Section 4.4
we have to introduce the function h: [0, 1)→ R, (98),

h(p) =
∫ p

0

√
1

(1− s2)3 ds =
p√

1− p2
. (203)

Obviously, h is an increasing bijection. Therefore the inverse function h−1 exists. It is easy to
see that

h−1(q) =
q√

1 + q2
. (204)

The operation ⊗ is given by Formula (101), which in our case has the form

t⊗ a = h−1(t h(‖a‖) a
‖a‖ =

t√
1 + (t2 − 1)‖a‖2

a
‖a‖ . (205)

Combining (202) and (203), (203) and (204) we get

f (t⊗ a) =
t⊗ a√

1− ‖t⊗ a‖2
= h(‖t ⊗ a‖) t⊗ a

‖ ⊗ a‖ = th(‖a‖) a
‖a‖ = t f (a). (206)

Equations (202) and (206) imply the distributive property of the operations ⊕ and ⊗: for any
numbers t1, t2, and vectors a, b ∈ B we have

f ((t1 ⊗ a)⊕ (t2 ⊗ b)) = t1 f (a) + t2 f (b). (207)

Thus, the operation ⊕ is isomorphic to Euclidean addition.

7.3. Derivation of the Metric Tensor Associated with the Binary Operation

To recover the underlying metric tensor from the operation⊕we can use Theorem 1. Noticing that

(−x)⊕ (x + ∆x) =
− x√

1−‖x‖2
+ x+∆x√

1−‖x+∆x‖2√
1 + ‖ − x√

1−‖x‖2
+ x+∆x√

1−‖x+∆x‖2
‖2

=
∆x√

1− ‖x‖2
+ x

(
1√

1− ‖x + ∆x‖2
− 1√

1− ‖x‖2

)
+ o(‖∆x‖)

=

(
1√

1− ‖x‖2
I +

xx>√
(1− ‖x‖2)3

)
∆x + o(‖∆x‖) ,

(208)
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we have

g(x) =
1√

1− ‖x‖2
I +

xx>√
(1− ‖x‖2)3

=
1√

1− ‖x‖2

(
I − xx>

‖x‖2

)
+

1√
(1− ‖x‖2)3

xx>

‖x‖2 . .

(209)

The metric tensor G associated with the operation ⊕ is given in (51),

G(x) = g(x)>g(x) =
1

1− ‖x‖2

(
I − xx>

‖x‖2

)
+

1
(1− ‖x‖2)3

xx>

‖x‖2 . (210)

It has the form (6) parametrized by the functions

m0(r2) =
1

1− r2

m1(r2) =
1

(1− r2)3 ,

(211)

thus recovering (158)–(159).

8. Properties of Einstein Addition

Seemingly structureless, Einstein addition is neither commutative nor associative. The Einstein
groupoid (B,⊕

E
) formed by the ball B equipped with Einstein addition ⊕

E
is a gyrocommutative

gyrogroup. A gyrogroup is a group-like object that possesses a rich structure [1,5], formally defined
in Definitions 1 and 2, Section 2. Einstein addition is a gyrocommutative gyrogroup operation,
several properties of which are presented below.

1. Left Cancellation Law:

a⊕E ((−a)⊕E b) = b, ∀a, b ∈ B . (212)

2. Existence of Gyrations: for every a, b ∈ B there exists a unitary matrix denoted by gyr[a, b] such
that for all c ∈ B we have the following gyroassociative law:

a⊕E (b⊕E c) = (a⊕E b)⊕E (gyr[a, b]c), ∀a, b, c ∈ B. (213)

3. Gyrocommutative Law:

a⊕E b = gyr[a, b](b⊕E a), ∀a, b ∈ B , (214)

such that
‖a⊕E b‖ = ‖b⊕E a‖ . (215)

4. Left Reduction Property:

gyr[a⊕E b, b] = gyr[a, b], ∀a, b ∈ B . (216)

The validity of these properties was proved by using computer algebra (specifically, the software
MATHEMATICA for symbolic manipulation). Below we prove these properties by hand using the
definition of Einstein addition (136), and provide the matrix representation of gyrations gyr[a, b].
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8.1. Left Cancellation Law

By Einstein addition (136), we have

(−a)⊕E b = −a +
1

1− a>b
[
√

1− ‖a‖2(b− a>b
‖a‖2 a) +

a>b
‖a‖2 (1− ‖a‖

2)a] . (217)

We notice that

a>[(−a)⊕E b] = −‖a‖2 +
1− ‖a‖2

1− a>b
a>b =

a>b− ‖a‖2

1− a>b
(218)

and

1 + a>[(−a)⊕E b] =
1− ‖a‖2

1− a>b
. (219)

Therefore,

a⊕E ((−a)⊕E b) = a +

√
1− ‖a‖2

1− ‖a‖2 (1− a>b){−a

+
1

1− a>b
[
√

1− ‖a‖2(b− a>b
‖a‖2 a)

+
a>b
‖a‖2 (1− ‖a‖

2)a +
(a>b− ‖a‖2)(

√
1− ‖a‖2 − 1)

‖a‖2 a]}

= a +
1√

1− ‖a‖2
[−a + a>ba +

√
1− ‖a‖2b−

√
1− ‖a‖2 a>b

‖a‖2 a

+
a>b
‖a‖2 (1− ‖a‖

2)a + (a>b− ‖a‖2)(
√

1− ‖a‖2 − 1)
a
‖a‖2 ] = b ,

(220)

thus proving the left cancellation law.
The property established in this subsection may be reformulated as follows. For every vectors

a, b ∈ B there exists a unique vector x ∈ B such that

a⊕E x = b (221)

and, moreover,
x = (−a)⊕E b . (222)

Eliminating x between (221) and (222) yields the left cancellation law (212).

8.2. Existence of Gyrations

Evaluating the squared norm ‖a⊕E b‖2 yields an elegant result,

‖a⊕E b‖2 = ‖
√

1− ‖a‖2

1 + a>b
(I − aa>

‖a‖2 )b +
‖a‖2 + a>b
‖a‖2(1 + a>b)

a‖2

=
1− ‖a‖2

(1 + a>b)2 (‖b‖
2 − (a>b)2

‖a‖2 ) +
(‖a‖2 + a>b)2

(1 + a>b)2‖a‖2

= 1− (1− ‖a‖2)(1− ‖b‖2)

(1 + a>b)2 .

(223)

The function on the extreme right-hand side of (223) is symmetric with respect to a, b. Hence,
‖a⊕E b‖ = ‖b⊕E a‖. Owing to this symmetry, there exists a unitary matrix which is the identity matrix
in the subspace orthogonal to both a and b, and which maps b⊕E a to a⊕E b. This matrix is said to be
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the gyration generated by a and b, and is denoted by gyr[a, b]. Gyrations play an important role in the
geometric theory of spaces with the binary operation a⊕E b. Hence, we introduce them along with
their properties in Section 8.3.

8.3. Definition of Gyrations

For every three vectors a, b, c ∈ B we consider a vector d ∈ B given by

d = −(a⊕E b)⊕E (a⊕E (b⊕E c)). (224)

First we check that d depends on c linearly, that is, d is equal to some matrix depending on a, b
only, times c. This matrix is destined to be called the gyration matrix generated by a and b.

Owing to the left cancellation law, Equation (224) is equivalent to

(a⊕E b)⊕E d = a⊕E (b⊕E c) . (225)

Using (136), we get,

(a⊕E b)⊕E d =
1

1 + (a⊕E b)>d
{(1 + (a⊕E b)>d

‖a⊕E b‖2 )a⊕E b

+
√

1− ‖a⊕E b‖2[d− (a⊕E b)>d
‖a⊕E b‖2 (a⊕E b)]}

(226)

and

a⊕E (b⊕E c) =
1

1 + a>(b⊕E c)
{[1 + a>(b⊕E c)

‖a‖2 (1−
√

1− ‖a‖2)]a

+
√

1− ‖a‖2(b⊕E c)} .

(227)

Furthermore, we need identity (228) of the following Lemma.

Lemma 3. For every vectors a, b, c ∈ B we have

(1 + b>c)(1 + a>(b⊕E c)) = (1 + a>b)(1 + (b⊕E a)>c). (228)

Proof. By means of (136) we have,

(1 + b>c)(1 + a>(b⊕E c)) = 1 + b>c + (1 +
b>c
‖b‖2 )a>b +

√
1− ‖b‖2(a>c− b>c

‖b‖2 a>b) (229)

and

(1 + a>b)(1 + (b⊕E a)>c) = 1 + a>b + (1 +
b>a
‖b‖2 )b

>c +
√

1− ‖b‖2(a>c− b>a
‖b‖2 b>c) . (230)

The right-hand sides of (229) and (230) are identical as desired, and the proof is complete.

We solve Equation (225) for d under the assumption that

(a⊕E b)>d = (b⊕E a)>c. (231)

This assumption will be verified later, below (237).
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Then, taking into account Lemma 3, we see that (225) is equivalent to

[1 +
(b⊕E a)>c
‖a⊕E b‖2 (1−

√
1− ‖a⊕E b‖2)](a⊕E b) +

√
1− ‖a⊕E b‖2d

=
1 + b>c
1 + a>b

{[1 + a>(b⊕E c)
‖a‖2 (1−

√
1− ‖a‖2)]a +

√
1− ‖a‖2(b⊕E c)} .

(232)

Equation (232) allows us to determine d,

d =
1√

1− ‖a⊕E b‖2

[
1 + b>c
1 + a>b

{[1 + a>(b⊕E c)
‖a‖2 (1−

√
1− ‖a‖2)]a

+
√

1− ‖a‖2(b⊕E c)}

− [1 +
(b⊕E a)>c
‖a⊕E b‖2 (1−

√
1− ‖a⊕E b‖2)](a⊕E b)

]
.

(233)

To prove that (233) is a solution of (225) for the unknown d, we need only to show that (231) holds.
By means of (136), we have

d =
1√

1− ‖a⊕E b‖2(1 + a>b)

[
a + b>ca

+ (1−
√

1− ‖a‖2)[(1 +
b>c
‖b‖2 )a>b +

√
1− ‖b‖2(a>c− b>c

‖b‖2 a>b)]a

+
√

1− ‖a‖2[(1 +
b>c
‖b‖2 )b +

√
1− ‖b‖2(c− b>c

‖b‖2 b)]

− (1 + a>b)[(a⊕E b)−
√

1− ‖a⊕E b‖2 (b⊕E a)>c
‖a⊕E b‖2 (a⊕E b)

+
(b⊕E a)>c
‖a⊕E b‖2 (a⊕E b)]

]
.

(234)

The terms without c in the big square brackets cancel each other, and we get the following
expression for d, which is linear in c,

d =
(b⊕E a)>c
‖a⊕E b‖2 (a⊕E b) +

1√
1− ‖a⊕E b‖2(1 + a>b)

[
b>ca

+ (1−
√

1− ‖a‖2)[
b>c
‖b‖2 a>b +

√
1− ‖b‖2(a>c− b>c

‖b‖2 a>b)]a

+
√

1− ‖a‖2[
b>c
‖b‖2 b +

√
1− ‖b‖2(c− b>c

‖b‖2 b)]

− (1 + a>b)
(a⊕E b)
‖a⊕E b‖2 [(1 +

b>a
‖b‖2 )b

>c +
√

1− ‖b‖2(a>c− b>c
‖b‖2 a>b)]

]
.

(235)
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Now we check condition (231). We use the following four formulas,

a>(a⊕E b) =
|a‖2 + a>b

1 + a>b

b>(a⊕E b) =
1

a>b
[(1 +

a>b
‖a‖2 )a>b +

√
1− ‖a‖2(‖b‖2 − (a>b)2

‖a‖2 )]

c>(a⊕E b) =
1

1 + a>b
[(1 +

a>b
‖a‖2 )c

>b +
√

1− ‖a‖2(c>b− a>b
‖a‖2 b>c)]

√
1− ‖a⊕E b‖2(1 + a>b) =

√
(1− ‖a‖2)(1− ‖b‖2) ,

(236)

in the representation

(a⊕E b)>d− (b⊕E a)>c

=
1√

(1− ‖a‖2)(1− ‖b‖2)

[
b>ca>(a⊕E b)

+ (1−
√

1− ‖a‖2)[
b>c
‖b‖2 a>b +

√
1− ‖b‖2(a>c− b>c

‖b‖2 a>b)]a>(a⊕E b)

+
√

1− ‖a‖2[
b>c
‖b‖2 b>(a⊕E b) +

√
1− ‖b‖2(c>(a⊕E b)− b>c

‖b‖2 b>(a⊕E b))]

− (1 + a>b)[(1 +
b>a
‖b‖2 )b

>c +
√

1− ‖b‖2(a>c− b>c
‖b‖2 a>b)]

]

(237)

to show by direct calculations that the right-hand side of (237) vanishes. Hence, Equation (231) is true.
Therefore, the vector d satisfies (225). Equation (235) shows that d depends linearly on c,

d = Mc , (238)

where M is a matrix depending only on a and b. This matrix is called the gyration matrix generated by
a and b, and is denoted by gyr[a, b].

In particular, (225) implies the Gyroassociative law (213):

a⊕E (b⊕E c) = (a⊕E b)⊕E (Mc) ∀a, b, c ∈ B . (239)

8.4. Properties of the Gyration

We have already shown that the gyration operator gyr[a, b], defined by the identity

(a⊕E b)⊕E gyr[a, b]c = a⊕E (b⊕E c) , (240)

is linear, that is, gyr[a, b]c = Mc for some matrix M. Below we determine the matrix M and prove that
M is unitary.

From (235) and (238) we obtain the following representation of the matrix M.

M = gyr[a, b] = I + Caaaa> + Cabab> + Cbaba> + Cbbbb> , (241)
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where the scalar functions Caa, Cab, Cba, Cbb are given by

Caa = −
1
‖a‖2

(1−
√

1− ‖a‖2)(1−
√

1− ‖b‖2)

1 + a>b +
√
(1− ‖a‖2)(1− ‖b‖2)

Cab =
1 + 2a>b

(1+
√

1−‖a‖2)(1+
√

1−‖b‖2)

1 + a>b +
√
(1− ‖a‖2)(1− ‖b‖2)

Cba = −
1

1 + a>b +
√
(1− ‖a‖2)(1− ‖b‖2)

Cbb = − 1
‖b‖2

(1−
√

1− ‖a‖2)(1−
√

1− ‖b‖2)

1 + a>b +
√
(1− ‖a‖2)(1− ‖b‖2)

.

(242)

Lemma 4. The matrix M is unitary,
M>M = I . (243)

Proof. We have
M>M = I + αaaaa> + αabab> + αbaba> + αbbbb> , (244)

where the numbers αaa, αab, αba, αbb are given by

αaa = 2Caa + ‖a‖2C2
aa + 2CabCaaa>b + C2

ab‖b‖
2

αab = αba = Cab + Cba + a>b(CaaCbb + CabCba)

+ CaaCba‖a‖2 + CabCbb‖b‖2

αbb = 2Cbb + ‖b‖2C2
bb + 2CbaCbba>b + C2

ba‖b‖
2 .

(245)

Straightforward calculations show that all these numbers vanish. To show these results we use
the notation x =

√
1− ‖a‖2 and y =

√
1− ‖b‖2, so that ‖a‖2 = 1− x2 and ‖b‖2 = 1− y2. Indeed,

we have

αaa(1 + a>b + xy)‖a‖2 = −2(1− x)(1− y)(1 + a>b + xy)

+ (1− x)2(1− y)2 − 2a>b(1− x)(1− y)(1 +
2a>b(1− x)(1− y)

‖a‖2‖b‖2

+ (1− x2)(1− y2) + 4a>b(1− x)(1− y) + 4(a>b)2 (1− x)2(1− y)2

‖a‖2‖b‖2 = 0,

(246)

αbb(1 + a>b + xy)‖b‖2 = −2(1− x)(1− y)(1 + a>b + xy)

+ (1− x)2(1− y)2 + 2a>b(1− x)(1− y) + (1− x2)(1− y2) = 0
(247)

and

αab(1 + a>b + xy)‖a‖2‖b‖2 = ((1− x2)(1− y2)

+ 2a>b(1− x)(1− y))(1 + a>b + xy)− (1− x2)(1− y2)(1 + a>b + xy)

+ a>b[(1− x)2(1− y)2 − ((1− x2)(1− y2) + 2a>b(1− x)(1− y))]

+ (1− x)(1− y)(1− x2)(1− y2)− [(1− x2)(1− y2)

+ 2a>b(1− x)(1− y)](1− x)(1− y) = 0 .

(248)

The proof of the Lemma is, thus, complete.
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Lemma 5. If vectors a and b are parallel, that is, there exists a non zero pair of numbers (λ1, λ2) such that

λ1a + λ2b = 0, (249)

then
gyr[a, b] = I. (250)

Proof. If λ2 = 0, then a = 0, and the statement follows from (241). Assume λ2 6= 0. Set λ = − λ1
λ2

.
Then b = λa, and the representation (241) amounts to

gyr[a, b] = I + daa>, (251)

where
d = Caa + λ(Ca(λa) + C(λa)a) + λ2C(λa)(λa) = 0 (252)

Corollary 1. For every numbers r1, r2 and a vector v ∈ B we have

gyr[r1 ⊗ v, r2 ⊗ v] = I. (253)

Proof. By the definition of the scalar multiplication in (101), the vectors r1 ⊗ v and r2 ⊗ v are parallel.
Hence, (253) follows from Lemma 5.

8.5. Reduction Property

In this subsection we establish property (216) of Einstein addition. Let

γv =
1√

1− ‖v‖2
(254)

be the well known Lorentz gamma factor of special relativity theory [1,5]. Then, in view of (242) we have

Caa = −
γ2

a
γa + 1

γb − 1
γaγb(1 + a>b) + 1

Cab =
γaγb + 2a>b γ2

a γ2
b

(γa+1)(γb+1)

γaγb(1 + a>b) + 1

Cba = −
γaγb

γaγb(1 + a>b) + 1

Cbb = −
γ2

b
γb + 1

γa − 1
γaγb(1 + a>b) + 1

.

(255)

Lemma 6. For every vectors a, b ∈ B we have

gyr[a⊕E b, b] = gyr[a, b]. (256)

Proof. We have by (241),

gyr[a⊕E b, b] = I + C̃(a⊕E b) (a⊕E b)(a⊕E b)⊕ (a⊕E b)>

+ C̃(a⊕E b) b(a⊕E b)b> + C̃b (a⊕E b)b(a⊕E b)> + C̃b bbb>
(257)
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where

C̃(a⊕E b) (a⊕E b) = −
γ2

a⊕E b

γa⊕E b + 1
γb − 1

γa⊕E bγb(1 + (a⊕E b)>b) + 1

C̃(a⊕E b) b =
γa⊕E bγb + 2(a⊕E b)>b

γ2
a⊕E bγ2

b

(γa⊕E b+1)(γb+1)

γa⊕E bγb(1 + (a⊕E b)>b) + 1

C̃b (a⊕E b) = −
γa⊕E bγb

γa⊕E bγb(1 + (a⊕E b)>b) + 1

C̃b b = −
γ2

b
γb + 1

γa⊕E b − 1

γa⊕E bγb(1 + (a⊕E b)>b) + 1
.

(258)

By straightforward calculations we have the following identities,

(a⊕E b)(a⊕E b)> =
(1 + a>b γa

γa+1 )
2

(1 + a>b)2 aa> +
1 + a>b γa

γa+1

1 + a>b
(ab> + ba>)

+
1

γ2
a(1 + a>b)2 bb>

(259)

(a⊕E b)b> =
1 + a>b γa

γa+1

1 + a>b
ab> +

1
γa(1 + a>b)

bb> (260)

γa⊕E b = γaγb(1 + a>b) (261)

and

γa⊕E bγb(1 + (a⊕E b)>b) + 1 =
γ2

b
γa + 1

(1 + γa(1 + a>b))2 . (262)

Hence, we have

C̃(a⊕E b) (a⊕E b) = −
γ2

a(1 + a>b)2

γaγb(1 + a>b) + 1
(γb − 1)(γa − 1)
(1 + γa(a + a>b))2 (263)

C̃(a⊕E b) b =

γa(1 + a>b)[(γa + 1)(γb − 1)(1 + γ2
aγb(1 + a>b)) + 2γ2

b(1 + γa(1 + a>b))2]

(1 + γaγ2
b(1 + a>b))(γb + 1)(1 + γa(1 + a>b))2

(264)

C̃b (a⊕E b) = −
γa(γa + 1)(1 + a>b)
(1 + γa(1 + a>b))2 (265)

and

C̃b b = − (γa + 1)(γaγb(1 + a>b)− 1)
(γb + 1)(1 + γa(1 + a>b))2 . (266)

Therefore,
gyr[a⊕E b, b] = I + Daaaa> + Dabab> + Dbaba> + Dbbbb> , (267)
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where the coefficients are evaluated straightforwardly,

Daa = C̃(a⊕E b) (a⊕E b)
(1 + a>b γa

γa+1 )
2

(1 + a>b)2 = Caa

Dab = C̃(a⊕E b) (a⊕E b)
1 + a>b γa

γa+1

1 + a>b
+ C̃(a⊕E b) b

1 + a>b γa
γa+1

1 + a>b
= Cab

Dba = C̃(a⊕E b) (a⊕E b)
1 + a>b γa

γa+1

1 + a>b
+ C̃b (a⊕E b)

1 + a>b γa
γa+1

1 + a>b
= Cb

Dbb = C̃(a⊕E b) (a⊕E b)
1

γ2
a(1 + a>b)2 + (C̃(a⊕E b) (a⊕E b)

+ C̃b (a⊕E b))
1

γa(1 + a>b)
+ C̃b b = Cbb .

(268)

Thus,
gyr[a⊕E b, b] = I + Caaaa> + Cabab> + Cbaba> + Cbbbb> = gyr[a, b]. (269)

The proof of the Lemma is, thus, complete.

8.6. Gyrocommutative Law

We are now in the position to prove the gyrocommutative law (214) of Einstein addition.

Lemma 7. For every vectors a, b ∈ B we have

a⊕E b = gyr[a, b](b⊕E a) . (270)

Proof. Equation (225) with c = b⊕E a yields the equation

(a⊕E b)⊕E d = a⊕E (b⊕E (b⊕E a) , (271)

where d = Mc.
The value of d exists and is unique owing to the left cancellation law. Furthermore, we show that

d = a⊕E b satisfies (271). Indeed, for every vector v ∈ B we have

v⊕E v =
1

1 + v>v
[(1 +

v>v
‖v‖2 )v] =

2
1 + ‖v‖2 v . (272)

In particular,

(a⊕E b)⊕E (a⊕E b) =
2

1 + ‖a⊕E b‖2 (a⊕E b) . (273)

We now evaluate the right-hand side of (271), using the identities in (236) and in (223),

b>(b⊕E a) =
‖b‖2 + a>b

1 + a>b

‖a⊕E b‖2 = 1− (1− ‖a‖2)(1− ‖b‖2)

(1− a>b)2 .

(274)
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Then,

b⊕E (b⊕E a) =
1

1 + b>(b⊕E a)

[
(1 +

b>(b⊕E a)
‖b‖2 )b

+
√

1− ‖b‖2(b⊕E a− b>(b⊕E a)
‖b‖2 b)

]

=
1 + a>b

1 + 2a>b|‖b‖2

[
1

1 + a>b
(1 + a>b +

‖b‖2 + a>b
‖b‖2 )b

+

√
1− ‖b‖2

1 + a>b
[(1 +

a>b
‖b‖2 )b +

√
1− ‖b‖2(a− a>b

‖b‖2 b)− ‖b‖
2 + a>b
‖b‖2 ]

]

=
1

1 + 2a>b + ‖b‖2

[
(1− ‖b‖2)a + 2(1 + a>b)b

]
.

(275)

Using the formula

a>(b⊕E (b⊕E a)) =
(1− ‖b‖2)‖a‖2 + 2a>b(1 + a>b)

1 + 2a>b + ‖b‖2 a>(b⊕E (b⊕E a)) , (276)

we get

a⊕E (b⊕E (b⊕E a)) =
1

1 + a>(b⊕E (b⊕E a))

[
(1

+
a>(b⊕E (b⊕E a))

‖a‖2 )a +
√

1− ‖a‖2[b⊕E (b⊕E a)− a>(b⊕E (b⊕E a))
‖a‖2 a]

]

=
1

1 + 2a>b + ‖b‖2 + (1− ‖b‖2)‖a‖2 + 2a>b(1 + a>b)

[
(1 + 2a>b + ‖b‖2

+ [(1− ‖b‖2)‖a‖2 + 2a>b(1 + a>b)]a +
√

1− ‖a‖2[(1− ‖b‖2)a + 2(1 + a>b)b

− ((1− ‖b‖2)‖a‖2 + 2a>b(1 + a>b))
a
‖a‖2 ]

]

=
2(1 + a>b)

2(1 + a>b)2 − (1− ‖a‖2)(1− ‖b‖2)

[
(1 +

a>b
‖b‖2 )a +

√
1− ‖a‖2(b− a>b

‖b‖2 )

]

=
2

1− ‖a⊕E b‖2 a⊕E b

= (a⊕E b)⊕E (a⊕E b) .

(277)

Therefore, Equation (271) can be written as

(a⊕ b)⊕ d = (a⊕ b)⊕ (a⊕ b). (278)

Now we add −(a⊕ b) from the left to both sides of (278), obtaining

d = a⊕ b. (279)
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Recalling that d = Mc = gyr[a, b]((b⊕ a), we get the assertion (270) of the lemma. The proof of
the Lemma is, thus, complete.

8.7. Gyrations Preserve Einstein Addition and Multiplication

For any a, b ∈ B, the operator c→ gyr[a, b]c is linear, being given by a multiplication by a unitary
matrix. Interestingly, it is also gyrolinear in the sense that

gyr[a, b]
[
(t1 ⊗E c1)⊕E (t2 ⊗E c2)

]
= (t1 ⊗E (gyr[a, b]c1))⊕E (t2 ⊗E (gyr[a, b]c2)) (280)

for all c1, c2 ∈ B and t1, t2 ∈ [−∞, ∞).
A result that generalizes (280) is stated in the following Lemma.

Lemma 8. For every unitary matrix U, for every vectors c1, c2 ∈ B, and every numbers t1, t2 ∈ R we have

U
[
(t1 ⊗E c1)⊕E (t2 ⊗E c2)

]
= (t1 ⊗E (Uc1))⊕E (t2 ⊗E (Uc2)) . (281)

Proof. The proof follows from properties of Einstein addition and multiplication. For every c1, c2 ∈ B

(Uc1)⊕E (Uc2)

=
1

1 + (Uc1)>(Uc2)
{[1 + (Uc1)

>(Uc2)

‖Uc1‖2 (1−
√

1− ‖Uc1‖2)]Uc1

+
√

1− ‖Uc1‖2Uc2}

= U
[

1
1 + c>1 c2

{[1 +
c>1 c2

‖c1‖2 (1−
√

1− ‖c1‖2)]c1 +
√

1− ‖c1‖2c2}
]

= U(c1 ⊕E c2) ,

(282)

and for every vector c ∈ B and positive number t,

t⊗E (Uc) = atanh(t tanh(‖Uc‖)) Uc
‖Uc‖

= U
[

atanh(t tanh(‖c‖)) c
‖c‖

]
= U[t⊗E c] .

(283)

The proof of the Lemma is, thus, complete.

The following two corollaries are immediate consequences of Lemmas 8 and 4.

Corollary 2. For every unitary matrix U, for every vectors a, b, c1, c2 ∈ B, and every numbers t1, t2 ∈ R
we have

gyr[a, b]
[
(t1 ⊗E c1)⊕E (t2 ⊗E c2)

]
= (t1 ⊗E (gyr[a, b]c1))⊕E (t2 ⊗E (gyr[a, b]c2)) . (284)

Corollary 3. For every vectors a, b, u, v ∈ B we have

(gyr[u, v]a)>(gyr[u, v]b) = a>b. (285)
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8.8. Gyrogroups and Gyrovector Spaces

Assume ⊕E, ⊗E are the Einstein addition and scalar multiplication respectively.

Theorem 4. The groupoid (B,⊕E) is a gyrocommutative gyrogroup.

Proof. We need to check properties (G1)–(G6) in Definitions 1 and 2. Property (G1) follows from (45),
property (G2) follows from (46), property (G3) follows from (240), property (G4) follows from (241),
property (G5) follows from (256), and property (G6) follows from (270).

Theorem 5. The triple (B,⊕,⊗) is a gyrovector space.

Proof. We need to check properties (V0)–(V8) in Definition 3. Property (V0) follows from (285),
property (V1) follows from (105), property (V2) follows from (103), property (V3) follows from (104),
property (V4) follows from (106), property (V5) follows from (280), property (V6) follows from (253),
property (V7) follows from (123), and property (V8) follows from (127).

8.9. Einstein Coaddition

In Section 8.1 we have found a solution to the equation

a⊕E x = b (286)

in B for the unknown x.
We now consider the similar equation

x⊕E a = b (287)

in B for the unknown x.
It is known ([1] Chap. 1, Section 6) that the unique solution of (287) is given by

x = b	E gyr[b, a]a . (288)

Motivated by (288) we introduce the Einstein coaddition

a �E b = a⊕E gyr[a,−b]b (289)

and use the notation
a �E b = a �E (−b) , (290)

so that the solution of equation (287) is given by

x = b �E a . (291)

Accordingly, in this section we calculate

a �E b = a	E gyr[a, b]b . (292)

By the representation of gyr[a, b] in (241), we have

gyr[a, b] = I + Caaaa> + Cabab> + Cbaba> + Cbbbb> , (293)

where the numbers Caa, Cab, Cba and Cbb are given by (242).
Let

∆ = 1 + a>b +
√
(1− ‖a‖2)(1− ‖b‖2) . (294)
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Then,
gyr[a, b]b = Daa + Dbb , (295)

where

Da = Caaa>b + Cab‖b‖2

=
1
∆

[
‖b‖2 +

a>b
‖a‖2 (1−

√
1− ‖a‖2)(1−

√
1− ‖b‖2)

] (296)

and

Db = 1 + Cbaa>b + Cbb‖b‖2

=

√
1− ‖a‖2 +

√
1− ‖b‖2

∆
.

(297)

We have

a	 c =
1

1− a>c

[
(1− a>c

‖a‖2 )a +
√

1− ‖a‖2(
a>c
‖a‖2 a− c)

]
(298)

for any a, c ∈ B.
Calculating (298) with c = gyr[a, b]b, noticing that

1− a>gyr[a, b]b =
1
∆

[
1− ‖a‖2‖b‖2 + (1− a>b)

√
1− ‖a‖2

√
1− ‖b‖2

]
a>gyr[a, b]b
‖a‖2 − gyr[a, b]b =

√
1− ‖a‖2 +

√
1− ‖b‖2

∆

[
a>b
‖a‖2 a− b

]
,

(299)

we have

a	E gyr[a, b]b =
(
√

1− ‖a‖2 +
√

1− ‖b‖2)(a
√

1− ‖b‖2 − b
√

1− ‖a‖2)

1− ‖a‖2‖b‖2 + (1− a>b)
√

1− ‖a‖2
√

1− ‖b‖2
. (300)

Using the standard notation for the Lorentz factor in (254), we have the equation

a � b =
γaa + γbb

γa + γb −
γa⊕b+1
γa+γb

, (301)

which is well known ([5] p. 92). An extension of (301) to more than two summands is presented
in ([5] p. 425). It is clear from (301) that Einstein coaddition in B is commutative,

a � b = b � a . (302)

In order to calculate the metric tensor for the binary operation � in B we obtain the equation

(−x)� (x + ∆x) =
[

I +
xx>

1− ‖x‖2

]
∆x + o(‖∆x‖ . (303)

Hence, the metric tensor for the binary operation � has the form

G�(x) =
[

I +
xx>

1− ‖x‖2

]2

=

[
I − xx>

‖x‖2

]
+

1
(1− ‖x‖2)2

xx>

‖x‖2 . (304)
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The metric tensor G�(x) possesses the form of (6) with

m0(‖x‖2) = 1

m1(‖x‖2) =
1

(1− ‖x‖2)2 .
(305)

We should note that the function m1 is the same as for Einstein addition and Möbius addition.
Hence, the distances for all these three binary operations are the same (115):

‖b⊕E (−a)‖E = ‖b⊕M (−a)‖M = ‖b � (−a)‖� = atanh(‖b− a‖) , (306)

where ‖ · ‖ is the Euclidean norm. Moreover, the multiplication by a number is the same for all these
three binary operations,

t⊗E a = t⊗M a = t⊗� a . (307)

We can use also the standard Euclidean norm ‖ · ‖. Notice that for numbers (that is, for n = 1) all
binary operations coincide,

x⊕E y = x⊕M y = x � y =
x + y

1 + xy
= tanh(atanh(x) + atanh(y)) . (308)

Therefore, if ⊕ is one of the operations ⊕E , ⊕M , �, then for all a, b ∈ B,

‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖ , (309)

and the equality occurs if and only if for some nonnegative number t we have a = tb or b = ta.
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