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Abstract: The aim of this paper is to study the oscillatory properties of 4th-order neutral differential
equations. We obtain some oscillation criteria for the equation by the theory of comparison.
The obtained results improve well-known oscillation results in the literate. Symmetry plays an
important role in determining the right way to study these equation. An example to illustrate the
results is given.
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1. Introduction

Differential equations with neutral delay are used in many applications such as biological,
physical, engineering and chemical applications [1]. Symmetry plays an important role in determining
the right way to study these equations, see [2].

In the last few decades, there has been a constant interest to investigate the asymptotic property
for oscillations of differential equations [3–19] and nonlinear neutral differential equations, see [20–32].
Oscillation of nonlinear differential equations with delay arguments has been further developed in
recent years. For some this results, see [33–37].

In this work, we investigate the oscillation of fourth-order nonlinear differential equation with
neutral delay (

r (y)
(
v′′′ (y)

)γ
)′

+ q (y) uβ (ς (y)) = 0, y ≥ y0, (1)

where v (y) := u (y) + p (y) u (ζ (y)). We assume that γ and β are quotient of odd positive integers,
r, p, q ∈ C[y0, ∞), r (y) > 0, r′ (y) ≥ 0, q (y) > 0, 0 ≤ p (y) < p0 < ∞, ζ, ς ∈ C[y0, ∞), ζ (y) ≤ y,
limy→∞ ζ (y) = limy→∞ ς (y) = ∞ and

∫ ∞

y0

1
r1/γ (s)

ds = ∞. (2)

Definition 1. If a solution u of (1) is neither eventually positive nor eventually negative, then it is said to be
oscillatory. So, if all solutions are oscillate, then the equation is oscillatory.
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Several authors in [3–6,38] considered the equation(
r (y)

(
u(m−1) (y)

)γ)′
+ q (y) uβ (ζ (y)) = 0, (3)

where r′ (u) > 0, m is an even and (2) holds. In [7,29], Zhang et al. studied the oscillation of (3) under
the assumption that ∫ ∞

y0

r−1/γ (s)ds < ∞. (4)

Moaaz et al. [23] established the oscillation of even-order neutral differential equation(
r (u)

(
v(m−1) (u)

)γ)′
+ q (u) uγ (ς (u)) = 0. (5)

where m is an even and v (u) := u (u) + p (u) u (ζ (u)).
Xing et al. [20] established the asymptotic properties of even-order neutral differential Equation (3)

where 0 ≤ p (u) < p0 < ∞.
Bazighifan et al. [27] studied the oscillation of neutral differential equation

(
r (u)

(
v′′′ (u)

)γ
)′

+
j

∑
i=1

qi (u) uγ (ςi (u)) = 0, j ≥ 1,

where j ≥ 1, ςi (u) ≤ u and under the assumption (2).
Our aim in this work is to improve results in [20] and to complement results in [9].
We shall employ the following lemmas:

Lemma 1. [18] Assume that u ∈ Cm ([y0, ∞) , (0, ∞)) , then

u (y)
ym/m!

≥ u′ (y)
ym−1/ (m− 1)!

where u satisfies u(i) (y) > 0, i = 0, 1, ..., m, and u(m+1) (y) < 0.

Lemma 2. ([22], Lemmas 1 and 2) Let z1, z2 ≥ 0, then

(z1 + z2)
β ≤ 2β−1

(
zβ

1 + zβ
2

)
, for β ≥ 1

and
(z1 + z2)

β ≤ zβ
1 + zβ

2 , for β ≤ 1.

where β is a positive real number.

Lemma 3. ([3], Lemma 2.2.3) Let u ∈ Cm ([y0, ∞) , (0, ∞)) . If u(m) (y) is of fixed sign and not identically
zero on [y0, ∞) and that there exists a y1 ≥ y0 such that u(m−1) (y) u(m) (y) ≤ 0 for all y ≥ y1.
If limy→∞ u (y) 6= 0, then for every µ ∈ (0, 1) there exists yµ ≥ y1 such that

u (y) ≥ µ

(m− 1)!
ym−1

∣∣∣u(m−1) (y)
∣∣∣ , for y ≥ yµ.

2. Main Results

Firstly, we will define the following notations:

κ :=
{

1 if β ≤ 1;
2β−1 if β > 1,
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and
q̂ (y) := min

{
q
(

ς−1 (y)
)

, q
(

ς−1 (ζ (y))
)}

.

Theorem 1. Assume that (
ς−1 (y)

)′
≥ ς0 > 0 and ζ ′ (y) ≥ ζ0 > 0. (6)

If the differential inequality

η′ (y) +
1
κ

(
µy3

6r1/γ (y)

)β
(

ς0ζ0

ζ0 + pβ
0

)β/γ

q̂ (y) ηβ/γ
(

ζ−1 (ς (y))
)
≤ 0 (7)

is oscillatory for some µ ∈ (0, 1), then (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution in [y0, ∞). Without loss of generality, we let u be
an eventually positive solution of (1). Then, there exists a y1 ≥ y0 such that u (y) > 0, u (ζ (y)) > 0
and u (ς (y)) > 0 for y ≥ y1. Since r′ (y) > 0, we have

v (y) > 0, v′ (y) > 0, v′′′ (y) > 0, v(4) (y) < 0 and
(

r (y)
(
v′′′ (y)

)γ
)′
≤ 0, (8)

for y ≥ y1. From (1), we get

1

(ς−1 (y))′
(

r
(

ς−1 (y)
) (

v′′′
(

ς−1 (y)
))γ)′

+ q
(

ς−1 (y)
)

uβ (y) = 0. (9)

It follows from definition of v and Lemma 2 that

vβ (y) = (u (y) + p (y) u (ζ (y)))β

≤ κ
(

uβ (y) + pβ
0 uβ (ζ (y))

)
. (10)

From (9) and (10), we obtain

0 =
1

(ς−1 (y))′
(

r
(

ς−1 (y)
) (

v′′′
(

ς−1 (y)
))γ)′

+ q
(

ς−1 (y)
)

uβ (y)

+pβ
0

(
1

(ς−1 (ζ (y)))′
(

r
(

ς−1 (ζ (y))
) (

v′′′
(

ς−1 (ζ (y))
))γ)′

+ q
(

ς−1 (ζ (y))
)

uβ (ζ (y))

)

=

(
r
(
ς−1 (y)

) (
v′′′

(
ς−1 (y)

))γ
)′

(ς−1 (y))′
+ pβ

0

(
r
(
ς−1 (ζ (y))

) (
v′′′

(
ς−1 (ζ (y))

))γ
)′

(ς−1 (ζ (y)))′

+q
(

ς−1 (y)
)

uβ (y) + pβ
0 q
(

ς−1 (ζ (y))
)

uβ (ζ (y))

≥

(
r
(
ς−1 (y)

) (
v′′′

(
ς−1 (y)

))γ
)′

(ς−1 (y))′
+ pβ

0

(
r
(
ς−1 (ζ (y))

) (
v′′′

(
ς−1 (ζ (y))

))γ
)′

(ς−1 (ζ (y)))′
+

1
κ

q̂ (y)vβ (y) ,

which with (6) gives

1
ς0

(
r
(

ς−1 (y)
) (

v′′′
(

ς−1 (y)
))γ)′

+
pβ

0
ς0ζ0

(
r
(

ς−1 (ζ (y))
) (

v′′′
(

ς−1 (ζ (y))
))γ)′

+
1
κ

q̂ (y)vβ (y) ≤ 0. (11)
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Since v′ (y) > 0, we get that limy→∞ v (y) 6= 0. Thus, from Lemma 3, we get

v (y) ≥ µ

6
y3v′′′ (y) . (12)

Combining (11) and (12), we see that

1
ς0

(
r
(

ς−1 (y)
) (

v′′′
(

ς−1 (y)
))γ)′

+
pβ

0
ς0ζ0

(
r
(

ς−1 (ζ (y))
) (

v′′′
(

ς−1 (ζ (y))
))γ)′

+
1
κ

q̂ (y)
(µ

6
y3
)β (

v′′′ (y)
)β ≤ 0. (13)

If we set

η (y) :=
1
ς0

r
(

ς−1 (y)
) (

v′′′
(

ς−1 (y)
))γ

+
pβ

0
ς0ζ0

r
(

ς−1 (ζ (y))
) (

v′′′
(

ς−1 (ζ (y))
))γ

,

then it is easy to see that

η
(

ζ−1 (ς (y))
)
≤
(

ζ0 + pβ
0

ς0ζ0

)
r (y)

(
v′′′ (y)

)γ .

Thus, from (13), we get that η is a positive solution of

η′ (y) +
1
κ

(
µy3

6r1/γ (y)

)β
(

ς0ζ0

ζ0 + pβ
0

)β/γ

q̂ (y) ηβ/γ
(

ζ−1 (ς (y))
)
≤ 0.

which is a contradiction. The proof is complete.

Theorem 2. Assume that (6) holds. If the differential inequality

ϑ′ (y) +
1
κ

(
µy3

6r1/γ (y)

)β
(

ς0ζ0

ζ0 + pβ
0

)
q̂ (y) ϑβ/γ (ς (y)) ≤ 0 (14)

is oscillatory for some µ ∈ (0, 1), then (1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 1, we get (13). If we set ϑ (y) := r
(
ς−1 (y)

)(
v′′′

(
ς−1 (y)

))γ, then ϑ is a positive solution of (14), which is a contradiction. The proof
is complete.

Corollary 1. Let γ = β and (6) holds. If ξ (y) ≤ y and

lim inf
y→∞

∫ y

ξ(y)

s3γ

r (s)
q̂ (s)ds >

(
ζ0 + pγ

0
ς0ζ0

)
κ6γ

e
, (15)

where ξ (y) = ζ−1 (ς (y)) or ς (y), then (1) is oscillatory.

Proof. It is well-known (see, e.g., ([17], Theorem 2.1.1)) that condition (15) implies the oscillation of (7)
and (14).

Theorem 3. Assume that p0 < 1 and ς (y) ≤ y. If the equation

ψ′ (y) + (1− p0)
β
(

µς3 (y)
6r1/γ (ς (y))

)β

q (y)ψβ/γ (ς (y)) = 0 (16)
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is oscillatory for some µ ∈ (0, 1), then (1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 1, we get (8). From definition of v, we get

u (y) ≥ v (y)− p0u (ζ (y)) ≥ v (y)− p0v (ζ (y))

≥ (1− p0)v (y) ,

which with (1) gives (
r (y)

(
v′′′ (y)

)γ
)′

+ q (y) (1− p0)
β vβ (ς (y)) ≤ 0. (17)

From Lemma 3, we obtain
v (y) ≥ µ

6
y3v′′′ (y) . (18)

Combining (17) and (18), we get(
r (y)

(
v′′′ (y)

)γ
)′

+ q (y) (1− p0)
β
(µ

6
ς3 (y)

)β (
v′′′ (ς (y))

)β ≤ 0.

Hence, if we set ψ := r (v′′′)γ, then we get that ψ is a positive solution of the inequality

ψ′ (y) + (1− p0)
β
(

µς3 (y)
6r1/γ (ς (y))

)β

q (y)ψβ/γ (ς (y)) ≤ 0.

In view of ([19], Corollary 1), the associated delay differential Equation (16) also has a positive
solution, which is a contradiction. The proof is complete.

Corollary 2. Let γ = β, p0 < 1 and ς (y) ≤ y. If

lim inf
y→∞

∫ y

ς(y)

ς3γ (s)
r (ς (s))

q (s)ds >
6γ

(1− p0)
γ e

, (19)

then (1) is oscillatory.

Proof. It is well-known (see, e.g., ([17], Theorem 2.1.1)) that condition (19) implies the oscillation
of (16).

Theorem 4. Assume that p0 < 1 and ς (y) ≤ y. If there exists a positive functions ρ, δ ∈ C1 ([y0, ∞))

such that ∫ ∞

y0

(
Ψ (s)− 2γ

(γ + 1)γ+1
r (s) (ρ′ (s))γ+1

µ
γ
1 s2γργ (s)

)
ds = ∞ (20)

and ∫ ∞

y0

(
τ (s)− (δ′ (s))2

4δ (s)

)
ds = ∞, (21)

for some µ1, µ2 ∈ (0, 1) and every M1, M2 > 0, where

Ψ (y) := Mβ−γ
1 ρ (y) q (y) (1− p0)

β
(

ς (y)
y

)3β

and

τ (y) := (1− p0)
β/γ δ (y) M(β−γ)/γ

2

∫ ∞

y

(
1

r (z1)

∫ ∞

z1

q (s)
ςβ (s)

sβ
ds
)1/γ

dz1,
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then (1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3, we find (8) and (17). From (8), we have v′′ is of
one sign.

In the case where v′′ (y) > 0, we define

η (y) := ρ (y)
r (y) (v′′′ (y))γ

vγ (y)
> 0.

By differentiating and using (17), we get

η′ (y) ≤ ρ′ (y)
ρ (y)

η (y)− ρ (y) q (y) (1− p0)
β vβ (ς (y))

vγ (y)
− γρ (y)

r (y) (v′′′ (y))γ

vγ+1 (y)
v′ (y) . (22)

By Lemma 1, we find v (y) ≥ y
3 v′ (y), and hence,

v (ς (y))
v (y)

≥ ς3 (y)
y3 . (23)

Using Lemma 3, we get

v′ (y) ≥ µ1

2
y2v′′′ (y) , (24)

for all µ1 ∈ (0, 1). Thus, by (22)–(24), we obtain

η′ (y) ≤ ρ′ (y)
ρ (y)

η (y)− ρ (y) q (y) (1− p0)
β vβ−γ (y)

(
ς (y)

y

)3β

−γµ1
y2

2r1/γ (y) ρ1/γ (y)
η

γ+1
γ (y) .

Since v′ (y) > 0, there exist a y2 ≥ y1 such that

v (y) > M, (25)

for all y ≥ y2 and a constant M > 0 . Using the inequality

Ex− Fx(γ+1)/γ ≤ γγ

(γ + 1)γ+1 Eγ+1F−γ, F > 0,

with E = ρ′ (y) /ρ (y) , F = γµy2/2r1/γ (y) ρ
1/γ
1 (y) and u = η, we find

η′ (y) ≤ −Ψ (y) +
2γ

(γ + 1)γ+1
r (y) (ρ′ (y))γ+1

µ
γ
1 y2γργ (y)

.

This implies that

∫ y

y1

(
Ψ (s)− 2γ

(γ + 1)γ+1
r (s) (ρ′ (s))γ+1

µ
γ
1 s2γργ (s)

)
ds ≤ η (y1) ,

which contradicts (20).
For v′′ (y) < 0, integrating (17) from y to z, we obtain

r (z)
(
v′′′ (z)

)γ − r (y)
(
v′′′ (y)

)γ ≤ −
∫ z1

y
q (s) (1− p0)

β vβ (ς (s))ds. (26)
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From Lemma 1, we see that v (y) ≥ yv′ (y), and hence,

v (ς (y)) ≥ ς (y)
y

v (y) . (27)

For (26), letting z→ ∞ and using (27), we get

r (y)
(
v′′′ (y)

)γ ≥ (1− p0)
β vβ (y)

∫ ∞

y
q (s)

ςβ (s)
sβ

ds. (28)

Integrating (28) from y to ∞, we get

v′′ (y) ≤ − (1− p0)
β/γ vβ/γ (y)

∫ ∞

y

(
1

r (z1)

∫ ∞

z1

q (s)
ςβ (s)

sβ
ds
)1/γ

dz1, (29)

for all µ2 ∈ (0, 1). Now, we define

ϑ (y) = δ (y)
v′ (y)
v (y)

.

Then ϑ (y) > 0 for y ≥ y1. By using (25) and (29), we obtain

ϑ′ (y) =
δ′ (y)
δ (y)

ϑ (y) + δ (y)
v′′ (y)
v (y)

− δ (y)
(

v′ (y)
v (y)

)2

≤ δ′ (y)
δ (y)

ϑ (y)− 1
δ (y)

ϑ2 (y)

− (1− p0)
β/γ δ (y)vβ/γ−1 (y)

∫ ∞

y

(
1

r (z1)

∫ ∞

z1

q (s)
ςβ (s)

sβ
ds
)1/γ

dz1.

Thus, we find

ϑ′ (y) ≤ −τ (y) +
δ′ (y)
δ (y)

ϑ (y)− 1
δ (y)

ϑ2 (y) ,

and so

ϑ′ (y) ≤ −τ (y) +
(δ′ (y))2

4δ (y)
.

Then, we obtain ∫ y

y1

(
τ (s)− (δ′ (y))2

4δ (y)

)
ds ≤ ϑ (y1) ,

which contradicts (21). This completes the proof.

Example 1. Consider the differential equation((
(u + p0u (δy))′′′

)γ)′
+

q0

y3γ+1 u (λy) = 0, y ≥ 1, (30)

where δ, λ ∈ (0, 1] and p0, q0 > 0. Let γ = β, r (y) = 1, p (y) = p0, ζ (y) = δy, ς (y) = λy and
q (y) = q0/y3γ+1. Hence, it is easy to see that

q̂ (y) = q0λ3γ+1 1
y3γ+1 .
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Using Corollary 1, the Equation (30) is oscillatory if

q0 ln
1
λ
> κ

(
δ + pγ

0
δ

)
6γ

λ3γe
. (31)

From Corollary 2, if

q0 ln
1
λ
>

1
(1− p0)

γ
6γ

λ3γe
, (32)

then (30) is oscillatory.
Finally, if we set ρ (s) := y3γ and δ (y) := y2, then we have

Ψ (y) = q0 (1− p0)
γ λ3γ 1

s

and

τ (y) :=
1
2

(
q0

3γ

)1/γ

(1− p0) λ.

Thus, from Theorem 4, Equation (30) is oscillatory if

q0 (1− p0)
γ λ3γ > 2γ3γ+1

(
γ

γ + 1

)γ+1
(33)

and

q0 >

(
2

(1− p0) λ

)γ

3γ. (34)

3. Conclusions

In this article, we studied the oscillatory properties of 4th-order differential equations.
New oscillation criteria are established. We used Riccati technique and the theory of comparison to
prove that every solution of (1) is oscillatory.

Further, we shall study Equation (1) under the condition
∫ ∞

y0
1

r1/γ(s)
ds < ∞, in the future work.
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