Next Article in Journal
Binary Neutron Star Merger Simulations with a Calibrated Turbulence Model
Next Article in Special Issue
Computing Nearest Correlation Matrix via Low-Rank ODE’s Based Technique
Previous Article in Journal
Explicit Properties of q-Cosine and q-Sine Euler Polynomials Containing Symmetric Structures
Previous Article in Special Issue
Oscillation Conditions for Certain Fourth-Order Non-Linear Neutral Differential Equation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Oscillation Results for Fourth-Order Neutral Differential Equations with Delay Argument

1
Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen
2
Department of Mathematics, Faculty of Education, Seiyun University, Hadhramout 50512, Yemen
3
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
4
Athens Institute for Education and Research, Mathematics and Physics Divisions, 10671 Athens, Greece
5
Department of Mathematics, Faculty of Education, Ibb University, Ibb 999101, Yemen
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Submission received: 18 May 2020 / Revised: 30 May 2020 / Accepted: 8 June 2020 / Published: 29 July 2020

Abstract

:
The aim of this paper is to study the oscillatory properties of 4th-order neutral differential equations. We obtain some oscillation criteria for the equation by the theory of comparison. The obtained results improve well-known oscillation results in the literate. Symmetry plays an important role in determining the right way to study these equation. An example to illustrate the results is given.

1. Introduction

Differential equations with neutral delay are used in many applications such as biological, physical, engineering and chemical applications [1]. Symmetry plays an important role in determining the right way to study these equations, see [2].
In the last few decades, there has been a constant interest to investigate the asymptotic property for oscillations of differential equations [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] and nonlinear neutral differential equations, see [20,21,22,23,24,25,26,27,28,29,30,31,32]. Oscillation of nonlinear differential equations with delay arguments has been further developed in recent years. For some this results, see [33,34,35,36,37].
In this work, we investigate the oscillation of fourth-order nonlinear differential equation with neutral delay
r y ϖ y γ + q y u β ς y = 0 , y y 0 ,
where ϖ y : = u y + p y u ζ y . We assume that γ and β are quotient of odd positive integers, r , p , q C [ y 0 , ) , r y > 0 , r y 0 , q y > 0 , 0 p y < p 0 < , ζ , ς C [ y 0 , ) , ζ y y , lim y ζ y = lim y ς y = and
y 0 1 r 1 / γ s d s = .
Definition 1.
If a solution u of (1) is neither eventually positive nor eventually negative, then it is said to be oscillatory. So, if all solutions are oscillate, then the equation is oscillatory.
Several authors in [3,4,5,6,38] considered the equation
r y u m 1 y γ + q y u β ζ y = 0 ,
where r u > 0 , m is an even and (2) holds. In [7,29], Zhang et al. studied the oscillation of (3) under the assumption that
y 0 r 1 / γ s d s < .
Moaaz et al. [23] established the oscillation of even-order neutral differential equation
r u ϖ m 1 u γ + q u u γ ς u = 0 .
where m is an even and ϖ u : = u u + p u u ζ u .
Xing et al. [20] established the asymptotic properties of even-order neutral differential Equation (3) where 0 p u < p 0 < .
Bazighifan et al. [27] studied the oscillation of neutral differential equation
r u ϖ u γ + i = 1 j q i u u γ ς i u = 0 , j 1 ,
where j 1 , ς i u u and under the assumption (2).
Our aim in this work is to improve results in [20] and to complement results in [9].
We shall employ the following lemmas:
Lemma 1.
[18] Assume that u C m y 0 , , 0 , , then
u y y m / m ! u y y m 1 / m 1 !
where u satisfies u ( i ) y > 0 , i = 0 , 1 , , m , and u m + 1 y < 0 .
Lemma 2.
([22], Lemmas 1 and 2) Let z 1 , z 2 0 , then
z 1 + z 2 β 2 β 1 z 1 β + z 2 β , for β 1
and
z 1 + z 2 β z 1 β + z 2 β , for β 1 .
where β is a positive real number.
Lemma 3.
([3], Lemma 2.2.3) Let u C m y 0 , , 0 , . If u m y is of fixed sign and not identically zero on y 0 , and that there exists a y 1 y 0 such that u m 1 y u m y 0 for all y y 1 . If lim y u y 0 , then for every μ 0 , 1 there exists y μ y 1 such that
u y μ m 1 ! y m 1 u m 1 y , for y y μ .

2. Main Results

Firstly, we will define the following notations:
κ : = 1 if β 1 ; 2 β 1 if β > 1 ,
and
q ^ y : = min q ς 1 y , q ς 1 ζ y .
Theorem 1.
Assume that
ς 1 y ς 0 > 0 and ζ y ζ 0 > 0 .
If the differential inequality
η y + 1 κ μ y 3 6 r 1 / γ y β ς 0 ζ 0 ζ 0 + p 0 β β / γ q ^ y η β / γ ζ 1 ς y 0
is oscillatory for some μ 0 , 1 , then (1) is oscillatory.
Proof. 
Suppose that (1) has a nonoscillatory solution in y 0 , . Without loss of generality, we let u be an eventually positive solution of (1). Then, there exists a y 1 y 0 such that u y > 0 , u ζ y > 0 and u ς y > 0 for y y 1 . Since r y > 0 , we have
ϖ y > 0 , ϖ y > 0 , ϖ y > 0 , ϖ 4 y < 0 and r y ϖ y γ 0 ,
for y y 1 . From (1), we get
1 ς 1 y r ς 1 y ϖ ς 1 y γ + q ς 1 y u β y = 0 .
It follows from definition of ϖ and Lemma 2 that
ϖ β y = u y + p y u ζ y β κ u β y + p 0 β u β ζ y .
From (9) and (10), we obtain
0 = 1 ς 1 y r ς 1 y ϖ ς 1 y γ + q ς 1 y u β y + p 0 β 1 ς 1 ζ y r ς 1 ζ y ϖ ς 1 ζ y γ + q ς 1 ζ y u β ζ y = r ς 1 y ϖ ς 1 y γ ς 1 y + p 0 β r ς 1 ζ y ϖ ς 1 ζ y γ ς 1 ζ y + q ς 1 y u β y + p 0 β q ς 1 ζ y u β ζ y r ς 1 y ϖ ς 1 y γ ς 1 y + p 0 β r ς 1 ζ y ϖ ς 1 ζ y γ ς 1 ζ y + 1 κ q ^ y ϖ β y ,
which with (6) gives
1 ς 0 r ς 1 y ϖ ς 1 y γ + p 0 β ς 0 ζ 0 r ς 1 ζ y ϖ ς 1 ζ y γ + 1 κ q ^ y ϖ β y 0 .
Since ϖ y > 0 , we get that lim y ϖ y 0 . Thus, from Lemma 3, we get
ϖ y μ 6 y 3 ϖ y .
Combining (11) and (12), we see that
1 ς 0 r ς 1 y ϖ ς 1 y γ + p 0 β ς 0 ζ 0 r ς 1 ζ y ϖ ς 1 ζ y γ + 1 κ q ^ y μ 6 y 3 β ϖ y β 0 .
If we set
η y : = 1 ς 0 r ς 1 y ϖ ς 1 y γ + p 0 β ς 0 ζ 0 r ς 1 ζ y ϖ ς 1 ζ y γ ,
then it is easy to see that
η ζ 1 ς y ζ 0 + p 0 β ς 0 ζ 0 r y ϖ y γ .
Thus, from (13), we get that η is a positive solution of
η y + 1 κ μ y 3 6 r 1 / γ y β ς 0 ζ 0 ζ 0 + p 0 β β / γ q ^ y η β / γ ζ 1 ς y 0 .
which is a contradiction. The proof is complete.  □
Theorem 2.
Assume that (6) holds. If the differential inequality
ϑ y + 1 κ μ y 3 6 r 1 / γ y β ς 0 ζ 0 ζ 0 + p 0 β q ^ y ϑ β / γ ς y 0
is oscillatory for some μ 0 , 1 , then (1) is oscillatory.
Proof. 
Proceeding as in the proof of Theorem 1, we get (13). If we set ϑ y : = r ς 1 y ϖ ς 1 y γ , then ϑ is a positive solution of (14), which is a contradiction. The proof is complete.  □
Corollary 1.
Let γ = β and (6) holds. If ξ y y and
lim inf y ξ y y s 3 γ r s q ^ s d s > ζ 0 + p 0 γ ς 0 ζ 0 κ 6 γ e ,
where ξ y = ζ 1 ς y or ς y , then (1) is oscillatory.
Proof. 
It is well-known (see, e.g., ([17], Theorem 2.1.1)) that condition (15) implies the oscillation of (7) and (14).  □
Theorem 3.
Assume that p 0 < 1 and ς y y . If the equation
ψ y + 1 p 0 β μ ς 3 y 6 r 1 / γ ς y β q y ψ β / γ ς y = 0
is oscillatory for some μ 0 , 1 , then (1) is oscillatory.
Proof. 
Proceeding as in the proof of Theorem 1, we get (8). From definition of ϖ , we get
u y ϖ y p 0 u ζ y ϖ y p 0 ϖ ζ y 1 p 0 ϖ y ,
which with (1) gives
r y ϖ y γ + q y 1 p 0 β ϖ β ς y 0 .
From Lemma 3, we obtain
ϖ y μ 6 y 3 ϖ y .
Combining (17) and (18), we get
r y ϖ y γ + q y 1 p 0 β μ 6 ς 3 y β ϖ ς y β 0 .
Hence, if we set ψ : = r ϖ γ , then we get that ψ is a positive solution of the inequality
ψ y + 1 p 0 β μ ς 3 y 6 r 1 / γ ς y β q y ψ β / γ ς y 0 .
In view of ([19], Corollary 1), the associated delay differential Equation (16) also has a positive solution, which is a contradiction. The proof is complete.  □
Corollary 2.
Let γ = β , p 0 < 1 and ς y y . If
lim inf y ς y y ς 3 γ s r ς s q s d s > 6 γ 1 p 0 γ e ,
then (1) is oscillatory.
Proof. 
It is well-known (see, e.g., ([17], Theorem 2.1.1)) that condition (19) implies the oscillation of (16).  □
Theorem 4.
Assume that p 0 < 1 and ς y y . If there exists a positive functions ρ , δ C 1 y 0 , such that
y 0 Ψ s 2 γ γ + 1 γ + 1 r s ρ s γ + 1 μ 1 γ s 2 γ ρ γ s d s =
and
y 0 τ s δ s 2 4 δ s d s = ,
for some μ 1 , μ 2 0 , 1 and every M 1 , M 2 > 0 , where
Ψ y : = M 1 β γ ρ y q y 1 p 0 β ς y y 3 β
and
τ y : = 1 p 0 β / γ δ y M 2 β γ / γ y 1 r z 1 z 1 q s ς β s s β d s 1 / γ d z 1 ,
then (1) is oscillatory.
Proof. 
Proceeding as in the proof of Theorem 3, we find (8) and (17). From (8), we have ϖ is of one sign.
In the case where ϖ y > 0 , we define
η y : = ρ y r y ϖ y γ ϖ γ y > 0 .
By differentiating and using (17), we get
η y ρ y ρ y η y ρ y q y 1 p 0 β ϖ β ς y ϖ γ y γ ρ y r y ϖ y γ ϖ γ + 1 y ϖ y .
By Lemma 1, we find ϖ y y 3 ϖ y , and hence,
ϖ ς y ϖ y ς 3 y y 3 .
Using Lemma 3, we get
ϖ y μ 1 2 y 2 ϖ y ,
for all μ 1 0 , 1 . Thus, by (22)–(24), we obtain
η y ρ y ρ y η y ρ y q y 1 p 0 β ϖ β γ y ς y y 3 β γ μ 1 y 2 2 r 1 / γ y ρ 1 / γ y η γ + 1 γ y .
Since ϖ y > 0 , there exist a y 2 y 1 such that
ϖ y > M ,
for all y y 2 and a constant M > 0 . Using the inequality
E x F x γ + 1 / γ γ γ γ + 1 γ + 1 E γ + 1 F γ , F > 0 ,
with E = ρ y / ρ y , F = γ μ y 2 / 2 r 1 / γ y ρ 1 1 / γ y and u = η , we find
η y Ψ y + 2 γ γ + 1 γ + 1 r y ρ y γ + 1 μ 1 γ y 2 γ ρ γ y .
This implies that
y 1 y Ψ s 2 γ γ + 1 γ + 1 r s ρ s γ + 1 μ 1 γ s 2 γ ρ γ s d s η y 1 ,
which contradicts (20).
For ϖ y < 0 , integrating (17) from y to z, we obtain
r z ϖ z γ r y ϖ y γ y z 1 q s 1 p 0 β ϖ β ς s d s .
From Lemma 1, we see that ϖ y y ϖ y , and hence,
ϖ ς y ς y y ϖ y .
For (26), letting z and using (27), we get
r y ϖ y γ 1 p 0 β ϖ β y y q s ς β s s β d s .
Integrating (28) from y to , we get
ϖ y 1 p 0 β / γ ϖ β / γ y y 1 r z 1 z 1 q s ς β s s β d s 1 / γ d z 1 ,
for all μ 2 0 , 1 . Now, we define
ϑ y = δ y ϖ y ϖ y .
Then ϑ y > 0 for y y 1 . By using (25) and (29), we obtain
ϑ y = δ y δ y ϑ y + δ y ϖ y ϖ y δ y ϖ y ϖ y 2 δ y δ y ϑ y 1 δ y ϑ 2 y 1 p 0 β / γ δ y ϖ β / γ 1 y y 1 r z 1 z 1 q s ς β s s β d s 1 / γ d z 1 .
Thus, we find
ϑ y τ y + δ y δ y ϑ y 1 δ y ϑ 2 y ,
and so
ϑ y τ y + δ y 2 4 δ y .
Then, we obtain
y 1 y τ s δ y 2 4 δ y d s ϑ y 1 ,
which contradicts (21). This completes the proof.  □
Example 1.
Consider the differential equation
u + p 0 u δ y γ + q 0 y 3 γ + 1 u λ y = 0 , y 1 ,
where δ , λ 0 , 1 and p 0 , q 0 > 0 . Let γ = β , r y = 1 , p y = p 0 , ζ y = δ y , ς y = λ y and q y = q 0 / y 3 γ + 1 . Hence, it is easy to see that
q ^ y = q 0 λ 3 γ + 1 1 y 3 γ + 1 .
Using Corollary 1, the Equation (30) is oscillatory if
q 0 ln 1 λ > κ δ + p 0 γ δ 6 γ λ 3 γ e .
From Corollary 2, if
q 0 ln 1 λ > 1 1 p 0 γ 6 γ λ 3 γ e ,
then (30) is oscillatory.
Finally, if we set ρ s : = y 3 γ and δ y : = y 2 , then we have
Ψ y = q 0 1 p 0 γ λ 3 γ 1 s
and
τ y : = 1 2 q 0 3 γ 1 / γ 1 p 0 λ .
Thus, from Theorem 4, Equation (30) is oscillatory if
q 0 1 p 0 γ λ 3 γ > 2 γ 3 γ + 1 γ γ + 1 γ + 1
and
q 0 > 2 1 p 0 λ γ 3 γ .

3. Conclusions

In this article, we studied the oscillatory properties of 4th-order differential equations. New oscillation criteria are established. We used Riccati technique and the theory of comparison to prove that every solution of (1) is oscillatory.
Further, we shall study Equation (1) under the condition y 0 1 r 1 / γ s d s < , in the future work.

Author Contributions

The authors have contributed equally and significantly in this paper. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Acknowledgments

The authors thank the reviewers for for their useful comments, which led to the improvement of the content of the paper.

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
  2. Walcher, S. Symmetries of Ordinary Differential Equations: A Short Introduction. arXiv 2019, arXiv:1911.01053. [Google Scholar]
  3. Agarwal, R.; Grace, S.; O’Regan, D. Oscillation Theory for Difference And Functional Differential Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
  4. Agarwal, R.; Grace, S.; O’Regan, D. Oscillation criteria for certain nth order differential equations with deviating arguments. J. Math. Appl. Anal. 2001, 262, 601–622. [Google Scholar] [CrossRef] [Green Version]
  5. Grace, S.R. Oscillation theorems for nth-order differential equations with deviating arguments. J. Math. Appl. Anal. 1984, 101, 268–296. [Google Scholar] [CrossRef] [Green Version]
  6. Zhang, B. Oscillation of even order delay differential equations. J. Math. Appl. Anal. 1987, 127, 140–150. [Google Scholar] [CrossRef] [Green Version]
  7. Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [Google Scholar] [CrossRef] [Green Version]
  8. Zhang, C.; Li, T.; Suna, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef] [Green Version]
  9. Zhang, C.; Li, T.; Saker, S. Oscillation of fourth-order delay differential equations. J. Math. Sci. 2014, 201, 296–308. [Google Scholar] [CrossRef]
  10. Bazighifan, O.; Ahmed, H.; Yao, S. New Oscillation Criteria for Advanced Differential Equations of Fourth Order. Mathematics 2020, 8, 728. [Google Scholar] [CrossRef]
  11. Bazighifan, O.; Kumam, P. Oscillation Theorems for Advanced Differential Equations with p-Laplacian Like Operators. Mathematics 2020, 8, 821. [Google Scholar] [CrossRef]
  12. Attia, E.R.; El-Morshedy, H.A.; Stavroulakis, I.P. Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays. Symmetry 2020, 12, 718. [Google Scholar] [CrossRef]
  13. Fiori, S. Nonlinear damped oscillators on Riemannian manifolds: Fundamentals. J. Syst. Sci. Complex. 2016, 29, 22–40. [Google Scholar] [CrossRef]
  14. Cai, J.; Chen, S.; Yang, C. Numerical Verification and Comparison of Error of Asymptotic Expansion Solution of the Duffing Equation. Math. Comput. Appl. 2008, 13, 23–29. [Google Scholar] [CrossRef] [Green Version]
  15. Bazighifan, O.; Ramos, H. On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term. Appl. Math. Lett. 2020, 107, 106431. [Google Scholar] [CrossRef]
  16. Elabbasy, E.M.; Cesarano, C.; Bazighifan, O.; Moaaz, O. Asymptotic and oscillatory behavior of solutions of a class of higher order differential equation. Symmetry 2019, 11, 1434. [Google Scholar] [CrossRef] [Green Version]
  17. Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
  18. Kiguradze, I.T.; Chanturiya, T.A. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
  19. Philos, C.G. On the existence of non-oscillatory solutions tending to zero at for differential equations with positive delays. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
  20. Xing, G.; Li, T.; Zhang, C. Oscillation of higher-order quasi-linear neutral differential equations. Adv. Differ. Equ. 2011, 2011, 45. [Google Scholar] [CrossRef] [Green Version]
  21. Chatzarakis, G.E.; Elabbasy, E.M.; Bazighifan, O. An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay. Adv. Differ. Equ. 2019, 336, 1–9. [Google Scholar]
  22. Baculikova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef] [Green Version]
  23. Moaaz, O.; Awrejcewicz, J.; Bazighifan, O. A New Approach in the Study of Oscillation Criteria of Even-Order Neutral Differential Equations. Mathematics 2020, 8, 197. [Google Scholar] [CrossRef] [Green Version]
  24. Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. Adv. Differ. Equ. 2019, 2019, 297. [Google Scholar] [CrossRef] [Green Version]
  25. Moaaz, O.; Dassios, I.; Bazighifan, O. Oscillation Criteria of Higher-order Neutral Differential Equations with Several Deviating Arguments. Mathematics 2020, 8, 412. [Google Scholar] [CrossRef] [Green Version]
  26. Moaaz, O.; Kumam, P.; Bazighifan, O. On the Oscillatory Behavior of a Class of Fourth-Order Nonlinear Differential Equation. Symmetry 2020, 12, 524. [Google Scholar] [CrossRef] [Green Version]
  27. Bazighifan, O.; Ruggieri, M.; Scapellato, A. An Improved Criterion for the Oscillation of Fourth-Order Differential Equations. Mathematics 2020, 8, 610. [Google Scholar] [CrossRef]
  28. Bazighifan, O.; Postolache, M. Improved conditions for oscillation of functional nonlinear differential equations. Mathematics 2020, 8, 552. [Google Scholar] [CrossRef] [Green Version]
  29. Bazighifan, O. Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations. Adv. Difference Equ. 2020, 201, 1–12. [Google Scholar] [CrossRef]
  30. Bazighifan, O.; Cesarano, C. A Philos-Type Oscillation Criteria for Fourth-Order Neutral Differential Equations. Symmetry 2020, 12, 379. [Google Scholar] [CrossRef] [Green Version]
  31. Bazighifan, O. An Approach for Studying Asymptotic Properties of Solutions of Neutral Differential Equations. Symmetry 2020, 12, 555. [Google Scholar] [CrossRef] [Green Version]
  32. Moaaz, O.; Furuichi, S.; Muhib, A. New Comparison Theorems for the Nth Order Neutral Differential Equations with Delay Inequalities. Mathematics 2020, 8, 454. [Google Scholar] [CrossRef] [Green Version]
  33. Dzurina, J.; Kotorova, R. Comparison theorems for the third order trinomial differential equations with delay argument. Czech. Math. J. 2009, 59, 353–370. [Google Scholar] [CrossRef] [Green Version]
  34. Partheniadis, E.C. Stability and oscillation of neutral delay differential equations with piecewise constant argument. Differ. Integral Equ. 1988, 4, 459–472. [Google Scholar]
  35. Koplatadze, R.G. Specific properties of solutions of first order differential equations with several delay arguments. J. Contemp. Mathemat. Anal. 2015, 50, 229–235. [Google Scholar] [CrossRef]
  36. Fiori, S. Nonlinear damped oscillators on Riemannian manifolds: Numerical simulation. Commun. Nonlinear Sci. Numer. Simul. 2017, 47, 207–222. [Google Scholar] [CrossRef]
  37. Dzurina, J.; Kotorova, R. Properties of the third order trinomial differential equations with delay argument. Nonlinear Anal. Theory Methods Appl. 2009, 71, 1995–2002. [Google Scholar] [CrossRef]
  38. Agarwal, R.; Grace, S.; Manojlovic, J. Oscillation criteria for certain fourth order nonlinear functional differential equations. Math. Comput. Model. 2006, 44, 163–187. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Bazighifan, O.; Moaaz, O.; El-Nabulsi, R.A.; Muhib, A. Some New Oscillation Results for Fourth-Order Neutral Differential Equations with Delay Argument. Symmetry 2020, 12, 1248. https://0-doi-org.brum.beds.ac.uk/10.3390/sym12081248

AMA Style

Bazighifan O, Moaaz O, El-Nabulsi RA, Muhib A. Some New Oscillation Results for Fourth-Order Neutral Differential Equations with Delay Argument. Symmetry. 2020; 12(8):1248. https://0-doi-org.brum.beds.ac.uk/10.3390/sym12081248

Chicago/Turabian Style

Bazighifan, Omar, Osama Moaaz, Rami Ahmad El-Nabulsi, and Ali Muhib. 2020. "Some New Oscillation Results for Fourth-Order Neutral Differential Equations with Delay Argument" Symmetry 12, no. 8: 1248. https://0-doi-org.brum.beds.ac.uk/10.3390/sym12081248

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop