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Abstract: A number of generalized Hurwitz—Lerch zeta functions have been presented and
investigated. In this study, by choosing a known extended Hurwitz-Lerch zeta function of two
variables, which has been very recently presented, in a systematic way, we propose to establish
certain formulas and representations for this extended Hurwitz—Lerch zeta function such as integral
representations, generating functions, derivative formulas and recurrence relations. We also point
out that the results presented here can be reduced to yield corresponding results for several less
generalized Hurwitz—Lerch zeta functions than the extended Hurwitz—Lerch zeta function considered
here. For further investigation, among possibly various more generalized Hurwitz-Lerch zeta
functions than the one considered here, two more generalized settings are provided.

Keywords: beta function; gamma function; Pochhammer symbol; Hurwitz—Lerch zeta function;
Hurwitz-Lerch zeta function of two variables; hypergeometric functions; confluent hypergeometric
functions; Appell hypergeometric functions; Humbert hypergeometric functions of two variables;
integral representations; generating functions; derivative formulas; recurrence relation

1. Introduction and Preliminaries

The generalized (or Hurwitz) zeta function {(s,v) is defined by (see, e.g., [1], pp. 24-27);
see also ([2] Chapter XIII)

= 1
()= L Gy (RO >1LveC\Z), 0
which is a generalization of the Riemann zeta function {(s) := ((s,1) (see, e.g., [1] Section 1.12).

Apostol [3] showed that the following analytic continuation formula (see, e.g., ([1] p. 26, Equation (6)),
([4] Equation (5.1))

7(1—s,v ;

7TS/2 27tvn) 0<v<1 R(s)>1), ()

where I'(s) is the familiar Gamma function whose Euler’s integral (see, e.g., [1] pp. 1-24) is

/ e “ulau  (R(s) > 0), 3)
0
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and it can be derived from a known transformation formula for the Lerch zeta function

eZmnx

(v =Y

o (n+v)s

(R(s) >1, ve C\Zy, xeR). 4)

Note that It is easy to read that ¢(x,v,s) = {(s,v) when x € Z. The Hurwitz-Lerch zeta function
D (z,s,v) is defined by (see, e.g., [1] p. 27)

n

> z
d(z,5,v) = —_—,
( ) 7;) (n+V)s

©)
where v € C\ Z; . The ® (z,s,v) in (5) converges for all s € C when |z| < 1 and for R(s) > 1 when
|z| = 1. Here and elsewhere, let N, Z, R, and C be the sets of positive integers, integers, real numbers,
and complex numbers, respectively. Furthermore, let us denote Z, := Z \ N and Ny := NU {0}.

The various special cases of the Hurwitz—-Lerch zeta function (5) including the Riemann zeta
function {(s), the Hurwitz zeta function (1), and the Lerch zeta function (4) have been intensively
studied and applied. We choose to take some examples: Adamchik and Srivastava ([5] Propostion
5) evaluated a series involving polygamma functions in terms of the Hurwitz—Lerch zeta function
(5). Rassias and Yang [6] studied certain equivalent conditions of a reverse Hilbert-type integral
inequality, for which, in an example, the generalized zeta function {(s,a) is shown to be related
to a best possible constant factor (see also [7? ,8]). Recently, a number of generalizations of the
Hurwitz-Lerch zeta function (5) have been actively investigated (see, e.g., [9-18] and the references
cited therein). Furthermore, very recently, Choi and Parmar [19] have introduced and investigated the
following two-variable extension of the Hurwitz-Lerch zeta function (5)

- k+e k(W) kY
Papivie (%,:5,) kzo )kt k'é' (k+ €+ a)s’ ©

wherea, b, b’ € Candc, 0w € C\ Zy . The function @, 4 4. (x,y,s,&) in (6) converges for all s € C
when |x| < 1and |y| <1,and for R(s +c—a—b—1") > 1when |x| = 1and |y| = 1. Here (1), is the
Pochhammer symbol given (for 7, v € C) by

(= 5D rvec\zg)

B {1 (v=0), @
i+ (p+n-1) (v=neN).

From (3) and (7), the following integral formula for the Pochhammer symbol
1 o0
v =T / e uT lau (R(s+v) >0) (8)
0

can be easily obtained.

Here, in a systematic way, we aim to establish certain formulas and representations for
the extended Hurwitz-Lerch zeta function of two variables (6) such as integral representations,
generating functions, derivative formulas and recurrence relations. We also point out that the
results presented here can be reduced to produce corresponding results for several less generalized
Hurwitz-Lerch zeta functions than the extended Hurwitz—Lerch zeta function (6). Further, two more
generalized settings than (6) are provided.
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2. Integral Representations for the Extended Hurwitz—Lerch Zeta Function of Two Variables

We begin by recalling a known integral representation of the extended Hurwitz-Lerch zeta
function (6) (see [19] Theorem 1)

1 o0
D, e (X,,5,a) r— / uslemau Fi [a,b,V;c;xe™, ye™] du, 9)
0

which converges for min {f(s), R(a)} > 0when |x| <1(x # 1)and |y| <1(y # 1), and for R(s) > 1
when x = 1 and y = 1. Here F, is the Appell hypergeometric function of two variables defined by
(see, e.g., ([1] p- 224, Equation (6)); see also ([20] p. 22))

po—0 () m+n m! n!
a+mb'; | xm
m!’

[a,b,V;c;x,y] = i (@) man (D) (b )n x™ y"

(10)

c+m;

where a4, b, 0" € C,c € C\Z; and whose convergence region is max{R(x), R(y)} < 1.
Here ,F; (p, q € Np) are the generalized hypergeometric functions (see, e.g., ([1] Chapters Il and V);
see also ([21] Section 1.5), [20,22-25]).

The following confluent form of the Appell hypergeometric function Fj is recalled (see, e.g., [1]
p- 225, Equation (21)); see also ([20] p. 22 et seq.)

Ol Vicxy) = Y D@ Vo ] < o). (11)

oo (©min  ml nl

We provide further integral representations of the extended Hurwitz-Lerch zeta function (6),
asserted in the following theorem.

Theorem 1. Each of the following integral representations holds.

1 o0 o0 o0 - - -
cDa,b,b/;c (x/]// S, 0‘) :W /// <MS 1 U}{ 1 UZ 1 exp(—ocu — U1 — 712)
00

0 (12)
X 1Fy [a;¢; e7 (xv1 + yoy)] ) du doq do,,
where min {RN(s), R(«), R(b), R(V')} > 0;
0000 (13)
X exp(—au — vy — vy —v3)oF [—; ¢ e7" (xv1 +yv2) v3] )du dvy dvy dos,
where min {R(s), N(a), N(a), R(b), R(Y')} > 0;
Dy p e (X,Y,5,) // (usfl 0" ! exp(—au —v)

00 (14)

x @ [b,b';c; xe v, ye o] ) du dv,
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where min{R(s), N(a), R(a)} > 0 and max{RN(x),RN(y)} <1,
I'(c)

R (SOOI
o0 o0 1 1
X//// s—1 o 1§b 1 b’ (1_€)cfb71 (15)
000

0
X (1= )Pt Vexp [—au — v+ xe "0f + ye “o(1 — &)y] )dfjdn du do,

where min{R(s), R(«), R(a), R(b)} > 0 and RN(c—b) > R(') >0

o0 o0 1 1
— I'(s s—1_a—1xb—1_b'—1
o (058 T TG 5 T) 0/0/0/0/( e

16
x (1=t -yt v exp [—au —v+xe "o +ye Mo (1—-2) 7] (16
X 1F [c = 6;¢;—ze "¢ —ye v (1 —C) 1] )dé dy du do,
where min{R(s), N(«), R(a), R(b)} >0 and R —b) > R(') >0
_ I (c)
ot (V58 =TT O T (T (6 1)
o001 1
X//// w11y, V-1(q  gyed-l (1_17)&57%1 (17)
0000
X exp [—au — v+ xe "o +ye "v(1 - &)y] 1F [6 — b; 6; —xe 0] )d@dq dudo,
where min{R(s), N(a), R(a), R(6)} >0 and R(c—46) > R(') >0
o0 o0 1 1
= s—1,a—1x6—1 b —1
Papivic (4,,5,) _r(s)r(a)r(a)r —5- 1) O/O/O/O/ (et
18
X (1=8) 01— ) Vexp [—au — v+ xe “0f + ye "o (1 - &) 7] (19
x 1F [b—é;c—&—b’;xe‘”v(l—g) (1-1n)] )d(:diydudv,
where min{R(s), R(«), R(a), R(6)} >0 and R(c—5) > RN(V') >0
r( ) o0 oo 1 1
_ ¢ Y1y 161-1,8-1
Ponte (e ) ST @ TG T ()T (e =61~ %) O/O/O/O/ coe
19
X (1=8) 1 (1 =) 2 exp [~au — v+ xe "og +ye "o(1 - §)y] )
X 1F [(51 —b;61; —xe*“vg] 1H [52 —V';6; —ye*”v(l — 6)17] ) d¢ dr du do,
where min{R(s), N(a), R(a), R(61)} >0 and RN(c—1) > R(d) >0
_ I'(c)
Paste G0 ST @T G T (o2 T (e~ &~ 32
0o 1 1
% //// <us—lva—1§§1—1rl¢52—1 (17(;:)C—51—1 (1717)C—51—52—1 20)
0000
x exp [—au —v+xe "¢ +ye "v (1—¢) 7]

X @ [b—61;b" — bp;c5x¢ " 0(1— &) (1 —17),ye "0(1—&)(1—7)] ) d¢ dy du do,
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where min{R(s), N(a), R(a), R(61)} >0 and RN(c—1) > R(&) >0

Pabprc (X5 0) = F O @ T )T (0T (e~ b~ 0)
oo 1 n
« o us—lgb—lﬂb’—l (1-¢-— W)cfbfb’fl (21)
Ti/

0
x (1—xge ™ —yne )" ) d¢ dy du,
where min{R(s), R(a), R(b), R(V')} >0 and R(c—b—-"1") >0

_ I'(c)
Pappic (Y5, %) " T(s)T(a)T (c—a)

o 1 , (22)
X // e Myl (1 — o) T (1 - vxe_”)_b (1- vye_”)_b dvdu,
00
where min{R(s), N(a), R(a)} >0 and R(c—a) > 0;
F( ) oo 1
_ ¢ " —aus—1_c—b—1 _ \b—1
q)a,b,b’;c (x/ Y Sr“) T (S) T (b) T (C — b) 0/ O/ (6 u v (1 U) 23)
x (1- xe*”)cfafb (1- vxe*“)afc oF (a,b';c — b;ye "v) ) dvdu,
where min{R(s), N(a), R(b)} >0 and R(c—0b) > 0.
Proof. Using (8) in the series definition of F; in (9), we get
F [a,bb;cxe ™, ye "] __ L 7/00 (87”1*”2 b1t -1
1 7Y 77 7 F(b) I‘!(b/) 1 2
00 (24)
00 —y\m —y\n
F e e " (o )y
o (©)mn m! n!
Applying the following identity (see, e.g., [25] p. 52)
- My (x+y)~
flmtn)—2 5= ), f(N) (25)
m,nZ:O m! n! N;O N!
to the double series in the right side of (24), we have an integral representation of F
F[a,bV;cxe ™, ye "] =~ L
7Y 77 7 b r(b,)
(26)

[cellee)
!
X // e 120t Lol L F [a; ¢; xore ™ + yvse ] dovg doa.
00

Finally, using (26) in (9), we get (12).
Similarly, using (8), we have an integral representation of 1 F;

-

F

/ e " u YR [—; c;xuldu  (R(a) > 0). (27)
0
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Applying (27) in (12), we get (13).
Using the following known integral formula (see [20] p. 282, Equation (27))

Fi [a,b,b';c;x,y] %/u et g, [b,b'; c; xu, yu] du, (28)
0

where max{R(x), R(y)} <1 and R(a) > 0, in the integrand of (9) yields (14).

From the known integral representation of ®, (see [26] Equation (4.2)) in (14), we obtain (15).

Similarly, applying the known integral representations ([26] Equation (4.10)-Equation (4.14)) of
D, to (14), respectively, yields (16)—(20).

Applying known integral representations for F; (see, e.g., ([22] p. 76, Equation (1)); see also ([27]
Equation (3.2)) and (see, e.g., ([22] p. 77, Equation (4)); see also ([27] Equation (3.1)) to (9), respectively,
we obtain (21) and (22).

Using a known integral representation for F; (see [27] Equation (3.3)) in (9), we get (23). O

3. Generating Functions for the Extended Hurwitz—Lerch Zeta Function of Two Variables

Certain generating functions for the extended Hurwitz—Lerch zeta function (6) are given in the
following theorem.

Theorem 2. The following two formulas hold true:

> (A+m—1 . . X y
mX::O < m ) q)/\+m,b,h/;c (x/ ]/; S, 0‘) u" = (1 u) qD/\,b,b/;c (m/ m, S, D() (29)
and
X A+m—1 o . y
m;() ( m > Cpa,h,/\+m;c (x/ y,s, 06) u- = (1 u) q)a,b,)\;c (x, m,s/ u() . (30)

Proof. We begin by recalling the generalized binomial theorem

11—y
(31)

[l
e T
=
- 3
3 /T
e
e <

I
3
|
o
3=
=
3
o
N
o
J’_
S
|
—_
N———
\3

where A € Cand |y| < 1.
For simplicity’s sake, let us denote the left side of (29) by L. Then, by using (6), we have

2 M & A m) () (b)), kY o
=) MZ:O (C)gpe k! 0! (k+ 0+ a)s

Inview of (A)y (A+m)ki¢ = (A)makre = (A)gre (A +k+ £), changing the order of summations
and using (31), we obtain

A+k+@ n

_ i k+€ (0 2y
kA=0 k”k'é' (k+€+1x

Mg

m=0

_ A v M (D) (V) Xy —k—t
“*”)Auﬂ &igﬁa é@ T lta) A

which, using the definition (6), leads to the right side of (29). Similarly, we can obtain (30).
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We can also prove the generating relations here by using some known generating relations
for F; (see [28] Equation (2.1)) and ([21] Equations (1.2)-(1.3)) in (9). The details of the proof are
omitted here. O

4. Derivative Formulas for the Extended Hurwitz—Lerch Zeta Function of Two Variables

Certain derivative formulas for the extended Hurwitz—Lerch zeta function (6) are established in
the following theorem.

Theorem 3. Each of the following derivative formulas holds true for m,n € Ny:

" _(”)m(b)mq)

axﬁ cIDa,h,b’;c (x/ Y,8, ‘X) - (C) a+m,b+m, b’ ;c+m (x/ Y80+ m) ’ (32)
m
0" (a), (V)
Wq)a,b,b/;c (X, y,s, D‘) :Wq)ﬂJrﬂ,b,burﬂ;CJrﬂ (x, Y,S8,& + 7’1) , (33)
n
gmtn (@) g (0) (V)
Doy (x,y,8,a) = oo . Dot b+m, b +metmtn (x,y,8,0 +m+n). (34)

axmay (C)ern
Proof. Differentiating the series definition (6) with respect to the variable x under the double
summations, which is valid under the conditions in (6), we have

k-1,

d _°° o (@i D) (V) X1y
ax Dabiiic (%Y,5,@) —§§ (Ore ( 71)'6'(k+€+zx) (35)

Putting k — 1 = k’ in (35) and cancelling the prime on k, we obtain

d - k+1+/ (b)ks1 (V) xkyf
a<I>g,h,b/ X,Y,8,&) ; ; S TR (s wan e (36)

Using (A)gy1 = A (A + 1)k (k € Np) in (36), we get

0 ab
acba,b,h’;c (x/ ¥.5 "‘) = ) q>a+l,h+1,b’;c+l (x, Y8+ 1) : (37)

Differentiating the right side of (37), successively, m — 1 times, with respect to the variable x,
we have (32). Similarly, we can obtain (33) and (34). The details are omitted. [
5. Recurrence Relations for the Extended Hurwitz-Lerch Zeta Function of Two Variables

Wang [29] presented a number of recurrence relations for Fj, which are chosen to give some
recurrence relations for the extended Hurwitz-Lerch zeta function (6), asserted in Theorem 4.

Theorem 4. Let n € Ny. Then the following recurrence relations are satisfied:

bx &
cDu+n,b,b/;C (x/ Yy,s, ‘X) :q)a,b,b’;c (xr Y:8, “) + 7 Z q)a+m,b+1,b’+c+l (xr Y:5, “)
m=1 (38)

b/ n
Cy Zq)aerbbJrl c+1 (x Y5 0()
m=1
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bx n—1
Ponpirie (XY, 0) =Py e (%,Y,5,0) — = Y Pompitpiert (X,Y,5,4)
m=0
(39)
b/y n—1
T Z cI>afm,b,bUrl;chl (x/ v,s, l") ;
m=0
— . n (ﬂ)m m
Dy pnb'ie (x,y,s,a) = Z (—y) Dyt b sc+m (x,y,8,a +m). (40)
m=0 m (C)m

Here the involved empty sum in each identity is assumed to be nil.

Proof. Using the following recursion relation for F; ([29] Theorem 1, Equation (1)):

n

Fy[a+n,b,b;c;x,y] =F [a,b,V;c;x,y] +b—x 2 Fila+mb+1,bc+1x,y]
¢ m=1
(41)
b/y n ,
+T 2 Fl [ﬂ+m,b,b +1/C+1/x/y]

m=1
and ([29] Theorem 1, Equation (2)) in (9), respectively, we obtain (38) and (39).
Using the recurrence relation for Fj in ([29] Theorem 4, Equation (12)) in (9), we find (40). O

Using six known recurrence relations for 1 F; in (12), we establish six recurrence relations for the
extended Hurwitz-Lerch zeta function (6), which are asserted in Theorem 5.

Theorem 5. The following recurrence relations hold true:

a1 ppie (XY, 8,a) =(c—a) Po_1p e (X,Y,8,a) + (20 — )Py e (X, Y, 5, 1)

(42)
+ bzq)a,bJrl,b’;c (x/ Y,s,a+ 1) + b,qua,h,b’Jrl;c (x, Y,s,a+ 1) ;

c(c=1)Pyppic—1 (x,y,8a) =clc=1)@gp e (x,y,5,0) +cbz Py g e (X, 1,50 +1)
+ Cb,y q)zz,h,b’Jrl;c (x, Y8, a+ 1) + (Ll - C)bz q>a,b+1,h’;c+l (x, Yrs,a+ 1) (43)
+ (@@= )by Pyp i1, (x, 9,56 +1);

(T+a—c)Poppe (x5 a) =aPuippe (x,y,5a) +(L—c)Pyppe1(x,y,5a); (44)

¢ <I>a,b,b’;c (xr Y5 0‘) =c chzfl,h,b’,'c (xr Y5 “) + bz q>a,b+1,b’;c+l (xr Y,s,a+ 1)

/ (45)
+0Y Py 1041 (Y8, +1);

ac Pg.y1 b (x,y,8,0) =ac Db (xX,y,8,a) 4 cbz Do pt1,5c (x,y,5,a+1)
+ Cb,y q>a,b,b’+1;c (xr Y,8,a+ 1) + (a - C)bZ cDa,bJrl,h’;chl (xr Y,s,a+ 1) (46)
(3= VY Pappypen (59,50 +1);
(=) Pyppe1(xy,80) =(@—1)DPypp. (X,1,58) +bzPgpi1 4, (x50 +1) 47)
+ 'y @it (Y, 5,0 +1)+ (c—a) Py qppe (x,y,5,0+1).
Proof. Using the following known recurrence relation for 1 F; (see [24] p. 19, Equation (2.2.1))
(c—a)1Fla—1Lcx]+ (2a—c+x)1Facx] —a1Fla+16x] =0

in (12), we obtain (42). Similarly, using the recurrence relations ([24] p. 19, Equations (2.2.2)-(2.2.6)) for
1F1, respectively, we get (43)—(47). O
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6. Symmetries and Conclusions
We can find some interesting identities from symmetries involved in certain definitions and

formulas. From (6) and (10), we demonstrate the follow symmetric relations:

q>a,b,h’;c (xr Yy,s, D‘) = cI>a,b’,b;c (y/ X, s, D‘) (48)

and
F [a,bV;cx,y] =F [aV, bcyx]. (49)

Further, in view of the symmetric relation (48), each integral representation in Theorem 1 may
yield another integral representation. For example, from (14) and (48), we have

Do, pic (X, .5, &) // (usfl 0" ! exp(—au —v)
00 (50)

X @, [V, b;c;ye o, xe o] ) du do,

where min{R(s), R(«),R(a)} > 0 and max{R(x), R(y)} < 1.

The extended Hurwitz-Lerch zeta function of two variables in (6) may be further generalized in
various ways. Here we introduce two extensions, one of which is due to parametric increase and the
other of which is due to variable addition:

p 9 k
[T(@)uso T T TT(ep)o
ork (ap) = (bg);  (ck); %, Y5 & i j=1 ' j=1 =1 ! x*y°
Emnt(wg) s (Bm); (n); pd ﬁ ﬁ ) n ) ul ol (u+0+ a)s
1 Ju+o 11 u 1 jlv
(51)

and
o) [a,by,...,by;c5x1,..., X, S, ]

e (a)mlJr"'ern (bl)ml e (bn)m,, le co x?" (52)

- ml,...;n:o (©)mytortmgmr el (my 4wy + @)

Here, for convergence, the parameters and variables in (51) and (52) would be suitably
restricted. Obviously,

/
11| a: by b
P10 c: LNy s el =D (x,y,s,a)

7

and
@ [a,b,V;¢;%,,5,0] = Dy p e (%,9,5,).

The extended Hurwitz—Lerch zeta function (6) can be specialized to yield several known
generalizations of the Hurwitz-Lerch zeta function (5) (see, e.g., [19]). Thus, the results presented here
can yield corresponding identities regarding several reduced cases of the extended Hurwitz-Lerch
zeta function (6), which are still generalizations of the Hurwitz-Lerch zeta function (5).
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