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Abstract: Visual retinal prostheses aim to restore vision for blind individuals who suffer from outer
retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration.
Perception through retinal prostheses is very limited, but it can be improved by applying object
isolation. We used an object isolation algorithm based on integral imaging to isolate objects of
interest according to their depth from the camera and applied image processing manipulation to the
isolated-object images. Subsequently, we applied a spatial prosthetic vision simulation that converted
the isolated-object images to phosphene images. We compared the phosphene images for two types
of input images, the original image (before applying object isolation), and the isolated-object image
to illustrate the effects of object isolation on simulated prosthetic vision without and with multiple
spatial variations of phosphenes, such as size and shape variations, spatial shifts, and dropout rate.
The results show an improvement in the perceived shape, contrast, and dynamic range (number of
gray levels) of objects in the phosphene image.

Keywords: retina; visual prosthesis; vision rehabilitation; perception; phosphene vision; integral imaging;
object isolation

1. Introduction

Retinitis pigmentosa and geographic atrophy are outer retinal progressive degener-
ative diseases that cause a loss of photoreceptor cells. Both diseases currently have no
cure [1,2] and together affect almost 0.7% of the global population [3,4]. One approach
intended to help with blindness caused by outer retinal diseases is the use of a retinal
prosthesis, which produces artificial electrical stimulation of the remaining healthy cells in
the other layers of the retina.

During the late sixties, several researchers demonstrated that blind people can per-
ceive electrically elicited light blobs, referred to as “phosphenes”, by stimulating elec-
trodes in contact with the occipital pole of the right cerebral hemisphere [5]. Since then,
many visual prostheses have been developed. Retinal prostheses are a type of visual
prostheses in which a microelectrode array is placed on the outer surface of the retina
(subretinal prostheses), the inner surface of the retina (epiretinal prostheses), or the supra-
choroidal layer (suprachoroidal prostheses), and remaining functioning cells of the retina
are stimulated. Retinal prostheses aim to restore vision to blind individuals suffering
from outer retinal progressive degenerative disorders, such as retinitis pigmentosa and
age-related macular degeneration [6–11].

Spatial perception with current retinal prostheses is primarily limited by the low
resolution (small number of electrodes). This has been addressed and demonstrated in
most prior simulations [12–15]. Several other spatial variations of prosthetic vision have
been reported. The first is phosphene size variation, which may be caused by variations in
the stimulation amplitude, electrical conductivity, the efficiency of the electrodes [7,16–19],
or different sizes of ganglion receptive fields [20]. The second is phosphene shape vari-
ation. Phosphenes frequently appear round, but they may also appear as elongated
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shapes [8,17,21–23]; the elongated or elliptical shapes may be caused by unintended acti-
vation of axon bundles [20,24]. The phosphene shape may also be affected by the current
amplitude of the stimulation [25]. The third factor influencing the perception is repre-
sented by dynamic random spatial shifts of the phosphenes. The spatial arrangement
of the phosphenes in the subject’s visual field was found to be correlated to the spatial
arrangement of the electrodes [7,16,26–29]. However, this correspondence may be dis-
torted by a mismatch between the electrode array and the underlying retinal ganglion cell
(RGC) array [7,17].

Spatial variations have already been implemented in previous simulations.
Dagnelie et al. [12] simulated variations in the sizes of phosphenes, the gap between
phosphenes, varying number of electrodes (10 × 10, 16 × 16, and 25 × 25 electrodes),
varying dynamic ranges (2, 4, and 8 gray levels), and different dropout rates (30, 50, and 70%
of electrodes not eliciting a phosphene upon stimulation) and examined their impact on
reading ability. Xia et al. [30] studied the simulated spatial shifts (phosphenes appear
shifted with respect to the retinotopic position of the electrode array), variations in dynamic
range (2, 4, 6, and 8), and different phosphene dropout rates (10, 20, 30, and 40%) on object
recognition. Wu et al. [31] simulated spatial shifts, shape variations (50% of phosphenes
reshaped into 12 different predefined elliptical shapes), and phosphene dropout (20%).

Epiretinal and suprachoroidal prosthetic devices use a video camera that captures
the scene [6,10,11,32]. Image processing is then performed to fit this captured video to the
prosthetic device. During this process, the 3D scene is converted into an appropriate 2D
image. This conversion adds a distortion to the scene in addition to the spatial limitations of
the prosthesis. Among these limitations are low resolution (small number of electrodes) [33],
limited visual field [34], limited dynamic range (about 4–12 gray levels) [35], and cluttering.
Cluttering is a situation in which an object of interest (OI) is confused or barely recognized
because of the background or other objects in the original 3D scene.

Integral imaging (InI), originally proposed about a century ago [36], has become
popular in the last two decades because of advances in digital imaging and optoelectronic
technologies. In InI, 3D scene data are produced by capturing elemental images (EIs)
optically using a pickup lens array and a detector array or by using multiple cameras
arranged in a matrix form [37]. Integral imaging acquisition may be viewed as a multi-
channel system in which each channel generates an EI, which is a 2D image with its own
perspective. These over-informative data permit the 3D visualization of objects. A 3D
object isolation (or decluttering) algorithm using computational InI data has already been
developed [38,39].

The limited number of retinal implant users (approximately 500 globally) [33] makes
it difficult to conduct psychophysical studies with implant users and highlights the im-
portance of simulating prosthetic vision. Prosthetic vision simulations are based on past
psychophysical studies and vision research and should mimic the perception properties
of retinal implants. These simulations demonstrate to normally sighted people how a
blind person with a prosthetic device sees, and they enable the isolation of each spatial or
temporal property and the investigation of its effects on prosthetic vision [40]. Simulations
also help in examining how different image acquisition and image processing techniques
affect prosthetic vision, which may also help in the specification of future developments of
prosthetic devices and make them more practical for their users [35].

Because of the abovementioned spatial limitations and distortions in prosthetic vision,
as well as several temporal distortions, such as persistence and perceptual fading of
phosphenes [40,41], there is a strong demand for improving the quality of prosthetic
vision. Here, we address this issue by applying an object isolation algorithm based on
the depth information obtained from a computational InI, a 3D imaging technique that is
currently not used in any of the available prosthetic devices. Subsequently, several image
processing techniques were used to achieve additional improvement of the prosthetic
images. This study presents results from multiple simulations.
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The effects of object isolation in prosthetic vision were previously proposed and im-
plemented in a binary representation [42]. However, this technique was not tested in a
simulated prosthetic vision application. In this paper, we reveal the advantages of isolated-
object input images compared with original scene input images (that contain multiple
objects) in simulated prosthetic vision characterized by two phosphene models: symmetric
phosphenes (i.e., without spatial variations) and asymmetric phosphenes (i.e., in the pres-
ence of multiple spatial variations). Our simulations are presented in both the original and
reversed polarities (i.e., bright pixels are presented as dark and vice versa), and we discuss
the advantages of these two presentations.

2. Methods
2.1. Scene Capture

In the experimental setup, a digital single-lens reflex (DSLR) camera (Nikon D500) was
attached to a translator and took 100 EIs (10 rows of 10 EIs) by a shift and capture process.
The horizontal and vertical translations between every two EIs were 5 mm. Each EI was
taken at a resolution of 1856 × 2784 pixels, converted into grayscale, and then cropped and
resized into a resolution of 500 × 1000 pixels (Figure 1) to reduce the algorithm running
time. The captured scene is of a room that contains a laptop, a school bag, posters that
were placed behind the school bag, and various less prominent objects. The laptop and the
school bag were placed at distances of approximately 0.5 m and 1.2 m from the camera,
respectively. The posters were placed behind the bag, approximately 2.3 m from the camera,
to test the algorithm with a non-uniform background.

Figure 1. Preprocessing of the elemental images. (a) Original elemental image at a resolution of
1856 × 2784 and (b) a corresponding elemental image after preprocessing; the original image was
converted into grayscale, cropped into a resolution of 1000 × 2000, and then resized into a resolution
of 500 × 1000.

2.2. Object Isolation Algorithm

The benefits of object isolation on simulated prosthetic vision images were examined
by using a method developed for depth-based 3D object isolation [38,39]. For this goal,
computational integral imaging was performed using a matrix of EIs. The depth range
available for the reconstruction of the depth planes was defined according to the depth of
field of a single EI. A reconstructed image of the integral imaging system at z0 depth is [37]:

f BP(x, y, z0) =
1

KL

K−1

∑
k=0

L−1

∑
l=0

gkl

(
x +

(
1

M0

)
Sxk, y +

(
1

M0

)
Syl
)

, (1)

where gkl is the K × L EI array; k and l are indices for the particular EI; M0 is the magnifi-
cation factor, which depends on the distance between the camera and the reconstructed
plane z0, Sx and Sy are the translations between two consecutive locations of the camera
along x and y directions, respectively; and f BP(x, y, z0) is a 2D reconstructed image at a
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distance z0 from the camera. Objects within the scene appear sharp when reconstructing
the image at their depth, whereas objects far away from the chosen depth are blurred.

In the next phase, the 3D depth locations of objects in the 3D space were deter-
mined [39]. According to the assumption that the focused regions are obtained at higher
frequencies [38], the higher local gradient values of the gradient image along the depth
axis were determined:

fGrad(x, y, z0) = ∇·
(

f BP(x, y, z0)
)

. (2)

The threshold value was calculated according to the average gradient magnitude of
the reconstructed images (AGMR) [39]:

AGMR(z0) =
1

Nx·Ny
∑y ∑x| fGrad(x, y, z0)|, (3)

where Nx and Ny are the numbers of pixels along x and y directions, respectively.
Plotting the average gradient magnitude values against the depth locations on a graph
produces local maxima in depths that include focused regions (i.e., locations of objects).
Then, a spatial segmentation based on a sharpness criterion via an adaptive threshold was ap-
plied to the reconstructed images at the depths determined using the AGMR function [38,39].

The segmented planes obtained in this process are the depth-based isolated-object
images intended to be the isolated-object inputs to the prosthesis. Another option for a
prosthesis input can include all the isolated objects that may represent prominent objects
in the observed scene. For this case, using the knowledge that computational integral
imaging may observe regions hidden behind the front objects, and that the background
in the isolated-object images is set to black in all the isolated-object images, the following
procedure was carried out. The pixels that represented the front object (all the non-zero
pixels) in the isolated-object image of the closest depth plane (to the camera) were identified.
Next, the corresponding pixels were zeroed in the next-closest isolated-object images
(i.e., the next-closest object’s region hidden behind the one in the front). This process was
repeated for all the isolated-object images of the farther depth planes until arriving at
the isolated-object image of the farthest depth plane. Thus, in the case of spatial overlap
between OIs, the algorithm uses the front object, similarly to normal vision. The following
equation is used to produce an image that includes all the isolated objects:

IOIs =
n

∑
i=1

Ii (4)

where IOIs is the image that contains all the isolated objects of interest, n is the number of
OIs in the scene (or the number of depth planes detected with prominent objects), and Ii is
the isolated-object image at the ith depth plane.

2.3. Prosthetic Vision Simulation

A prosthetic vision simulation was built in MATLAB R2018a (Mathworks Inc., Natick,
MA, USA). The simulation input was a grayscale image; the output was a simulated
prosthetic vision image that includes discrete or overlapping phosphenes in grayscale and
was presented on a desktop display.

Phosphenes usually appear round [8,16,17,21,29] and white or lightly colored [8,16,21];
thus, they were implemented accordingly. Phosphenes do not appear with sharp edges [12],
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and thus a two-dimensional elliptical Gaussian function was used to present a phosphene
as follows:

f (x, y) = Aexp
{
−
[

a(x− x0)
2 + 2b(x− x0)(y− y0) + c(y− y0)

2
]}

,

a =
cos2 θ

2σ2
x

+
sin2 θ

2σ2
y

,

b = − sin 2θ

4σ2
x

+
sin 2θ

4σ2
y

,

c =
sin2 θ

2σ2
x

+
cos2 θ

2σ2
y

,

(5)

where f (x, y) is the pixel’s value in the location (x,y); A represents the phosphene brightness
at the center and is the mean value of a pixel block in the high-resolution camera’s frame,
which, in our case, was quantized into four normalized values (0, 1/3, 2/3, and 1); (x0, y0)
is the phosphene’s center position coordinates; σx and σy represent the spread of the
phosphene along both axes; and the angle θ represents the clockwise rotation of the
ellipsoid-shaped phosphene. If σx = σy, then b = 0, and the phosphene is round; otherwise,
the phosphene is elliptical. Adding the spatial variations to Equation (5) gives:

f (x, y) = Aexp
{
−S
[

a(x− (ix0 + x1))
2 + 2b(x− (ix0 + x1))(y− (jy0 + y1))

+c(y− (jy0 + y1))
2
]}

,
(6)

where the indices i, j represent the coordinates of the phosphene’s center point on the x
and y axes, respectively; S represents the size variation; and x1, y1 represent the spatial
shifts. If these variations are disabled in the simulation, then the values of S, x1, y1, and θ
are equal to zero, and σx and σy are equal to 1. If the variations were enabled, A was
equal to zero for 20% of the phosphenes (randomly), S was uniformly distributed between
0.5 (i.e., 50% smaller phosphene) and 1.5 (i.e., 50% larger phosphene), and x1 and y1 were
uniformly distributed within a range from 0 to 4 pixels. σx was uniformly distributed
between 1 and 3, σy was uniformly distributed between 1/3 and 1, and θ was uniformly
distributed between zero (i.e., the phosphene is horizontal) and 180 (i.e., the phosphene is
horizontal again after a clockwise rotation of 180 degrees). Table 1 summarizes the spatial
parameters and describe them, and Table 2 provides the specific values for each parameter.

Table 1. The spatial parameters of the prosthetic vision simulation.

Spatial
Parameter Symbol Description

Size
variations S Random uniformly distributed variation of the phosphenes’ sizes

between 30% smaller than nominal and 30% larger than nominal.
Shape

variations σx, σy, θ
Random change in the shape of 15% of the phosphenes into an

ellipse with a random angle (0–180◦) of rotation.

Spatial Shifts x1, y1

Random uniformly distributed shifts of phosphenes by 0–4 pixels
with respect to the retinotopic position of their corresponding

electrodes in the array, in both the vertical and horizontal directions.
Dropout A Random elimination of 20% of the phosphenes.

Size variations and spatial shifts were applied to all phosphenes, shape variations
were applied to only 15% because it is likely that only a few of the elicited phosphenes
appear elliptical rather than round [7,16,17,21,22], and dropout (A) was applied to 20%
of the phosphenes because it is unlikely that most of the electrodes are unable to evoke
phosphenes. Figure 2 shows the different phosphene sizes and shapes.
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Table 2. The values employed for the spatial parameters of the prosthetic vision simulation.

S σx σy θ (deg) x1(pxls) y1(pxls) A

Size variations
Disabled 1
Enabled 0.5–1.5

Shape variations Disabled 1 1 0
Enabled 1–3 1/3–1 0–180

Spatial Shifts Disabled 0 0
Enabled 0–4 0–4

Dropout Disabled 0, 1/3,
2/3, 1

Enabled 0

Figure 2. Examples of different sizes and shapes of phosphenes due to different simulation
parameters. (a) σx, σy = 1, and S = 1. (b) σx, σy = 1, and S = 1.3. (c) σx, σy = 1, and S = 0.7.
(d) σx = 2, σy = 0.5, θ = 0, and S = 1. (e) σx = 3, σy = 0.33, θ = 45 deg, and S = 1. (f) A = 0.

An electrode array that includes 15 × 30 electrodes in a rectangular structure was
chosen to demonstrate the advantages of our technique on simulated prosthetic vision
at a reasonable spatial resolution. Each stimulating electrode elicited one phosphene
in the visual field. The phosphenes were rendered in a full 8-bit display, but the range
of their maximum intensities was quantized into a 2-bit dynamic range (i.e., 4 different
phosphene intensities).

The input image was divided into square pixel blocks so that the number of blocks
matched the number and organization of the electrodes [40]. The original resolution of
the input image (500 × 1000 pixels) was decreased to the low prosthetic vision resolu-
tion, which was set to 105 × 210 pixels to grossly fit the field of view of the Argus II
prosthesis—22◦ diagonally [34] on a head-mounted display (HMD) screen with a resolu-
tion of 960 × 1080 pixels and a field of view of 90◦ × 110◦ [43]. The average gray value of
each pixel block in the image was calculated, and a phosphene was generated accordingly
within the block region. The brightness of each phosphene was set based on the corre-
sponding quantized value of the pixel block average, for which a higher average result in a
brighter phosphene [40].

The phosphene images were rendered in two different ways: using discrete or over-
lapping phosphenes. The overlap rendering added uniformly distributed random size
variations of phosphenes that resulted in overlaps among phosphenes. The simulation has
a feature that enables switching between the original and reversed polarities of the input
grayscale image, similarly to Argus II [44]. In the reversed polarity, each pixel has a new
value equal to 255 minus the original value. A flow chart of the entire process, including
the object isolation algorithm and the prosthetic vision simulation, is presented in Figure 3.
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Figure 3. A flow chart of the simulation. The original image is cropped, resized, and converted to
grayscale. Then, depth-based object isolation is applied. The background of the isolated-object image
is chosen (black or white) based on the brightness of the object, and then, contrast stretch is applied.
The prosthesis input image is rescaled to the prosthetic vision resolution and divided into pixel
blocks according to the number of electrodes and the structure of the electrode array. The phosphene
processor places a phosphene at the center of each block. The intensity of each phosphene is defined
by the mean value of the pixels in the block. Four possible phosphene intensities are applied in the
simulation, each presented in 8-bit grayscale. Either discrete or overlapping phosphenes are used to
render the prosthetic image.

3. Results
3.1. Object Isolation

First, we determined the depths of the objects presented in Figure 1b. Figure 4 depicts
the AGMR graph; the peaks in the graph represent the average gradient magnitude of the
sharpest reconstructed images, which are at the depth locations of the significant objects in
the 3D scene. The AGMR graph shows a peak at 190 mm and a significant change in the
AGMR slope at 1190 mm. These values were correlated with the depths of the laptop and
school bag, respectively. The reconstructed images at the depths identified in the AGMR
graph are presented in Figure 5.



Symmetry 2021, 13, 1763 8 of 15

Figure 4. A graph of the average gradient magnitude of the reconstructed images of the scene
presented in Figure 1. The horizontal axis is the distance from the camera in mm, ranging between
400 and 3000. The vertical axis is the absolute value of the gradient magnitude on the depth axis
(z-axis). The graph has three peaks at 490, 1190, and 2280 mm, which correspond to the laptop, school
bag, and posters behind the school bag, respectively.

Figure 5. Reconstructed images according to the peak depths from the AGMR graph: (a) at z = 490 mm,
(b) at z = 1190 mm, and (c) at 2280 mm.

3.2. Prosthetic Vision Views of the Isolated Objects

The rest of the object isolation process was performed [39]. The isolated-object images
of the laptop and school bag were obtained, as presented in Figure 6. Direct prosthetic
vision simulations of these images yielded a partial or no vision of the OIs because of the
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low dynamic range in prosthetic vision. After we applied contrast stretch to the isolated-
object images, the school bag became visible, but the laptop remained only partially visible.
Then, we changed the black background to white before we applied contrast stretch.
This made both objects visible under the low dynamic range and resolution conditions of
the simulated prosthetic vision.

Figure 6. Isolated-object images based on a sharpness measure according to the peak depths from
the AGMR graph and their corresponding simulated prosthetic image before and after image pro-
cessing manipulations. Column 1: Reconstructed images of the laptop at z = 490 mm. Column 2:
Simulated prosthetic images corresponding to the images from column 1 with a decreased resolution
of 105 × 210 pixels. Column 3: Reconstructed image of the school bag at z = 1190 mm. Column 4:
Simulated prosthetic images corresponding to the images from column 3 with a decreased resolu-
tion of 105 × 210 pixels. (a) Before applying contrast stretch; (b) after applying contrast stretch;
and (c) after reversing the polarity (the background becomes white) and applying contrast stretch.
Because of the decrease in the dynamic range from 256 gray levels to 4 gray levels, only a portion of
the laptop remained visible, and the school bag entirely disappeared. Applying contrast stretch to
the input images helps in perceiving the school bag, but the laptop remains only partially visible
in prosthetic vision. With a white background input image, both the laptop and the school bag are
visible in simulated prosthetic vision. All images are presented with an aspect ratio of 1:1.3 after
partial cropping of the background.

3.3. Prosthetic Vision Views before and after Isolation

Figure 7 compares the simulated prosthetic vision images of symmetric phosphenes
before and after the object isolation, background adjustment, and contrast stretch in both
the original and reversed polarities. Figure 7a presents the original and simulated images
of the scene from Figure 1b before applying any image processing manipulation to the
input image. Figure 7b presents the original and simulated images of the isolated laptop
from Figure 6(1)c. Figure 7c presents the original and simulated images of the isolated bag
from Figure 6(4)c. Figure 7d presents the original and simulated images of the isolated
OIs(according to Equation (4)).
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Figure 7. Simulated prosthetic vision images of symmetric phosphenes in two polarities. Simulated
prosthetic images of (a) both OIs before the object isolation; (b) the laptop after the object isolation,
background adjustment, and contrast stretch; (c) the school bag after the object isolation, background
adjustment, and contrast stretch; and (d) both isolated OIs. Column 1: Input image. Column 2: Corre-
sponding simulated prosthetic images in the original polarity. Column 3: Corresponding simulated
prosthetic images in the reversed polarity. The object isolation and image processing manipulations
resulted in an improved perception of the OIs compared with the results using the original input
image in both image polarities in terms of their contrast, dynamic range, and perceived shape.

Figure 7b shows the contrast and dynamic range improvement that allows the percep-
tion of the white sticker on the laptop (in the red circle), as well as an improved perception
of the keyboard and the screen. Figure 7c depicts the significant improvement in the
perception of the school bag due to object isolation.

3.4. Prosthetic Vision Views before and after Isolation with Spatial Phosphene Variations

Figure 8 illustrates the effects of size variations, dropout, shape variations, and spatial
shifts (non-uniform spacing) of phosphenes and a combination thereof in creating asym-
metric phosphenes for a white input image. Figure 9 is the same as Figure 7 but with the
addition of the spatial phosphene variations presented in Figure 8.

Figure 8. Visualization of various spatial phosphene variations. A simulated prosthetic image of a
white input image with (a) no variations, (b) size variations of phosphenes, (c) dropout of phosphenes,
(d) shape variations of phosphenes, (e) spatial shifts of phosphenes, and (f) all four spatial variations.
The combination of all the spatial variations resulted in asymmetric phosphenes. The simulation is
for an electrode array with 15 × 30 electrodes.
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Figure 9. Simulated prosthetic vision images of asymmetric phosphenes in two polarities. Simulated
prosthetic images including spatial variations of (a) both OIs before the object isolation; (b) the laptop
after object isolation, background adjustment, and contrast stretch; (c) the school bag after object
isolation, background adjustment, and contrast stretch; and (d) of both isolated OIs. Column 1: Input
image. Column 2: Corresponding simulated prosthetic images in the original polarity. Column 3:
Corresponding simulated prosthetic images in the reversed polarity. The simulated prosthetic images
of the isolated-object images had improved contrast, dynamic range, and shape compared with
the results using the original input image and with the addition of size and shape variations of
phosphenes, spatial shifts, and dropout.

Figure 10 shows another example of the algorithm for a different scene. In this scene,
the algorithm isolated the first two objects that were closest to the camera.

Figure 10. Simulated prosthetic vision images of asymmetric phosphenes before and after applying
object isolation in a different scene. (a) Original image before the object isolation. (b,c) Corresponding
simulated prosthetic images in the original and reversed polarities, respectively. (d) Input image
after object isolation that shows the two OIs closest to the camera. (e,f) Corresponding simulated
prosthetic images in the original and reversed polarities, respectively. Using the input image of
isolated OIs instead of the original input image clearly improved the perception of the two closest
objects in this scene.
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4. Discussion and Conclusions

Despite the rapid progress in visual prosthetic devices, the spatial resolution remained
low, with a visual acuity of 20/4275 for the Gen 2 suprachoroidal device [32], 20/1260
for the Argus II epiretinal prosthesis [28], and 20/546 for the ALPHA-IMS subretinal
prosthesis [9]. Increasing the number of electrodes to improve the spatial resolution is chal-
lenging because of the limited power dissipation [45], crosstalk between electrodes [45,46],
tissue heating [45], etc. [45,47]. Additionally, using sequential (asynchronous) stimu-
lation, which reduces the temporal noise with many electrodes, limits the stimulation
frequency [46]. It has also been found that the number of electrodes has a limited contri-
bution to visual performance [48,49]. In addition to the low spatial resolution, numerous
spatial and temporal effects can reduce the quality of prosthetic vision [7,18,19,22,40,41,50].
Using image processing approaches, such as the method proposed in this study, may be a
desirable solution to improve the clarity of objects in prosthetic vision and reduce some of
the distracting spatial and temporal effects.

We demonstrated the potential advantages of object isolation based on InI in simulated
prosthetic phosphene vision. As part of the object isolation algorithm, a segmentation
process based on a sharpness criterion was implemented to isolate the OIs in their depth
planes. Our results agree with the conclusion that the depth-based object isolation pro-
cess enables improved perception of the OI [42] by generating an isolated-object input,
which avoids overlaps between the OI and the background or other objects.

A subject implanted with an epiretinal prosthesis has a low perceived dynamic range,
which was reported to be as small as 2–4 gray levels [35], suggesting that the retinal
neurons distinguish between a small number of distant stimulation levels within the safe
charge density, which is 0.35 mC/cm2 for platinum electrodes [51,52] and 3 mC/cm2 for
iridium oxide electrodes [53]. In our prosthetic vision simulation, the number of gray levels
decreased from the standard 256 to 4. Therefore, enhancing the contrast and dynamic
range of the OI in the isolated-object input image by applying contrast stretch allows the
prosthesis to use four stimulation currents that are as far from each other as possible.

In the isolated-object image, the whole image except for the OI becomes uniform,
usually black or white. When choosing between a black or a white background, the algo-
rithm should consider the brightness of the OI. As shown in Figures 7b and 9b, applying
contrast stretch to the isolated-object input image at this stage affects the simulated pros-
thetic image by increasing the OI’s contrast (light gray phosphenes are being perceived
in addition to dark gray phosphenes) and dynamic range (three levels instead of two in
our example). This may enable brightness changes inside the OI, such as the sticker on the
laptop, to be distinguished.

The proposed method may involve automatic isolation of predefined objects, which are
of interest to implanted patients. This could be achieved by an object classification algo-
rithm using machine learning. The applied object isolation technique may allow users to
control the depth of their vision and thus increase their performance in multiple-object
scenes. For instance, controlling the depth of vision could be achieved by a scroll wheel
that would enable the users to see only objects within a predefined depth range; the objects
outside this range would not be visible [42] (Figure 7b,c and Figure 9b,c). Alternatively,
the input image of the prosthesis could contain objects at various depths, whereas other
less prominent information associated with the background of the scene are removed
(Figures 7d and 9d).

Applying polarity reversal, in which the object is bright and the background is
dark, has the advantage of involving fewer electrodes that stimulate bright phosphenes,
thus decreasing the spread of distortions caused by spatial variations, such as phosphene
shape [20], size [7,8], non-uniform spatial shifts between phosphenes [7,53], and tempo-
ral variations of phosphenes, such as persistence and perceptual fading of phosphenes,
in retinal prosthetic devices [40].

Our results suggest that object isolation may improve prosthetic vision regardless
of the spatial variations, that is, in the simulated prosthetic vision of both symmetric
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and asymmetric phosphenes. The improvement in the simulated prosthetic vision im-
ages demonstrated in our study suggests that the technique presented in this work may
improve prosthetic vision, and it should be considered in the development of future
prosthetic devices.

A possible future direction of this study involves conducting experiments with nor-
mally sighted subjects to measure the performance improvement in different visual tasks,
such as object detection, recognition, and identification. Another future direction is im-
plementing the simulation in real time with an HMD. This would require a decrease
in the running time by optimizing the algorithm. Such a real-time simulation will en-
able the testing of algorithm performance in other visual tasks, such as navigation and
object scanning.
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