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Abstract: The detection of primary user signals is essential for optimum utilization of a spectrum
by secondary users in cognitive radio (CR). The conventional spectrum sensing schemes have
the problem of missed detection/false alarm, which hampers the proper utilization of spectrum.
Spectrum sensing through deep learning minimizes the margin of error in the detection of the
free spectrum. This research provides an insight into using a deep neural network for spectrum
sensing. A deep learning based model, “DLSenseNet”, is proposed, which exploits structural
information of received modulated signals for spectrum sensing. The experiments were performed
using RadioML2016.10b dataset and the outcome was studied. It was found that “DLSenseNet”
provides better spectrum detection than other sensing models.

Keywords: cognitive radio; deep learning; spectrum sensing; convolutional neural network; long
short term memory

1. Introduction

The advent of new applications and technologies such as the Internet of Things, Cyber-
Physical Systems, etc., has propelled the demand for wireless spectrum [1]. This increase
in demand for spectrum cannot be achieved easily as a spectrum is a limited resource,
and its expansion is difficult due to technological limitations. Although a spectrum is a
precious resource, its utilization is sub-optimal as per the research finding of the Federal
Communications Commission (FCC) of the USA in 2003 [2,3]. Therefore, an increase in
the utilization of the spectrum has become the main aim of researchers. Cognitive radio
technology was proposed by Mitola to improve spectrum utilization [4].

Cognitive radio is a promising technology which allows secondary users (SUs) to
access the licensed band of primary user (PU) opportunistically when it is not being
used by the primary user. Thus, the transmission of the PU is not impacted in any way.
The main functions of cognitive radio are radio scene analysis and spectrum management,
channel-state estimation, transmitted power control, etc. [5]. This research paper focuses
on spectrum sensing based on radio scene analysis to achieve better co-existence of the
primary and secondary users, along with improved spectrum utilization.

The wireless communication system has many inherent limitations due to multipath
fading, shadowing, hidden terminal problems, etc., which have been identified and docu-
mented. Spectrum sensing is also prone to these issues; hence, the outcome of radio scene
analysis of individual base stations may not be free of errors [6]. Deep learning based
spectrum sensing will minimize the flaw in classification and identification of channels.
Deep learning does not depend on features of signal, but rather, it automatically learns
the features. Thus, deep learning will help improve the performance metrics of channel
classification [7,8].

Deep learning is a machine learning technique with many intermediate layers of
non-linear processing for modeling complex representations in data [9]. Deep learning has
the capability of big data analysis that makes it more suitable to find patterns in various
applications of natural language processing, economics, computer vision, bioinformatics,
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etc. [10]. Deep learning algorithms are also being implemented in wireless communica-
tion systems for multiple input-multiple output (MIMO) technology, resource allocation
schemes, non-orthogonal multiple access (NOMA) technologies, signal modulation recog-
nition, and spectrum sensing [11].

This paper has shown its research finding of using deep learning for spectrum sensing.
“DLSenseNet” (Deep learning-based spectrum sensing network) mechanism is proposed in
this paper. The motivation to choose spectrum sensing is to correctly identify the underutilized
spectrum and use it to improve spectrum utilization with minimum interference. The paper
has been organized as follows; Section 2 discusses research work undertaken in spectrum
sensing, Section 3 discusses the system model of spectrum sensing, Section 4 presents the
methodology proposed, and Section 5 describes the experimental setup. The results are
discussed in Section 6, followed by the conclusion in Section 7.

2. Deep Learning Survey for Smart Sensing

AI-based deep learning technique is used in many applications, and we are investi-
gating it for spectrum sensing. Some of the research work in deep learning for spectrum
sensing is discussed here. Vyas et al. [12] proposed an artificial neural network based
spectrum sensing method, which uses the energy of the signal and likelihood ratio test
statistic as a feature to train a model. Han et al. [13] proposed a model based on CNN,
which trains the data based on received energy signals and cyclostationary feature detec-
tion. Lee et al. [14] introduced a deep cooperative spectrum sensing (CSS) method based
on a convolutional neural network (CNN) operating on any sensing decision to obtain
individual SUs. It can be either hard combine or soft combine that is used to obtain a
higher sensing accuracy than conventional approaches. Chandhok et al. [15] introduced
a novel architecture entitled ’SenseNet’ for wideband spectrum sensing and automatic
modulation classification. The in-phase, quadrature-phase, and amplitude-phase were
used to train the model, and the performance was evaluated over the AWGN, Rayleigh,
and Rayleigh with doppler channels. Zheng et. al. [16] proposed the sensing task as a
classification problem training the model on the signal’s received power for overcoming
the noise power uncertainty problem. They also utilized the concept of transfer learning,
which showed better performance than the maximum minimum eigenvalue ratio and
methods based on frequency domain entropy. Peng et al. [17] developed a robust spectrum
sensing framework incorporating transfer learning. Their results validated the proposed
deep spectrum sensing framework’s effectiveness. Xie et al. [18] proposed a convolutional
neural network and long short term memory (CNN-LSTM) detector which first utilizes the
CNN and then LSTM. The input consists of the covariance matrices, which are generated
from sensing data. The CNN-LSTM detector proves to be superior in scenarios with and
without noise uncertainty. A spectrum sensing method based on deep learning for OFDM
systems was proposed by Cheng et al. [19] in which a stacked auto-encoder was used
for feature extraction. Inspired by these results, Gao et al. [20] proposed deep learning
models called ’DetectNet’ and ’SoftCombinationNet’ for spectrum sensing and cooperative
spectrum sensing, respectively. They utilized the modulated signals’ underlying structural
information, compared the model with the energy detection method, and provided a sub-
stantial performance gain over conventional cooperative sensing methods. All the above
papers deduced that deep learning technology performs the task of spectrum sensing better
as compared to the traditional sensing methods. The work implemented in this paper is
motivated by the results obtained by Cheng et al. [19] and Gao et al. [20].

3. System Model

A multi-antenna cognitive radio scenario is considered. A PU transmitter is present
with a multi-antenna system which transmits the primary user signals. Figure 1 represents
the deep neural network (DNN) model of spectrum sensing. The DNN model consists of
two phases of sampling and network training. The primary user signals are modified in
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the sampling phase itself. These are then further trained and tested in the training stage
such that when an unknown sample appears, the network can robustly take the decision.

Figure 1. DNN Model.

Consider X(n) = [x1(n), x2(n), ......xM(n)]T , where M represents the sample length of
signal, n = 0, 1, ......, N− 1 denotes the nth received signal and xi(n) denotes the nth discrete
time sample present at ith antenna of the CR terminal. The spectrum sensing problem can
be formulated as a binary hypothesis testing problem [21]:

H1 : X(n) = R(n) + U(n),

H0 : X(n) = U(n).
(1)

Here, R(n) denotes the signal vector that suffers from path loss and channel fading.
U(n) represents a circularly symmetric complex Gaussian (CSCG) noise vector with zero
mean. Hence, hypothesis H1 represents the presence of PU, while H0 represents its absence.

Here, from the N received signals of the multi-antenna system, the in-phase (I) and
quadrature (Q) components are extracted to obtain the modified set of received signals
X̂ [21].

XI = Imag(X(n))

XQ = Real(X(n))

X̂ = (XI , XQ)

(2)

Next, the received signals are labeled to obtain the train and test vectors. The labeled
set is represented as follows:

(X̂, Y) = (x̂(1), y(1)), (x̂(2), y(2)), ..................(x̂(s), y(s)) (3)

where X̂ is the input to the deep neural network, with I-Q elements in our case. Y belongs to
the set {1, 0}with labels [1, 0] and [0, 1] representing the hypothesis H1 and H0, respectively.
s denotes the number of samples or observations, ˆx(s) is the sth sample and y(s) is the label of
the sth observation indicating the vacant or busy status. DNN is used to extract the features
from the training set provided in a data driven manner. The test statistic is designed based
on a binary classification problem in which the label is encoded as a one-hot vector:

Y =

{
[1, 0]T , H1

[0, 1]T , H0
(4)

4. Proposed Methodology

Neural networks are a good tool for AI-based learning, so it is intended to be used
here for spectrum sensing. A neural network-based DLSenseNet model uses a single node
for simulation. This single node will receive the radio scene and analyze it at the local level.
Spectrum sensing is classified as a binary classification problem of the received inputs
and for that, the convolutional neural network is a better performer than other machine
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learning models. The DLSenseNet model is constructed by modifying the inception
module. We added long short-term memory and fully connected layers to the inception
module’s convolution layer. The LSTM layers were added for recognition of the temporal
dependencies in the data, while the CNN layers investigate the spatial relations. Figure 2
illustrates the architecture of DLSenseNet.

(a) DLSenseNet

(b) DLSenseNet Blocks.

Figure 2. Network Architecture of DLSenseNet.

The input data in Figure 2a represents the in-phase and quadrature components of
the received signal. The model consists of an Inc-block followed by an LSTM block and a
dense layer generating spectrum occupancy output. A more detailed view of the model is
shown in Figure 2b. The Inc-block consists of three parallel paths with different filter sizes.
Two convolution layers and a max-pooling layer are present in the first hidden layer, which
feed-forward to the next convolution layers. The addition of more layers is inspired by the
inception model which balance generalization and complexity. For the proposed model,
the optimized hyperparameters for the proposed DLSenseNet model are shown in Table 1.

The input to the system is the received signals from the multi-antenna system, which
is then labeled for PU presence and absence. The expected output is correctly labeled
on the basis of previously unseen observations. Since it is the in-phase and quadrature
components that we are working on, the input vector is constituted by these two time
domain details. Equation (5) depicts the input as X̂.

XI ← Imag(X), XQ ← Real(X)

X̂ ← (XI , XQ)
(5)
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Table 1. Model Hyperparameters.

Hyperparameter DLSenseNet

Filters per convolution layer 64
Filters size (1,1), (3,3) and (5,5)
Cells per LSTM layer 128
Neurons per FC layer 2,120,250,256,500
Optimizer Adam
Initial learning rate 0.003
Batch size 64
Dropout ratio 0.2

Now, energy normalization was performed on this received complex signal, as rep-
resented in Equation (6), before splitting it into training and testing sets [22]. The M in
Equation (6) represents the sample length of the signal. Normalization was also performed
because models independent of energy have a better capacity of generalization even when
the background noise changes. Also, without interference, the structure of the signals can
be better exploited.

Energy =
M

∑
i=1

(|X̂i|)2

X̂norm = X̂/Energy

(6)

The DLSenseNet performs sensing for a CR node with X̂norm as the input. Equation (7)
denotes the convolution operation with Ci representing the output of ith convolution layer.
Here, b is the bias, wconv is weight, and σ is the activation function.

Ci = σ(b + ∑ wconvX̂norm) (7)

Out of the three network connections from the input layer to the hidden layer, one
is the max-pooling layer. Since the DLSenseNet architecture is inspired by the Inception
architecture, the input is also passed through a max-pooling layer. The max-pooling layer
utilizes the maximum value from neuron clusters in the previous layer. This also adjusts
the effect of overfitting. In the Equation (8) that follows, the max-pooling operation is
represented with pooling size of R.

p = maxr∈R(X̂norm) (8)

The output features extracted by the convolution layers are then concatenated to be
fed as input to the next layer. Equation (9) denotes the concatenation operation in which
C2, C4, C5 represent the outputs from the Conv 2, Conv 4, Conv 5 layers, respectively.

Cconcat = Concatenate(C2, C4, C5) (9)

In a standard deep neural network, each layer’s signals can be transmitted only to the
upper layer with the processing of samples independent of each other at different time
intervals. Modeling of changes in sequences of time cannot be done, and encoding with
only vectors of fixed dimensionality is possible. As such, the LSTM layer is added to the
proposed network for determining the long term dependencies since IQ data belong to
the time domain data characteristics. Furthermore, the signals modulated by different
modulation schemes exhibit different characteristics, and LSTM is capable of learning these
temporal dependencies effectively [23]. After concatenation, the dimensions of Cconcat
were reshaped to be fed to the LSTM layer, which would learn the temporal features.
The descriptive calculation of the LSTM layer outputs are denoted in Equation (10) which
takes the present observation C(t)concat and past hidden layer output ht−1 as input [24].
LSTM manages to learn long term dependencies by deciding upon information to be



Symmetry 2021, 13, 147 6 of 15

forgotten and remembered. After analysis of the current input and the previous state by at,
the input gate it decides upon which parts of at are required to be added to the long term
state ct. The forget gate ft decides which parts should be erased and erases the unnecessary
parts. Then, the output gate ot decides on the parts of ct to be shown as output. A short
term state ht and a long term state ct exists in which memories are dropped and added by
the gates. w∗ and r∗ (∗ represent c, i, f , o) are the weight matrices for the different gates, σ
denotes the sigmoid function, tanh denotes the hyperbolic tangent activation function and
� represents the component-wise multiplication. The memory state ct and hidden state
ht are forwarded as input to the next LSTM layer. The output from the LSTM layer to the
fully connected layer is denoted as Lt.

at = tanh(wcC(t)concat + rcht−1)

it = σ(wiC(t)concat + riht−1)

ft = σ(w f C(t)concat + r f ht−1)

ot = σ(woC(t)concat + roht−1)

ct = it � at + ft � ct−1

ht = ot � tanh(ct)

(10)

After the LSTM block processes the input, we have a fully connected dense layer that
works upon the previous layer’s output, as stated in Equation (11). This layer then gives us
the final output regarding the occupancy of the spectrum. The plots of spectrum occupancy
are further elaborated in Section 6 of the results and discussion.

prob = σ(wT
denseLt + b) (11)

The parameters and hyperparameters are initialized with random values which are
to be tuned in the training process. The training split of observations is fed into the
DLSenseNet which then calculates the label based on the initialized parameters. The cat-
egorical cross entropy, as shown in Equation (12), is the loss function which is used to
minimize the error. ŷss is the predicted output while y denotes the actual output. Based on
this loss, the gradient is calculated, which is then used to update the weights, as denoted
in Equation (13). In this way, the parameters are updated, which is then used to calculate
the probabilities. Training is performed using the supervised learning mechanism and the
parameters are updated accordingly.

LossCCE(ŷss, y) = −∑
i
(y[i]logŷss[i] + (1− y[i])log(ŷss[i])) (12)

wss = wss − η(t)wss LossCCE (13)

Hence, the proposed network consists of five convolution layers, one max-pooling
layer, one layer of LSTM, and a fully connected layer. The proposed deep neural network
is trained for a different number of hidden layers and neurons. After extensive training,
the layer size and number of cells are decided, which is denoted in Table 1. The ReLU and
softmax functions are used as activation functions introducing non-linearity to the network.
For the purpose of regularization, dropout is used. This is in order to prevent overfitting.
The dropout ratio was kept at a value of 0.2. ADAM optimizer is utilized for optimization
of the network parameters. The categorical cross entropy is the loss function that was
used. The number of training epochs was 100, the tuning of which was done through early
stopping with 6 epochs patience, which was applied for training the model to convergence.
The learning rate was initialized at 0.003 and the batch size used for training was 64.
The spectrum sensing works efficiently and in a robust manner. The DLSenseNet model
was tested on a number of CNN and LSTM blocks to come up with the accurate results.
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5. Experimental Setup

The design methodology is discussed here. Different models were used for classifica-
tion and compared with our model in order to make our model more robust and accurate.

5.1. Dataset Generation and Preprocessing

The RadioML2016.10b [25] dataset is a publically available baseline dataset generated
by O’Shea and Corgan [26]. The dataset consists of ten types of modulated signals with
eight digital and two analog modulations. This includes SNR values and modulation
type. The SNR values are distributed from −20 dB to +18 dB in 2 dB increments. Eight
kinds of digitally modulated signals at different SNRs were used for our experiments.
These signals are considered positive samples. The negative samples are the additive
noise following the zero-mean circularly symmetric complex gaussian (CSCG) distribution
generated with the same dimensions as the input signal. The training samples, consisting
of ‘n’ samples each, were fed into the deep neural network in 2 ∗ n vectors with the in-phase
and quadrature components separated into complex time samples. Table 2 represents the
dataset parameters. The dataset was partitioned into train, validation, and test sets.

Table 2. Dataset Parameters.

Parameters Value

Modulation scheme BPSK, QPSK, 8PSK, QAM16, QAM64, CPFSK, GFSK and PAM4
Sample length 64,128,256,512
SNR range −20 dB∼18 dB in 2 dB increment
Training sample 153,000
Validation sample 51,000
Testing sample 51,000

5.2. Performance Evaluation Metrics

For performance evaluation, the model was trained and validated first before testing.
The evaluation metrics considered here are the probability of detection (Pd), sensing error
(SE) and probability of false alarm (Pf ) [14]. Pd is the probability of declaring the primary
user’s presence when the primary user actually occupies the spectrum, and the Pf is
the probability of declaring that PU is present when the spectrum is actually vacant.
Both the probabilities were calculated for different SNR values of the received signals.
The performance metric SE was calculated by the averaged value of the probability of false
alarm and the probability of miss detection (Pm). The probability of miss detection is the
probability of declaring that the spectrum is vacant when actually the PU is present.

The performance metric values were calculated based on the confusion matrix, which
is shown below.

Predicted Diagnosis

Signal Noise

Actual Values
Signal a b

Noise c d

Table 3 represents the formulas for calculating the performance evaluation metrics
used for spectrum sensing. The confusion matrix values constructed after performing
sensing on the test set were utilized for evaluating these values.
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Table 3. Performance Evaluation Metrics.

Metric Formulae

Pd
a

a+b
Pm 1− Pd
Pf

c
c+d

SE Average(Pf , Pm)

6. Results and Discussion

The simulation results are presented here to demonstrate the proposed model’s per-
formance. The effect of parameters such as modulation schemes, sample length and,
classification models is investigated. This section presents and compares the results of
our model with other deep neural network models, namely convolutional neural network
(CNN), LeNet, residual network (ResNet), inception, LSTM, convolutional long short-term
deep neural network (CLDNN) and previously reported spectrum sensing models of
DetectNet [20] and CNN-LSTM [18]. For a desirable model, we need to achieve a low
probability of false alarm, between 0 to 0.1 according to the IEEE 802.22 standard [27,28],
low sensing error, and high probability of detection.

Figures 3 and 4 represent the detection performance of all the neural network models
with their false alarm for sample lengths of 64 and 128 on the signals modulated by QAM16
and QPSK modulation schemes for SNRs from −20 dB to 18 dB, respectively. It can be
observed that the DLSenseNet model gives better detection performance in comparison to
other models starting from low SNR values itself. The DLSenseNet and inception achieve
better detection performance than other models. In addition, DLSenseNet attains Pd value
close to inception at −20 dB but outperforms inception by achieving lower Pf . For the
varying sample lengths as well, the DLSenseNet proves its superior performance over
other network models.
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(b) Detection performance of DNN models for 128 sam-
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Figure 3. Detection performance of DNN models for QAM16 signals.

Signals with lower SNRs (−20 dB to 0 dB) possess less information in comparison
to higher SNRs (0 dB to 18 dB) because of being more distorted. Models with better
recognition accuracy in lower SNRs perform better in the case of higher SNRs as well. To
better display the the simulation results, Figures 5 and 6 further represent the performance
of all the models for 256 and 512 sample length signals modulated by QAM16 and QPSK
for a varied range of the signal-to-noise ratio from −20 dB to 0 dB. The proposed model
performs better than other solutions because it can understand the modulated structure of
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the signals. The network architecture of DLSenseNet consists of the component blocks of
convolutional and LSTM layers. The CNN layers investigate the spatial relations, extracting
useful information and learning the input data’s internal representations. LSTM layers
help in the recognition of the temporal dependencies in the data to identify the short-term
and long-term dependencies. The proposed DLSenseNet model efficiently combines the
advantages of these two deep neural network architectures.
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Figure 4. Detection performance of DNN models for QPSK signals.
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(a) Detection performance of DNN models for 256 sam-
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(b) Detection performance of DNN models for 512 sam-
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Figure 5. Detection performance of DNN models for QAM16 signals for −20 dB to 0 dB SNRs.

The strength of versatility of the proposed model is proven by changing the charac-
teristics of the PU signals. Figure 7 represents the detection performance of DLSenseNet
over eight different modulation schemes with a sample length of 64 and SNRs range from
−20 dB to 0 dB. As it can be observed, the detection performance difference between vari-
ous modulated signals is relatively insignificant, implying the DLSenseNet performance is
insensitive to the modulation order.

Figure 8 represents the trade-off between the detection probability and false alarm
probability for all the network models over the QAM16 modulated signals with a sample
length of 64. For demonstrating the proposed DLSenseNet model’s efficiency, the receiver
operating characteristics (ROC) curves of the proposed model are compared with that
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of other models. It can be observed that the proposed model outperforms other models
with an apparent margin. The CNN module of DLSenseNet scrutinizes the patterns
of the received signal. The extracted features are provided as input to the LSTM such
that the temporal features of the input sequence can be learned. The graphical features
are processed by CNN, but it is not designed for processing temporal characteristics.
The inception architecture inspires the proposed model since it is capable of balancing
generalization and complexity. Additionally, the inception architecture performs similarly
to the proposed model in terms of probability of detection but performs poorly in case
of false alarm. The DLSenseNet model effectively combines the benefits of CNN, LSTM,
and Inception, which is why it can outperform other models.
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Figure 8. Receiver operating characteristics (ROC) Curves.

Tables 4–7 represent the performance metrics for the 64, 128, 256 and 512 sample length
signals modulated by QAM16 and QPSK. The different sample lengths are considered to
represent the performance of the models for a wide range of sample lengths. The perfor-
mance of the deep neural network models comprising of CNN and LSTM architectures is
shown here for the detection performance in case of spectrum sensing, and the Pd values
are shown for an SNR value of −20 dB. Pf of our DLSenseNet model is the lowest, which
is desireable. The ResNet model is unable to achieve high Pd despite having very low Pf .
The Pf of LeNet is also low; however, it cannot achieve high Pd due to which its sensing
error is high. The inception model also gives a good value of Pd but the Pf is much higher
than other models. The sensing error of DLSenseNet is the lowest, proving a balance in the
probability of detection and false alarm. As such, the DLSenseNet model achieves higher
detection accuracy along with a low probability of false alarm. Therefore, the DLSenseNet
model can detect the spectrum occupancy accurately.

Table 4. Comparison of performance metrics for 64 and 128 sample length QAM16 signals.

Models
64 Sample Length 128 Sample Length

Pf (%) SE(%) Pd (−20 dB) (%) Pf (%) SE(%) Pd (−20 dB) (%)

CNN 01.75 14.86 24.48 03.60 15.69 26.87
LeNet 00.09 14.51 24.96 00.84 14.63 27.17
ResNet 00.00 14.39 25.61 00.00 14.42 24.79
Inception 14.63 19.65 36.17 20.55 21.68 39.91
LSTM 00.47 14.75 24.13 03.22 15.35 28.48
CLDNN 01.25 14.87 25.15 06.93 17.36 31.08
DLSenseNet 00.00 12.99 39.60 00.00 12.93 40.97
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Table 5. Comparison of performance metrics for 64 and 128 sample length QPSK signals.

Models
64 Sample Length 128 Sample Length

Pf (%) SE (%) Pd (−20 dB) (%) Pf (%) SE (%) Pd (−20 dB) (%)

CNN 01.59 14.91 27.14 04.98 16.09 27.37
LeNet 00.10 14.36 23.47 00.00 14.22 26.14
ResNet 00.00 14.60 23.58 00.00 14.58 25.55
Inception 16.98 20.43 35.93 20.32 21.75 39.39
LSTM 01.29 14.96 24.72 03.86 15.65 29.44
CLDNN 01.64 15.22 26.27 06.10 16.32 31.22
DLSenseNet 00.00 13.02 40.79 00.00 12.74 39.77

Table 6. Comparison of performance metrics for 256 and 512 sample length QAM16 signals.

Models
256 Sample Length 512 Sample Length

Pf (%) SE (%) Pd (−20 dB) (%) Pf (%) SE (%) Pd (−20 dB) (%)

CNN 09.54 17.88 30.69 12.96 19.04 35.31
LeNet 01.44 14.73 25.31 02.76 15.50 27.89
ResNet 00.00 14.53 23.97 00.20 14.55 25.77
Inception 21.53 22.03 38.48 17.93 18.68 39.71
LSTM 03.51 15.66 29.50 01.65 15.03 26.48
CLDNN 08.34 16.76 34.40 06.96 14.44 42.96
DLSenseNet 00.00 12.97 42.07 00.04 12.87 46.98

Table 7. Comparison of performance metrics for 256 and 512 sample length QPSK signals.

Models
256 Sample Length 512 Sample Length

Pf (%) SE (%) Pd (−20 dB) (%) Pf (%) SE (%) Pd (−20 dB) (%)

CNN 10.40 18.43 32.54 14.69 19.58 34.95
LeNet 00.91 14.67 26.26 02.76 15.51 26.87
ResNet 00.00 14.40 25.61 00.07 14.44 24.23
Inception 22.98 22.56 39.68 17.67 18.49 42.21
LSTM 04.54 15.85 29.24 02.65 15.34 28.94
CLDNN 09.68 17.45 35.50 08.81 15.03 43.87
DLSenseNet 00.00 13.09 43.32 00.08 12.76 47.70

Additionally, a comparison is shown among the sensing performance of the proposed
DLSenseNet model and previously reported DetectNet [20] and CNN-LSTM [18] model
in Tables 8 and 9. The false alarm percentage and the probability of detection shown in
Tables 8 and 9 demonstrate that the DLSenseNet exhibits superiority over previous work.
The proposed model lowers the false alarm and increases the probability of detection.
The overall results indicate that the proposed model is a good choice for spectrum sensing
in cognitive radio.

The proposed work introduces the DLSenseNet mechanism for spectrum sensing.
The models output whether the spectrum is occupied or vacant by considering the problem
as a classification task. The better performance indicates accurate identification of primary
user transmission over the spectrum.
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Table 8. Comparison of performance metrics to previous study for QAM16 signals.

Models
Pf (%) SE (%) Pd (−20 dB) (%) Pf (%) SE (%) Pd (−20 dB) (%)

64 Sample Length 128 Sample Length

Gao et al. [20] 01.44 14.89 26.37 03.41 15.74 27.72
Xie et al. [18] 00.45 14.88 24.10 01.57 14.96 25.28
DLSenseNet 00.00 12.99 39.60 00.00 12.93 40.97

256 Sample Length 512 Sample Length

Gao et al. [20] 09.87 17.78 35.01 13.90 17.68 42.07
Xie et al. [18] 03.02 15.58 27.10 04.03 15.90 26.41
DLSenseNet 00.00 12.97 42.07 00.04 12.87 46.98

Table 9. Comparison of performance metrics to previous study for QPSK signals.

Models
Pf (%) SE (%) Pd (−20 dB) (%) Pf (%) SE (%) Pd (−20 dB) (%)

64 Sample Length 128 Sample Length

Gao et al. [20] 01.73 15.12 26.38 02.87 15.80 26.32
Xie et al. [18] 00.97 14.80 26.80 01.09 14.76 24.81
DLSenseNet 00.00 13.02 40.79 00.00 12.74 39.77

256 Sample Length 512 Sample Length

Gao et al. [20] 08.99 17.45 32.68 16.42 18.70 45.90
Xie et al. [18] 01.38 14.83 25.23 04.10 15.94 28.01
DLSenseNet 00.00 13.09 43.32 00.08 12.76 47.70

7. Conclusions

Cognitive radio is a new Wireless Regional Area Network technology, which uses a
spectrum opportunistically. Spectrum detection is a big issue in cognitive radio. Conven-
tional spectrum sensing methods have inherent disadvantages to spectrum sensing for var-
ious reasons. A deep neural network based spectrum sensing model called “DLSenseNet”
is proposed in this research. It shows an improvement compared to other sensing models,
convolutional neural network, LSTM, CLDNN, residual network, inception, LeNet, and De-
tectNet. The performance of the models was tested with standard metrics of spectrum
sensing. Our model demonstrates better performance in the same grade of services of the
probability of detection and probability of false alarm.
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