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Abstract: Infantile hemangiomas (IHs) are a type of vascular tumors that affect around 10% of new-

borns. The measurement of the lesion size and the assessment of the evolution is done manually by 

the physician. This paper presents an algorithm for the automatic computation of the IH lesion sur-

face. The image scale is computed by using the Hough transform and the total variation. As pre-

processing, a geometric correction step is included, which ensures that the lesions are viewed as 

perpendicular to the camera. The image segmentation is based on K-means clustering applied on a 

five-plane image; the five planes being selected from seven planes with the use of the Karhunen-

Loeve transform. Two of the seven planes are 2D total variation filters, based on symmetrical ker-

nels, designed to highlight the IH specific texture. The segmentation performance was assessed on 

30 images, and a mean border error of 9.31% was obtained. 

Keywords: infantile hemangiomas; Hough transform; image segmentation; K-means; total variation 

 

1. Introduction 

Infantile hemangiomas (IHs) represent a type of vascular tumor that has an incidence 

of 3% to 10% in newborns [1,2]. Usually, they appear and start to develop rapidly around 

the first two to five months of life and then have a natural slow involution in the following 

years [3]. Their shape and size are very different from subject to subject; some hemangio-

mas may become function-threatening, and that is why a precise method of measurement 

and prediction of evolution is needed. Usually, the IH size assessment is manually per-

formed by the physician by using a measuring tape. However, this method of measure-

ment is imprecise (it usually implies recording height and width, without any information 

about the geometry), due to the irregular shapes of the hemangiomas, and from this comes 

the motivation to develop an automatic measurement of the IH surface. 

In biomedical image analysis, the automatic measurement of a lesion relies on image 

segmentation techniques. Image segmentation consists of partitioning the image into re-

gions (called classes or subsets) [4] which are homogenous in terms of some features 

(color, texture, gray level, etc.). There is a wide variety of segmentation methods [4,5], but 

there is no standard technique that works well for all medical image categories. Usually, 

medical images contain some uncertainty concerning the border of some lesions or or-

gans, uncertainty produced by the image acquisition or reconstruction process, and this 

uncertainty makes the segmentation task more difficult [5]. 

There are only a few image processing and analysis papers addressing the problem 

of assessment of the size of IHs and the prediction of their evolution. The first paper was 

the one by Zambanini et al. [6]. Thus, in [6], IH lesion segmentation was performed using 

a perceptron on four features (G from RGB, H from HSV, a* from L*a*b*, and a feature 

representing the distance between the a*b* values of a pixel and the normalized corre-

sponding values of the skin). The image scale was automatically computed by extracting 
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the marks on a ruler placed near the lesion, by global thresholding. The authors also per-

formed image registration and a detection of hemangioma regression. 

The authors of [7] used a two-level thresholding segmentation on the a* channel from 

L*a*b*, and in [8] a color constancy approach was applied to correct the variation of colors 

due to different illumination. They reported a detection rate of 85% and a false positives 

rate of 16.4%. 

In [9], the L*a*b* color space was proven to be the optimal color space for image seg-

mentation, chosen among five different color spaces; then, a MAP-Markov segmentation 

was implemented, with an automatic learning step. The reported border error was 19.49%. 

The performances of three segmentation methods (Otsu, fuzzy C-means (FCM), and 

a region growing algorithm based on FCM, RG-FCM) were compared in [10]; the best 

result, 91.51%, was obtained with RG-FCM. In [11] the image was segmented in 25 classes 

using a self-organizing map (SOM) network, and then the number of classes was reduced 

to only two classes (hemangioma and non-hemangioma) with a morphological approach. 

On average, they obtained a 1.06% increase in performance compared to when they used 

FCM. 

The authors of [12] tested five classic segmentation methods (Otsu, Canny, FCM, 

GVF snakes, and Shortest path) and two different convolutional neural network architec-

tures, a standard linear CNN and a two-inputs DAG topology. The best results were ob-

tained with the shortest path method and the two-inputs CNN. More recently, in [13], a 

crop-based classifier based on a standard linear convolutional neural network was pro-

posed; the classifier receives small 64x64 RGB image patches and returns two classes: he-

mangioma and non-hemangioma; the maximum obtained accuracy is 93.84%. 

The Novelty of This Paper 

In [14] we proposed an automatic measurement of the hemangioma lesion from dig-

ital photographs containing a ruler. The shape and size of the hemangioma lesion depends 

on the viewing angle and the distance to the camera, and this makes the evaluation of the 

lesion evolution in time impractical. 

In this paper we expand the work presented in [14] by adding some additional steps, 

which ensure that the photographs are geometrically transformed in such a way that they 

appear as taken from the same distance to the camera, and that the camera is perpendic-

ular to the lesion. This step is necessary to ensure the correct assessment of the lesion 

shape and size for an accurate subsequent evolution follow up. The segmentation algo-

rithm was also improved by eliminating some programming errors, performing some op-

timizations, adding some additional features, and adding automatic selection of the most 

significative image planes for the segmentation with the use of the Karhunen-Loeve trans-

form. Seven image planes were used for segmentation (including a new defined total var-

iation filter), instead of only four in [14]. The segmentation accuracy was assessed in terms 

of border error, by using some manually segmented images (ground truth). An improve-

ment of at least 5% compared to that of the previous work was obtained.  

This paper is organized as follows. In Section 2, we present the proposed algorithm, 

in Section 3 we show the obtained experimental results, and in Section 4 we discuss the 

conclusions. 

2. Materials and Methods  

For this study we used a database of 30 RGB images (at a resolution of about 1300 × 

1200 pixels) obtained from the Marie Curie children’s hospital in Bucharest. The images 

were acquired during the project mentioned in the acknowledgements section, and their 

use for research was approved by the hospital. Each image contains a hemangioma lesion 

(located on different parts of the body such as chest, legs, face, etc.), and was acquired 

using different cameras and in different illumination conditions. For measurement pur-

poses, a ruler was placed near each lesion. In Figure 1, some images from the database are 

shown. 
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Figure 1. Example of images from the database. 

The proposed algorithm contains the following steps: 

• Automatic computation of the image scale and the detection of the ruler direction 

line. 

• Rotation of the image such that the ruler becomes vertical. 

• Extraction of the centimeter area. 

• Extraction of the digits from the centimeter area. 

• Performance of optical character recognition (OCR) of each of the objects that could 

be a digit. We search for the digits: 2–9. 

• Geometric transformation of the entire image such that the detected digit is geomet-

rically aligned to its corresponding frontal template. 

• Segmentation of the hemangioma. 

• Computation of the lesion surface. 

2.1. Detection of the Ruler and Computation of the Image Scale 

For the detection of the ruler within the image, we developed the following algo-

rithm: 

- Find the edges, using the Canny method; 

- Apply the Hough transform for lines on the edges of the image (obtained in the pre-

vious step), and keep only the lines that are at least 250 pixels long (the minimum 

length of 250 pixels was selected because it corresponds to around 1 cm length on the 

ruler at the resolution at which the images were acquired; if a smaller value is chosen, 

the algorithm still works, but the processing time increases due to the detection of 

more lines within the image); 

- For each extracted line, record the 1D intensity profile along the line and compute its 

total variation (1); 

- The line which has the maximum total variation is selected; 

- Detect the peaks from the intensity profile of the line and then compute the median 

distance between two consecutive peaks. 

The total variation of the function is computed by: 





N

k

kfkfv
2

)1()(
 

(1)

where f is the intensity profile of the line, N represents the number of pixels, and k is the 

index of each pixel. From all the lines detected in the image, the one which has the maxi-

mum v is selected (this line will contain most of the mm gradations from the ruler). An 

example of lines detected within the image using the Hough transform is shown in Figure 

2a; the line with the maximum total variation is colored in blue. In Figure 2b, one can see 

the peaks, which correspond to the mm gradations of the ruler, from the 1D intensity 

“signal” along the selected line. All the lines that are at least 250 pixels long come from 

the mm gradations on the sides of the ruler, gradations that are aligned, hence they give 
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a strong response in the accumulator space of the Hough transform. In addition, with the 

Hough transform being applied on the edges of the image (which is a binary image that 

contains white pixels only on contour areas) it is impossible that a line longer than 250 

pixels appears elsewhere than along the mm gradations. 

After computing the median distance between two consecutive gradations on the 

ruler, one can compute the area of a pixel in mm2 with the formula: pixel area = 1/(d * d), 

where d is the above-mentioned distance. 

(a)  

(b)  

Figure 2. (a) All the detected lines and the selected line (in blue); (b) The intensity profile (reversed) along the selected line. 

After the detection of the ruler, one knows its direction from the Hough transform, 

and we apply an image rotation so that the ruler becomes vertical. This step is necessary 

for the OCR to work. The rotation is performed using a classic rotation matrix, with the 

output image being augmented to contain the rotated image; the nearest neighbor ap-

proach was used for the interpolation of the output pixels. 

The extraction of the ruler area is then performed based on the hypothesis that the 

region’s color is a certain shade of gray (if the difference between the minimum and max-

imum value from the RGB triplet is smaller than a threshold, the pixel is considered as a 

shade of gray), and it includes at least a part of the line retained above. The ruler is gray 

within all the images. 

Then, in order to extract the digits from the ruler, a K-means algorithm with two 

classes is applied on the ruler region. The class which represents the digits is automatically 

chosen by considering the number of pixels within each of the two regions (the back-

ground region of the ruler is much larger than the area covered by digits within the ruler). 

Then, a labeling step is performed only on the regions that are potential digit candidates, 

and only the compact regions that are of the size of a digit are retained. The thresholds for 

digit size are automatically computed using the image scale obtained in the ruler-detec-

tion step.  

Once the digits have been extracted, they are recognized by a standard OCR algo-

rithm. We used the current OCR implementation from Matlab, which is an open-source 

OCR, more precisely the Tesseract OCR engine [15]. We used the character confidence 

measure provided by the OCR to discern if the extracted objects are digits or noise. In our 

implementation, we used digits from 2 to 9 to implement the geometric transformation. 
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For most of the images, the beginning of the ruler—around digits 2 to 4—is placed near 

the lesion. For the images where the digit 1 is the closest to the lesion (2 images), we de-

cided that this digit is not wide enough to be used for a geometric transformation (errors 

due to noise are significant for digit 1). 

For the affine type of transformation, a minimum of three key points is required. For 

each digit, one defines at least three key points, as one can see in Figure 3. The choice of 

each key point is customized for each digit (the location and the number of key points are 

fixed for each digit, i.e., all number 2s are identified with 5 key points, all number 3s with 

7 key points etc.). To determine the key points in each of the detected digits, one binarizes 

the image (Figure 4b), then one extracts a skeletonized shape of the digit by applying a 

geometric skeletonization algorithm. Afterwards, the key points are detected by analyz-

ing the local curvature of the skeletonized shape. 

 
 

Figure 3. The eight digits used as reference for the geometric transformation and the key points defined on them. 

(a)  (b)  (c)  

Figure 4. The processing steps for digit five: (a) original image; (b) binarization; (c) skeletonization and setting of the key points. 

Figure 5 presents the curvature determined along the contour line of the digit five. 

The two maximum curvature peaks are used to set the key points 1 and 3; the key points 

5 and 2 are termination points, and 4 is at half-distance from 3 to 5. 

 

Figure 5. The estimation of the curvature for the digit five. The peaks correspond to key points 3 

and 1 from Figure 4. 

The geometric transformation matrix is determined by solving a system of equations 

like the one in (2), with at least 6 unknowns if one has a minimum set of three key points 

pairs, by optimization in the sense of mean square error. Once the coordinates of key 

points are detected on the processed digit, a geometrical affine transform is then com-

puted to render the digit in an ideal, frontal view (photographed perpendicularly to the 

camera). To this end, the spatial coordinates of the same key points from the ideal view 

are used to compute the six optimal parameters (a11, a12, a21, a22, b1, b2) of the transform in 
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Equation (2), that best fit (in the mean-squared error sense) the set of original coordinates 

of key-points to the set of coordinates of ideal key points. 
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In Equation (2), [xti, yti] represent the target (ideal) coordinates of key point #i, 

whereas [xsi, ysi] represent the original coordinates of the same key point. Thus, the de-

formed digit will be transformed in an “ideally” photographed digit. We then apply this 

geometrical transformation matrix to the whole image. 

For the geometric transformation, from the digits detected by the OCR, we chose the 

one that is the closest to the lesion. For this, we used the “learning image” described in 

[9]. This image contains a set of points (much smaller than the entire hemangioma), chosen 

very restrictively, which certainly belong to the lesion. These points are determined in the 

following manner: 

 Apply a Canny edge detection on the original image. 

 Build an edge density image, D, by convolving the contour map with a blurring ker-

nel. 

 Construct a binary image B, which contains the higher edge density, by thresholding 

D with an adaptive threshold (set at 45% of the higher contour density). 

 Keep the pixels from B that have a red component (from RGB) 55% higher than the 

green component and 55% higher than the blue one. 

We tested the above described method on all the images from the database, and the 

detected set of points always belonged to the lesion. 

2.2. Hemangioma Lesion Segmentation 

The segmentation of the hemangioma region is not an easy task due to the different 

and frequently poor illumination conditions in which the images from the database were 

acquired. 

Building a segmentation method that relies only on the color information leads to 

some confusion, because the color of the hemangioma is similar to the color of some un-

der-illuminated skin areas. Thus, our idea was to also use some texture information, be-

cause the hemangioma area is much more textured than the skin. As mentioned in [16], 

texture characterization is widely studied in image processing. 

In order to discriminate between the textured hemangioma area and the smoother 

skin area, we implemented two filters based on the 2D total variation (their kernels are 

shown in Figures 6 and 7), because we noticed that it accentuates the hemangioma (the 

authors of [17], working on other images, also concluded that the total variation (TV) 

method gives stronger edges than those of the classic derivative operators). 

The first filter, applied on the L* component of the image, computes the 2D total var-

iation using four 5 × 5 symmetrical neighborhoods oriented in the four directions, as 

shown in Figure 6. One calculates the 1D total variation by applying Equation (1) along 

each line, and then one keeps the maximum of the four values. Then, in order to empha-

size the hemangioma area (which is darker than the rest of the skin), we add (maxL − L(i,j)) 

to the TV value, where maxL is the maximum intensity value from the L* plane, and L(i,j) 

is the pixel’s luminance. Figure 8c shows an example of such a TV image (for a better 

visualization, the image is negativized), obtained by applying the filter on the image from 

Figure 8b. 
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Figure 6. The four 5 × 5 oriented neighborhoods used to compute the total variation for the first 

filter. 

The second filter, also applied on the L* component of the image, computes the 2D 

total variation by sweeping Equation (1) along the edges of a 3 × 3 symmetrical neighbor-

hood. Here also, in order to emphasize the hemangioma, we add (maxL − L(i,j)) to the TV 

value. In Figure 8d, one can see the (negativized) result of applying this filter on the image 

on Figure 8b. 

 

Figure 7. The 3 × 3 neighborhood used to compute the total variation for the second filter. 

We implemented the following segmentation algorithm: 

 construct a seven-plane image composed of: 

- the L* component of the image; 

- the a* plane; 

- the b* plane; 

- the TV image obtained by applying the first filter on the L* component of the 

image; 

- the TV image obtained by applying the second filter on the L* component of the 

image; 

- the H plane from HSV (shifted with 50° in order that the red color is not on the 

transition from 0° to 360°); and 

- the S plane from HSV; 

 create a binary mask A, which keeps only the reddish pixels (that have the red com-

ponent from RGB bigger than the green and blue components; an example of a pixel 

belonging to a hemangioma: R = 152, G = 61, B = 35), that can be hemangioma pixels, 

by setting a threshold of 85% from the maximum value of the a* plane from (L*a*b*); 

note that in L*a*b* there is a symmetrical distribution of colors in the a*b* planes; 

 multiply each TV image with the mask A to keep only the hemangioma pixels and 

possibly also some reddish healthy skin pixels; 

 apply the Karhunen-Loeve transform on the seven-plane image, and keep only the 

first five most important planes; 

 run the K-means clustering on the five-plane image obtained in the previous step, 

with a number of 6 classes (the best number of classes was experimentally deter-

mined); 

 from the segmented image, choose as the hemangioma class the one that has the max-

imum a* average value, or if there are two regions with the same a* average, choose 

the one that has the maximum TV (computed with the first filter) value; 

 eliminate the obtained hemangioma regions that are smaller than a threshold, or the 

ones with weak borders. 

The last step of the algorithm is necessary because there may be a confusion between 

hemangioma regions and under-illuminated skin regions that have almost the same color 

and are a bit textured. To discriminate between these skin regions and the hemangioma 

region, we implemented a measure of border strength (to extract the objects border, we 
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subtract the eroded objects from their dilated version; we use symmetrical disk-shape 

structuring elements). Thus, the hemangioma region has strong borders, and we can elim-

inate the skin regions by keeping only the areas that have the median of the gradient on 

the edges (we used the Sobel operator) above a certain threshold. The threshold value was 

determined experimentally. 

Figure 8a presents the rotation of the original image, rotation performed such that 

the ruler becomes vertical. In this example the digit five was identified by the OCR and 

used for the geometric correction, because it is the closest digit to the lesion. In Figure 8b 

the image obtained after the geometric transformation is shown.  

The result of the K-means segmentation with 6 classes is presented in Figure 8e, and 

the final segmentation result is shown in Figure 8f. 

After the segmentation, one can compute the area of the hemangioma by using the 

formula: area = nb_pixels * pixel_area = nb_pixels/(d * d). For instance, for the lesion presented 

in Figure 8, the hemangioma surface was calculated as 0.8 cm2, which is accurate. It is 

important to calculate the region’s area accurately, because one can compare this area on 

further examinations, and decide if there is a progression or a regression of the hemangi-

oma. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 8. (a) The rotation of the original image; (b) the geometrically-transformed image; (c) the total variation (TV) image 

with the first filter (shown in negative); (d) the TV image with the second filter; (e) K-means segmentation with 6 classes; 

(f) final segmentation result. 

The pseudocode of the proposed hemangioma segmentation method is presented in 

Algorithm 1. The names of the variables from this pseudocode are not the names of the 

variables within the original Matlab program. 

Algorithm 1 The proposed method for hemangioma segmentation 

Read the color input image I 

G  graylevel(I) 

BW  Canny_edge_detection(G) 

Apply the Hough transform for lines on BW 

Compute the total variation for each line with Equation (1) 

Keep the line with the maximum TV value 

d  median distance between two consecutive peaks on the line 

Rotate(I), such as the extracted line becomes vertical 

M  extracted digits from the ruler using K-means clustering with 2 classes 

M  eliminate objects from M that are too small or too big to represent digits 

D  edge density image, obtained by convolving BW with a blurring kernel 

B  binary image, where value 1 = if pixel is 45% of the highest contour density from D 

B  pixels from B that have R (from RGB) 55% higher than G and 55% higher than B 

[Bx, By]  mean location of the pixels with value 1 from B (lesion location estimation) 

Apply OCR on each region from M; choose the digit from 2 to 9 that is the closest to [Bx, 

By] 

Find the key points on the digit 

I  geometrical transformation of I, using Equation (2) 

A1  L* from L*a*b* version of I 

A2  a* from L*a*b* version of I 

A3  b* from L*a*b* version of I 

A4  image obtained by applying the first TV filter on L*  

A5  image obtained by applying the second TV filter on L*  

A6  H from HSV (shifted with 50°) 

A7  S from HSV 
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N  85% * max(a*), a binary mask where 1 = reddish pixels, 0 = other pixels 

A4  A4 pixelwise multiplied by N 

A5  A5 pixelwise multiplied by N 

A  [A1 A2 A3 A4 A5 A6 A7] (7 plane image) 

X  Karhunen-Loeve(A), keep only the 5 most important planes 

Y  K-means(X), 6 classes 

S  binary image, where 1= hemangioma class from Y 

S  S without regions smaller than a threshold 

S  only regions from S with strong borders 

R  compute the lesion surface (number of pixels of value 1 from S * 1/d2) 

3. Results 

The automatic image scale computation described above was tested for all the images 

in the database, and worked without errors (the distance between two consecutive grada-

tions on the ruler was correctly estimated for all the images). The estimation of the ruler 

direction was within a three degrees angle for all the images, which proves that the 

method is robust. The correct measurement line was identified for all the images, even in 

the presence of objects having the same color as the ruler in the image. We inspected the 

geometrically-transformed digit to its ideal frontal template, and there was a precise 

match, which proves that the geometric correction worked for all the images. 

For all the images in the database, we had a manual segmentation (“ground truth”) 

image, which represents a binary image where the hemangioma pixels are white and the 

other pixels are black. The accuracy of the segmentation algorithm was assessed in terms 

of border error (BE), as in [6]. The BE was calculated using the following formula: 

BE = Area((A ∪ M) − Area(A ∩ M))/Area(M) (3)

where A is the hemangioma region obtained after the segmentation, and M is the manual 

segmented region (from the ground truth). 

Here, the term “border” in BE does not mean that the segmentation errors are meas-

ured only at the border of the lesions, but, as one can see in formula (3), any surface dif-

ference between A and M will increase BE (for instance if the lesion in A has some holes 

that are not present in M); hence, the term BE was only used with respect to [6]. 

In practice, it is almost impossible for BE to become 0%, because there are several 

geometrical uncertainties [18]. For instance, there is some uncertainty when constructing 

M and there is an uncertainty of the lesion border given by the image acquisition system. 

The mean BE for all the images in the database was 9.31%. The minimum BE value 

was 2.16% and the maximum BE value was 25.64%. This high BE value was obtained on 

an image where the hemangioma is very small and fragmented, some portions being very 

similar to the skin; in this case, the morphological opening filter that we used to remove 

noise also removed some small fragments of the segmented hemangioma. 

Figure 9 shows the histogram of border errors for all the images. One notices that for 

93% of the images, the BE is smaller than 20%. 

As a comparison, the mean BE obtained in [14], without the mean-shift filtering, was 

14.6%. Hence, the presented improved algorithm has a better accuracy. 
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Figure 9. The histogram of border errors. 

Figure 10 presents three of the best segmentations. These are well defined lesions, 

and there is a strong color and brightness contrast between the hemangioma and the skin. 

In Figure 11 three of the worst segmentations are shown. In these images, the contrast 

between the lesion and the skin is very low. 

  
(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 10. (a) Original image #1; (b) Segmented version of #1, border error (BE) 2.16%; (c) Original 

image #2; (d) Segmented version of #2, BE 2.75%; (e) Original image #3; (f) Segmented version of 

#3, BE 3.14%. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 11. (a) Original image #1; (b) Segmented version of #1, BE 25.64%; (c) Ground truth for #1; (d) Original image #2; 

(e) Segmented version of #2, BE 21.75%; (f) Ground truth for #2; (g) Original image #3; (h) Segmented version of #3, BE 

16.44%; (i) Ground truth for #3. 

Comparison of the Obtained Results with Other Methods 

We compared the segmentation accuracy (in terms of border error) with four other 

segmentation methods, as depicted in Table 1. 

The MAP-Markov segmentation method from [9] applied on the current dataset 

gives the worst results, perhaps because this method is a supervised segmentation that 

relies on the automatic selection of the training set. The algorithm presented in [9] includes 

an automatic learning step for the two classes: hemangioma and non-hemangioma; the 

pixels belonging to regions with maximum edge density and having red color predomi-

nance are chosen for learning the hemangioma class. The result of the MAP segmentation 

is improved by regularization with discrete Markov fields. 

The RG-FCM proposed in [10] is an improved region growing algorithm based on 

FCM, and gives better results than that of FCM. The seeds used as starting points in region 

growing are computed from the means obtained by applying FCM combined with a 

threshold based on the minimum value of the hemangioma class and the maximum value 

of the non-hemangioma class. As stated by the authors of [11], the SOM-MMRNC (self-

organizing map followed by a morphological method of reducing the number of classes) 

method performs better than does FCM, and this can be seen also in Table 1. The SOM 

neural network is capable of discovering by itself features and patterns of the input data. 



Symmetry 2021, 13, 138 13 of 14 
 

 

In [11], a 5 × 5 neurons network was used, the input data being the a* plane from CIE-

L*a*b*. The 25 neurons were ordered by the most hemangioma-like prototype obtained, 

then 25 masks were constructed with a cumulative effect of the ordered neurons Ni (mask 

i = N1 and N2,…, and Ni). The smoothest mask was chosen as the segmentation result, the 

smoothness being computed by morphological closing and opening. As another compar-

ison, even though the databases are different, in [6] a mean BE of 32.1%, with a minimum 

value of 3.6% and a maximum value of 247.7% were reported. 

In terms of computing performance, for an image of 1255 × 1325 pixels, on an average 

i7 (4600u @2.1GHz) processor laptop, the runtime of the segmentation program was 

around 9 s, as one can see in Table 1, where the computation time (in seconds) is given as 

a comparison with the other four methods, for the same image. 

Table 1. Border error and computational time values obtained on the same image database with other segmentation methods. 

 MAP-Markov [9] RG-FCM [10] SOM-MMRNC [11] Method from [14] Proposed Method 

BE 20.3% 15.5% 14.8% 14.6% 9.31% 

Comp. time 40.82 s 13.08 s 420 s 10.2 s 8.36 s 

4. Discussion 

In this paper we presented a method for the automatic computation of the IH lesion 

surface, having as input digital photographs that also contain a ruler near the lesion. The 

size of a mm in pixels was computed with the use of the Hough transform for lines and 

the total variation, to select the line that has the maximum mm gradations. 

As pre-processing, a geometric correction was introduced to ensure that the lesion is 

viewed as perpendicular to the camera. This step is necessary for an accurate assessment 

of the lesion’s size and shape, for further estimation of the hemangioma evolution in time. 

The geometric correction is performed automatically, by applying a transformation be-

tween some key points from a digit (on the ruler) near the lesion, and the corresponding 

key points on an ideal digit template. 

The image segmentation relies on K-means clustering, which receives as input a five-

plane image obtained by selecting the five most significative planes from seven image 

planes with the use of the Karhunen-Loeve transform. Two of the seven image planes 

characterize the texture, with the help of two specially designed 2D total variation filters: 

a 5x5 neighborhood filter and a 3x3 one. In order to eliminate from the segmentation result 

skin regions that have the same color and texture as the hemangioma, a border detector 

was implemented, which keeps only the hemangioma regions (that have strong borders). 

Our method was compared with four other segmentation methods, on the same da-

taset, and we obtained the best results. 

A limitation of the current method are the relatively poor image-acquisition condi-

tions. The images from the database were acquired over a long period of time (around 

two years) because the number of IH cases is limited; also, small children do not stand 

still for photographs, which makes the acquisition process harder. 

In terms of accuracy, the proposed algorithm offers better results than the one pre-

sented in [14], with a decrease in border error of around 5%. 

Author Contributions: Conceptualization, S.O. and M.C.; methodology, S.O.; software, S.O.; vali-

dation, S.O., M.C., and A.S.; formal analysis, S.O.; investigation, S.O.; resources, A.S.; data cura-

tion, S.O. and A.S.; writing—original draft preparation, S.O.; writing—review and editing, S.O., 

M.C., and A.S.; visualization, S.O.; supervision, S.O. and M.C.; project administration, S.O. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 



Symmetry 2021, 13, 138 14 of 14 
 

 

Data Availability Statement: The datasets generated from this study are available upon reasonable 

request. 

Acknowledgments: We are grateful to the Marie Curie children’s hospital in Bucharest for provid-

ing the images for this research. The images were acquired during the Joint Applied Research Pro-

jects “Methods of Prediction of Infantile Hemangioma Evolution Aimed at Preventing Disfiguring 

Complications by Multiple Intervention Procedures”, grant number: PN-II-PTPCCA-2013-4-0201, 

funded by the Executive Unit for Higher Education, Research, Development and Innovation Fund-

ing (UEFISCDI). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Shwayder, T.; Schneider, S.L.; Icecreamwala, D.; Jahnke, M.N. Infantile Hemangiomas. In Longitudinal Observation of Pediatric 

Dermatology Patients; Springer: Cham, Switzerland, 2019; doi:10.1007/978-3-319-98101-7_17. 

2. Group, T.H.I.; Haggstrom, A.N.; Drolet, B.A.; Baselga, E.; Chamlin, S.L.; Garzon, M.C.; Horii, K.A.; Lucky, A.W.; Mancini, A.J.; 

Metry, D.W.; et al. Prospective Study of Infantile Hemangiomas: Demographic, Prenatal, and Perinatal Characteristics. J. Pedi-

atrics 2007, 150, 291–294, doi:10.1016/j.jpeds.2006.12.003. 

3. Chang, L.C.; Haggstrom, A.N.; Drolet, B.A.; Baselga, E.; Chamlin, S.L.; Garzon, M.C.; Horii, K.A.; Lucky, A.W.; Mancini, A.J.; 

Metry, D.W.; et al. Growth Characteristics of Infantile Hemangiomas: Implications for Management. Pediatrics 2008, 122, 360–

367. 

4. Rogowska, J. Chap. 5—Overview and Fundamentals of Medical Image Segmentation. In Handbook of Medical Image Processing 

and Analysis, 2nd ed.; Bankman, I.N., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 73–90, doi:10.1016/B978-012373904-

9.50013-1. 

5. Gillmann, C.; Post, T.; Wischgoll, T.; Hagen, H.; Maciejewski, R. Hierarchical image semantics using probabilistic path propa-

gations for biomedical research. IEEE Comput. Graph. Appl. 2019, 39, 86–101, doi:10.1109/MCG.2019.2894094. 

6. Zambanini, S.; Sablatnig, R.; Maier, H.; Langs, G. Automatic image-based assessment of lesion development during hemangi-

oma follow-up examinations. Artif. Intell. Med. 2010, 50, 83–94, doi:10.1016/j.artmed.2010.06.003. 

7. Sultana, A.; Zamfir, M.; Ciuc, M.; Oprisescu, S.; Popescu, M. Automatic segmentation of infantile hemangiomas. In Proceedings 

of the Signals, Circuits and Systems (ISSCS), International Symposium on, Iasi, Romania, 9–10 July 2015; IEEE: New York, NY, 

USA, 2015; pp. 1–4, doi:10.1109/ISSCS.2015.7203960. 

8. Sultana, A.; Oprisescu, S.; Ciuc, M. Automatic evaluation of hemangiomas for follow-up monitoring. In Proceedings of the E-

Health and Bioengineering Conference (EHB), Iasi, Romania, 19–21 November 2015; IEEE: New York, NY, USA, 2015; pp. 1–4, 

doi:10.1109/EHB.2015.7391579. 

9. Oprisescu, S.; Ciuc, M.; Sultana, A.; Vasile, I. Automatic segmentation of infantile hemangiomas within an optimally chosen 

color space. In Proceedings of the E-Health and Bioengineering Conference, Iasi, Romania, 19–21 November 2015; IEEE: New 

York, NY, USA, 2015; pp. 1–4, doi:10.1109/EHB.2015.7391592. 

10. Neghina, C.; Zamfir, M.; Sultana, A.; Ovreiu, E.; Ciuc, M. Automatic detection of hemangiomas using unsupervised segmenta-

tion of regions of interest. In Proceedings of the Communications (COMM), 2016 International Conference on, Bucharest, Ro-

mania, 9–10 June 2016; IEEE: New York, NY, USA, 2016; pp. 69–72, doi:10.1109/ICComm.2016.75283292. 

11. Neghina, C.; Zamfir, M.; Ciuc, M.; Sultana, A. Automatic detection of hemangioma through a cascade of self-organizing map 

clustering and morphological operators. Procedia Comput. Sci. 2016, 90, 145–150, doi:10.1016/j.procs.2016.07.023. 

12. Alves, P.G.; Cardoso, J.S.; Bom-Sucesso, M.D. The Challenges of Applying Deep Learning for Hemangioma Lesion Segmenta-

tion. In Proceedings of the 2018 7th European Workshop on Visual Information Processing (EUVIP), Tampere, Finland, 26–28 

November 2018; pp. 1–6, doi:10.1109/EUVIP.2018.8611730. 

13. Sultana, A.; Balazs, H.; Ovreiu, S.; Oprisescu, S.; Neghina, C. Infantile Hemangioma Detection using Deep Learning. In Pro-

ceedings of the 2020 13th International Conference on Communications (COMM), Bucharest, Romania, 18–20 June 2020; pp. 

313–316, doi:10.1109/COMM48946.2020.9141992. 

14. Oprisescu, S.; Ciuc, M.; Sultana, A. Automatic measurement of infantile hemangiomas. In Proceedings of the 2017 E-Health and 

Bioengineering Conference (EHB), Sinaia, Romania, 22–24 June 2017; pp. 503–506, doi:10.1109/EHB.2017.7995471. 

15. Smith, R. An Overview of the Tesseract OCR Engine. In Proceedings of the Ninth International Conference on Document Anal-

ysis and Recognition (ICDAR 2007), Parana, Brazil, 23–26 September 2007; Volume 2, pp. 629–633. 

16. Sosa, N.L.D.; Noguera, J.L.V.; Silva, J.J.C.; Torres, M.G.; Ayala, H.L. RGB Inter-Channel Measures for Morphological Color 

Texture Characterization. Symmetry 2019, 11, 1190, doi:10.3390/sym11101190. 

17. Ndajah, P.; Kikuchi, H. Total variation image edge detection. In Proceedings of the 10th WSEAS International Conference on Elec-

tronics, Hardware, Wireless and Optical Communications; Springer: New York, NY, USA, 2011; pp. 246–251. 

18. Gillmann, C.; Wischgoll, T.; Hamann, B.; Ahrens, J. Modeling and Visualization of Uncertainty-Aware Geometry Using Multi-

variate Normal Distributions. In Proceedings of the 2018 IEEE Pacific Visualization Symposium (PacificVis), Kobe, Japan, 10–

13 April 2018; pp. 106–110, doi:10.1109/PacificVis.2018.00021. 


