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Abstract: The emergence of ground-breaking technologies such as artificial intelligence, cloud
computing, big data powered by the Internet, and its highly valued real-world applications consisting
of symmetric and asymmetric data distributions, has significantly changed our lives in many positive
aspects. However, it equally comes with the current catastrophic daily escalating cyberattacks. Thus,
raising the need for researchers to harness the innovative strengths of machine learning to design
and implement intrusion detection systems (IDSs) to help mitigate these unfortunate cyber threats.
Nevertheless, trustworthy and effective IDSs is a challenge due to low accuracy engendered by vast,
irrelevant, and redundant features; inept detection of all types of novel attacks by individual machine
learning classifiers; costly and faulty use of labeled training datasets cum significant false alarm
rates (FAR) and the excessive model building and testing time. Therefore, this paper proposed a
promising hybrid feature selection (HFS) with an ensemble classifier, which efficiently selects relevant
features and provides consistent attack classification. Initially, we harness the various strengths of
CfsSubsetEval, genetic search, and a rule-based engine to effectively select subsets of features with
high correlation, which considerably reduced the model complexity and enhanced the generalization
of learning algorithms, both of which are symmetry learning attributes. Moreover, using a voting
method and average of probabilities, we present an ensemble classifier that used K-means, One-
Class SVM, DBSCAN, and Expectation-Maximization, abbreviated (KODE) as an enhanced classifier
that consistently classifies the asymmetric probability distributions between malicious and normal
instances. HFS-KODE achieves remarkable results using 10-fold cross-validation, CIC-IDS2017,
NSL-KDD, and UNSW-NB15 datasets and various metrics. For example, it outclassed all the selected
individual classification methods, cutting-edge feature selection, and some current IDSs techniques
with an excellent performance accuracy of 99.99%, 99.73%, and 99.997%, and a detection rate of
99.75%, 96.64%, and 99.93% for CIC-IDS2017, NSL-KDD, and UNSW-NB15, respectively based on
only 11, 8, 13 selected relevant features from the above datasets. Finally, considering the drastically
reduced FAR and time, coupled with no need for labeled datasets, it is self-evident that HFS-KODE
proves to have a remarkable performance compared to many current approaches.

Keywords: HFS-KODE; intrusion detection systems; CfsSubsetEval; hybrid feature selection; rule-
based engine; machine learning; genetic search; unsupervised and ensemble learning

1. Introduction

The wide-scale adoption of cutting-edge technologies such as big data, the Internet of
Things (IoT), and the elastic computing and storage resource of cloud computing has led
to the world witnessing data deluge, meaning the simultaneous massive data generation
by humans and IoT [1]. Consequently, changing society and the world of business in
many aspects. According to McKinsey in reference [2], the competitive edge in the global
market is currently driven by harnessing efficient and productive big data and cutting-
edge technologies. Therefore, making these infrastructures not only attracts attention
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from the government and the business industries, but also from illegal attempts to access
these sensitive and valuable data. However, these valuables data are generally partial in
many big data and real-world applications, categorized into asymmetric and symmetric
data distributions. For instance, the symmetric relationships among the data of social
networks and the asymmetric probability distribution of malicious and regular network
traffic. Regardless of the missing information within these real-world applications, there
are still rich hidden patterns and knowledge. Therefore, establishing an efficient and
effective means of filtering these valuable patterns is significant [3].

Likewise, the growing dependency on the internet and its facilities have led to a
persistent risk against computer systems and networks [4]. For instance, various kinds
of cyber-attacks have evolved dramatically since the inception of the internet and the
rapid rise of revolutionary technologies. Irrespective of the tireless efforts of security
experts in terms of defense mechanisms, hackers have always found ways to get away
with targeted resources from valuable and most trusted sources worldwide by launching
versatile, sophisticated, and automated cyber-attacks. As a result, causing tremendous
havoc to governments, businesses, and even individuals [5]. For instance, the authors
of [6] fascinatingly present a summary of various cyber-attacks and their consequences.
Firstly, the paper highlights the forecast of six trillion US dollars of cyber-crimes by 2021
and the various global cutting-edge cyber-crimes that could lead to the loss of one billion
US dollars globally. Finally, a whopping 1.5 trillion US dollars of cyberattack revenues
resulting from two to five million computers compromised daily.

Subsequently, the last few decades have witnessed the increasing popularity of In-
trusion Detection Systems (IDSs) as a result of its inherent ability to detect an intrusion
in real-time [4,7]. For instance, the authors of [8] provided a meaningful overview of the
worth of security properties in monitoring cloud computing platforms. Additionally, they
proposed a novel, intelligent, and effective three-level cloud-based IDS that used rules
to represent Event Calculus’s specification and monitoring properties. Furthermore, the
proposed approach used the virtualization architecture to focus on the supervision of appli-
cations during runtime and support these applications’ automatic reconfigurations. Finally,
the paper claimed to have improved the security of cloud-based computing significantly.

According to the authors of [9], “Intrusion Detection is the process of monitoring the
events occurring in a computer system or network, and analyzing them for signs of intru-
sion”, moreover, they define an intrusion as an attempt to bypass the security mechanisms
of a network or a computer system, and then compromising the Confidentiality, Integrity,
and Availability (CIA). Finally, the authors of [10,11] define an IDS as a piece of hardware
or software program that monitors diverse malicious activities within computer systems
and networks based on network packets, network flow, system logs, and rootkit analysis.
The detailed roles and functionalities of a standard intrusion detection system are found in
reference [12].

There are two main approaches to detecting intrusions within computer systems
or networks: misused detection (knowledge or signature-based) and anomaly-based ap-
proaches. Nevertheless, the past decade has witnessed the rapid rise of the hybrid-based
technique, which typically exploits the advantages of the two methods mentioned above to
yield a more robust and effective system [13].

In summary, a Misused Intrusion Detection System (MIDS) is an approach where a
set of specific signatures of well-known attacks are stored and eventually mapped with
real-time network events to detect an intrusion or intrusive activities. MIDS usually gives
excellent detection accuracy, particularly for previously known intrusions. Nonetheless,
this approach is questionable due to its inability to detect novel attacks and requires
more extended time to analyze and process the massive volume of data in the signature
database [14–16]. The authors of [17] proposed an exceptional signature-based intrusion
detection system that effectively enhanced the detection rate of SQL injections within a
database. Moreover, this approach significantly lessens the throughput in the signature
database by only extracting patterns with suspicious content. Nonetheless, it is only
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designed for database intrusion and cannot be generalized as a misused intrusion detection
for a classical network environment with various behavior and functionalities.

In contrast, the main design idea of anomaly-based IDSs is to outline and represent
the usual and expected standard behavior profile through observing activities and then
defining anomalous activities by their degree of deviation from the standard behavior
profile. Moreover, this approach can strongly generalize and detect new attacks such as
the zero-day attack [18]. However, many false alarm rates resulting from the changing
cyber-attack landscape are among the most profound challenges [19]. The authors of [20]
intelligently used logistic regression, decision tree, and gradient boosting to propose an
optimized and effective anomaly-based ensemble classifier. They evaluate their model
using the original 80 features of the CSE-CIC-IDS2018 dataset, with 80% for the training
phase and the remaining 20% for testing the model. Moreover, they utilized chi-square
with Spearman’s rank correlation to efficiently select the most relevant 23 features from the
original features, demonstrating impressive results of 98.8% accuracy, 98.8%, 97.1%, and
97.9% of precision, recall, and F1-score, respectively.

Furthermore, irrespective of the phenomenal achievements of researchers and pro-
fessionals in mitigating the escalating security challenges through IDSs, the challenges
of improving the detection rate, accuracy, detection of novel attacks, and reducing false
alarm rates are still issues yet to be addressed in the research domain of IDSs. Moreover,
the mind-blowing complexity of the present cutting-edge networks has challenged the
detection capability of many existing IDSs [21]. Consequently, the past years have seen
many researchers and professionals exploit the novelty of machine learning techniques to
address the problems mentioned earlier by designing, developing, and deploying effective
and efficient IDSs [11]. Additionally, ML approaches can have strong generalizability and
strongly discover the critical differences between normal and abnormal data with very
high accuracy [9,11].

Machine learning is a flourishing AI technique that has the features of automatically
learning valuable information from massive datasets. In addition, with adequate training
datasets, machine learning-based IDSs can achieve pleasing detection results and good
generalization, [7,11]. On the same note, supervised and unsupervised learning are the two
leading machine learning models researchers and the industry commonly use in designing
and developing IDSs.

Firstly, supervised learning is the concept of discovering valuable information from
labeled datasets. Nevertheless, the need to manually label datasets is time-consuming,
error-prone, and equally expensive. Therefore, making it difficult to acquire enough
training datasets for such models, which seriously hinders the large-scale adoption and
implementation of supervised learning-based IDSs [22]. However, they have very high
detection accuracy for known attacks. Interestingly, unsupervised machine learning does
not need to rely on labeled datasets because it can extract valuable information from
unlabeled datasets without human intervention, making training data more accessible than
the supervised models [11].

Given the prospective applications of machine learning approaches in developing
efficient and robust IDSs without the need for label data or any prior knowledge of a
given network environment. Clustering algorithms such as K-means and DBSCAN attract
significant research interest to mitigate the shortcomings of processing massive complex
unlabeled datasets. Consequently, improving the detection accuracy and substantially
reduces the significant false alarm rate of existing IDSs [21]. For example, the authors
of [23] used a classical machine learning approach to implement a novel semi-supervised
anomaly detection system. They used the prominent K-means algorithm, which enables
them to differentiate the standard samples into a unique cluster during the training phase.
The threshold value was calculated based on the above results, which serve as the main
factor in distinguishing the proposed system’s normal and abnormal samples. Aside from
that, the proposed method effectively determined anomalies due to the clusters’ center’s
distance being more than the calculated threshold value. Finally, the authors attained an
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80.119% detection accuracy rate while testing their proposed system’s efficiency with the
NSL-KDD dataset.

Nevertheless, the existing literature has argued that the single weak learners and
the uneven data distribution of the regular and malicious traffics within networks and
computer systems have severely hindered the original idea of machine learning application
in the research of IDSs [15]. Thus, the past years have seen researchers harnessing the
potentials of ensemble classifiers in IDSs. It is an innovative approach to combining various
individual classifiers into a unified intelligent classifier using bagging, boosting, stacking,
with majority voting for classification problems, and weighted averaging for regression [24].
The authors of [25] utilizes a collection of small neural networks (autoencoders) to propose
a unique and fascinating plug-and-play NIDS named Kitsune, powered by an anomaly
detection engine called KitNET. To address the challenges of neural networks, such as the
need for computational resources and labeled datasets, the authors systematically combine
collections of autoencoders as an ensemble, which effectively and efficiently differentiate
between malicious and regular network traffics. Moreover, the proposed approach is
suitable for online and offline modes with acceptable performance on lightweight devices
such as Raspberry Pi. The authors claimed Kitsune could accurately detect numerous
attacks compare to many offline IDS, thereby qualifying it to serve as an economical and
practical IDS among current cutting-edge IDSs.

Similarly, to address the high computational challenges for memory and storage.
Researchers have been equally studying feature selection, which constitutes selecting
highly relevant features of the vast datasets and removing the irrelevant features that
lead to unnecessary computational cost and poor performance of IDSs. For example, the
misclassification of attacks resulting from high bias and variance in machine learning
models [15]. Likewise, the authors of [26] presents an innovative and practical approach
to feature reduction using an IDS consisting of support vector machines, Random Forest
(RF), Naive Bayes, and KNN. The authors efficiently used principal component analysis
(PCA) and recursive feature elimination (RFE) techniques for the feature reduction phase.
They created various subsets of selected features like 11, 12, 13, and 15 and compared them
with the original 41 features for evaluating the proposed method. They claimed to have
achieved promising results with the feature reduction with RF achieving the best results
for the Denial of Service (DoS) attack, such as accuracy of 99.63%, f1-score of 99.58%, a
recall of 99.6%, and 99.53% precision.

Finally, the existing literature has justified that researchers have attained incredible
progress in improving the detection accuracy of IDSs with fewer FAR rates through the
studies and applications of ensemble classifiers and feature selection. However, according
to the authors’ knowledge, there are no studies that provide comprehensive experiments
of the capabilities of an unsupervised clustering-based ensemble IDSs classifier that consti-
tutes K-means, One-Class SVM, DBSCAN, and Expectation-Maximization, abbreviated
(KODE) with detailed comparative analysis using current IDS datasets such as CIC-IDS2017,
UNSW-NB15, and NSL-KDD. Furthermore, the proposed system provides an effective and
trustworthy hybrid feature selection approach abbreviated HFS, which efficiently selects
relevant features among the imbalance and countless instances of the various benchmark
datasets to enable a timely, effective, and reliable classification of attacks. It is important
to note that our objective of using these two approaches together is to target symmetry,
meaning both approaches are crucially significant and mutually played a great role in
addressing the challenges of intrusion detection and prevention [27]. The following are an
overview of the main contributions of this research work:

• The authors proposed an efficient and reliable feature selection approach that in-
corporates genetic search technique, rule-based engine, and CfsSubsetEval, which
effectively selects the relevant features for increasing the performance of models.

• The authors proposed a comprehensive and practical ensemble approach that com-
bines the above four mentioned algorithms as an ensemble classifier.
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• A comprehensive comparative analysis using various current IDS datasets, which
consequently yields yet an accurate, reliable, and efficient IDS.

• The proposed system outshines its equivalent systems using various evaluation met-
rics on three current IDS datasets: NSL-KDD, UNSW-NB15, and CIC-IDS2017.

• Finally, the proposed approach has recorded negligible FAR, MBT, and MTT compared
to many current studies and equally solves the low detection challenge of the UNSW-
NB15 dataset discussed in subsequent sections.

The rest of the paper’s organization is as follows: Section 2 discusses some important
background concepts. Section 3 presents a review of the related works. Similarly, Section 4
explains the materials and methods of the proposed system. Section 5 highlights the results
and discussions of the proposed approach. Finally, the paper concludes in Section 6.

2. Fundamental Concepts

This section summarized the necessary concepts utilized in this research work, which
will provide readers with the essential facts to understand this research and similar works
better.

2.1. Ensemble Learning

Ensemble learning is a rapidly rising innovative machine learning technique that
utilizes multiple weak learners to yield a higher predictive classifier than single machine
learning models for a given problem. The primary objective of ensemble learning is to
improve the detection accuracy and lower the false alarm rates of predictive classifiers
by combining the strengths and capabilities of various weak learners to achieve a robust,
efficient, and effective classifier [6,15,28]. Moreover, ensemble methods seek to create a
set of hypotheses or learners and combine them to solve a given problem compared to
conventional machine learning techniques, attempting to learn a single hypothesis from
the training data [29].

The critical potential of ensemble learning is splitting a single problem into compo-
nents that could be assigned to the various modules of the ensemble learner with different
sets of features and algorithms to identify different types of attacks. There may be mul-
tiple machine learning algorithms in each module, depending on the adopted ensemble
approach. It does not require excellent performance by every learner, but somewhat better
than random guessing [30]. This approach has proven to be very effective and efficient in
designing and developing IDSs. It is self-evident that a single intrusion detection system
cannot cover all types of input data or detect all types of attacks. Therefore, different weak
learners are employed to identify diverse kinds of attacks. However, the significant prob-
lem with ensemble approaches is choosing the correct way to integrate suitable individual
classifiers and the decision function to combine the selected algorithms’ outcomes [28].
The three most popular combination schemes of ensemble learning are bagging, boosting,
stacking in the form of weighted averaging for regression, and majority voting for classifi-
cation problems [30]. However, this paper will only provide a brief description of these
common combination methods.

Synopsis of Bagging, Boosting and Stacking

Firstly, reference [31] is believed to have first proposed the concept of bagging. The
authors intelligently used random draw with replacement to create several samples of the
training dataset and train various models, and averaged their score with the ensemble
technique of voting. Bagging is one of the most straightforward yet effective and robust
ensemble techniques [32]. The bagging procedure operates on the concept of bootstrapping
and aggregation. It utilizes the bootstrap sampling method to generate multiple versions
of N samples with replacements from the original N training dataset to guarantee a well-
balanced training dataset for the selected weak learners. Similarly, an optimized, efficient,
and effective final model is obtained by aggregating the base learners and using majority
voting to choose the most occurrence among the classification results of the various weak
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learners as the final classification, thereby leading to improved performance compared to
the traditional machine learning approach [32–34]. Furthermore, the bagging technique has
significantly mitigated the challenges associated with the massive number of instances in
IDS datasets with a high dimensional nature [30]. Reference [33] entails the comprehensive
details of the bagging approach, such as the algorithm and other relevant information.

Secondly, boosting is a sequential ensemble method in which the first weak learner
constructed from an entire training dataset complements the next weak learners for im-
proved results. The fundamental idea is assigning weights to samples in the training
sets based on the classification results, such as giving small weights to correctly classified
samples and large weights to wrongly classified instances [32]. Then the following weak
classifiers are trained based on the previous weak learner’s output for an improved final
model. This sequential procedure continues until the final improved model is obtained.
Finally, the involved weak learners’ parameters are determined by decreasing the loss
function imposed by the previous model on the training dataset [30].

Additionally, the concept of increasing the weights of the misclassified instances
is to improve their probability of appearing for the next weak learner. In contrast, the
correctly classified instances have a lower likelihood of appearing in the training dataset,
which goes a long way in augmenting the subsequent weak learners’ performance [32].
However, boosting could become computationally expensive to fit various complex models
sequentially, unlike the bagging approach. Consult reference [33] for an inclusive detail of
the boosting method.

Finally, in contrast to boosting and bagging, stacking is a reliable yet straightforward
ensemble method of aggregating several heterogeneous weak learners like the Random
Forest, neural networks, logistic regression, and support vector machines in a two-tier
procedure. For instance, the base learner (based models) and the meta learner (meta-model)
stages [35,36]. The stacked generalization-based learner level enables the aggregation of
varied weak learners to learn from a k-fold training dataset and construct N number of
classifiers for classifications.

In contrast, the meta learner level utilizes the base models’ results as a new training
dataset to produce a final improved output [14]. For example, suppose we wished to build
a staking ensemble of N number of weak learners, the following steps can be followed:
Firstly, we can split the training data into two-fold. Secondly, fit the N weak learners with
the first-fold of the training dataset, observe the N weak learners’ predictions, and finally
used these predictions as input during the fitting of the meta-level model on the second-fold
training dataset. However, complex meta learner models are among the leading cause of
overfitting challenges. Therefore, favoring linear regression and other naiver models as
meta learners [30,33].

2.2. Feature Selection

The exponential evolution of the innovative Internet applications and related tech-
nologies has led to the substantial accumulation of unbalanced and high dimensional data
at a high velocity, significantly challenging traditional machine learning approaches [37].
As a result, feature selection over the last decade has been practically and theoretically
demonstrated to be very effective in processing unbalanced and high dimensional data
of various research domains, especially in IDSs [15,28,33,38], thereby leading to improved
performance of IDSs classifiers [29].

Feature selection is a core machine learning concept that uses specific selection mea-
sures to manually or automatically choose relevant subsets among the massive irrelevant
and redundant features of an originally given dataset with less computational overhead
and high training accuracy without negatively affecting the classification accuracy [39].

The feature selection process plays a significant role in addressing colossal pre-
processing challenges, model building, training, evaluations, and interpretation, as shown
in Figure 1. For example, reducing the model complexity, thus strictly minimizing the
computational cost. Secondly, an improved classifier performance as a result of efficiently
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minimizing the negative consequences of the curse of dimensionality. Additionally, it also
facilitates the provision of a low dimensional and well-balanced dataset input, thereby
significantly minimizing overfitting, reducing the time of model training, improving the
training accuracy, and enhancing the straightforward interpretation of the learning re-
sults [40].
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According to the authors of [41–43], the algorithms of feature selections can be catego-
rized into unsupervised, semi-supervised, and supervised feature selection approaches.
The commonly used feature selection methods are filter, wrapper, and embedded. The core
concept of supervised feature selection is utilizing the correlation and relevance among
features and classes to select important feature subsets. In contrast, unsupervised feature
selection is driven by the fundamental concept of choosing a significant feature subset
without a target variable but instead uses evaluation criteria and clustering to improve the
accuracy [37].

Moreover, the four basic steps of a standard feature selection method are: subset
generation, subset evaluation, stopping criteria, and validation procedure. Firstly, a spec-
ified search strategy will be utilized to select a possible feature subset, evaluated based
on a particular evaluation measure. Then based on the stopping conditions, the feature
subset that fully corresponds to the chosen evaluation benchmark is selected as the relevant
features, which can be endorsed by a validation dataset or a domain expert [44].

Summary of Filter, Wrapper and Embedded Models

The filter method is a fast, effective, and scalable technique of distinguishing the model
training bias from the feature selection algorithm, enabling the reliable selection of only
relevant features based on a given dataset’s essential properties using a calculated score.
The calculated score helps retain features with a high score and discard those with a low
score [45]. The two main deterministic evaluation techniques of classical feature selection
algorithms are the multivariate and univariate. The two main conventional steps of a
filter algorithm are using a particular criterion to rank features and training a classification
model with the highest-ranking feature. The leading performance criteria are mutual
information-based methods, ReliefF of algorithms, and Fisher score [46–48].

Algorithm 1, depicts the generalized filter algorithm, which illustrates the necessary
steps of efficiently choosing relevant features of a given dataset. Interested readers can
refer to reference [49] for detailed information.
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Algorithm 1 A Classical Filter Algorithm

Input: D (F0, F1, . . . , Fn−1) // A training dataset of N features
So // A specified starting subset for the search of an optimal subset
Ω // A specified stopping condition

Output Sbest // A desired optimal subset
01 begin
02 Initialize: Sbest = So;
03 λbest = eval (So, D, α); // So is evaluated Using an Independent Measure α

04 do begin
05 S = generate (D); // Generate a subset for evaluation
06 λ = eval (S, D, α); // Evaluating the current generated subset S by α

07 if (λ is better than λbest);
08 λbest = λ;
09 Sbest = S;
10 end until (Ω is reached or fulfilled);
11 return Sbest
12 end;

Moreover, wrapper methods use the model prediction accuracy, which is initially
trained on a training set to select the best feature subsets by evaluating the best perfor-
mance of various potential feature subsets to alleviate the substantial disadvantages of the
filter method, such as disregarding the effects of the chosen feature subset on a particular
classifier’s performance [50]. Nonetheless, the selection of optimal feature subset based on
classifier performance comes with some benefits and drawbacks. For instance, the assur-
ance that selected features from the wrapper techniques is reliable with good classification
strengths. However, a low model prediction accuracy cannot be guaranteed the same.

Furthermore, the accurate predictions of wrapper methods come with the need for
more computational resources. Moreover, a standard wrapper method performs the
following basic three steps given a predetermined classifier model: firstly, the search of a
subset of features, then utilizing the performance of the classifier to evaluate the selected
subsets of features, and finally repeating the above two steps until a preferred optimal
feature subset is obtained [51]. Genetic algorithm (GA) and recursive feature elimination
(RFE) are some of the well-known wrapper techniques [52].

Algorithm 2, represents a classical wrapper algorithm. Interested readers can refer to
reference [49] for more information.

Algorithm 2 A Classical Wrapper Algorithm

Input: D (F0, F1, . . . , Fn−1) // A training dataset of N features
So // A specified starting subset for the search of an optimal subset
Ω // A specified stopping condition

Output Sbest // A desired optimal subset
01 begin
02 Initialize: Sbest = So;
03 λbest = eval (So, D, Ψ); // So is evaluated Using a Specified Algorithm Ψ

04 do begin
05 S = generate (D); // Generate a subset for evaluation
06 λ = eval (S, D, Ψ); // Evaluating the current generated subset S by algorithm Ψ

07 if (λ is better than λbest);
08 λbest = λ;
09 Sbest = S;
10 end until (Ω is reached or fulfilled);
11 return Sbest
12 end;

The embedded method is an accurate and efficient approach proposed to mitigate the
challenges of the filter and wSrapper method. It exploits the advantages of both techniques
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mentioned earlier, such as selecting an optimal subset with the highest classification
accuracy and retaining the computational efficiency of the filter method. However, it
necessitates using a parameter that defines the cut-off score for the measured scores of the
features. Additionally, in this approach, both the optimal feature selection and the fitting
of the model occur concurrently. The features with the classification model’s high score are
kept, and those with a low score are discarded, like the wrapper method [49].

However, it has a lower computational cost because the model fitting is done at once
to determine these scores instead of the iterative nature of the wrapper model [49]. Finally,
the most common embedded approaches are the models with integrated feature selection
such as C4.5 and ID3 [53] and objective function-based regularization models that enforced
the coefficient to be a small value or exactly zero while minimizing the fitting error. As a
result, usually leading to improved performances and drawing growing consideration over
the past years [54]. Interested readers can refer to reference [49] for details of the algorithm.

3. Related Works

Based on existing literature, specifically IDC Cybersecurity Spending Guide 2019, the
global expenditure on security for 2022 might exceed 133.8 billion US dollars. Similarly,
while security experts continue to architect cutting-edge security solutions, the intruders
also continue engineering more innovative attacks. Therefore, to address these security
challenges, the past years have seen the massive adoption of machine learning techniques
in designing and implementing IDSs. It has achieved great success due to the considerable
amount of publicly available datasets and the various cutting-edge machine learning [55].
As a result, the following sections discuss some of the most remarkable works in the various
ensemble and feature selection approaches.

First of all, the authors of [56] proposed an approach that concentrated on exploiting
various feature selection methods such as IG, correlation, relief, and symmetrical uncer-
tainty, which enables the extraction of the relevant features from NSL-KDD datasets. They
used extracted features to build different decision tree models, out of which C4.5 combined
with IG and symmetrical uncertainty, records the best accuracy of 99.68% and 99.64% with
only 17 and 11 selected features, respectively.

Additionally, the authors of [57] proposed a classifier with low false positives and a
more significant classification accuracy using an intelligent bagging ensemble and feature
selection approach. They used the genetic algorithm to reduce the NSL-KDD dataset to
only 15 relevant features and used the Partial Decision Tree (PART) algorithm as a base
classifier. They used the 10-fold cross-validation to evaluate their model and claimed an
agreeable classification accuracy of 99.7166%. However, the same system only achieved
78.3712% on the test datasets, with C4.5 recording the best performance. Similarly, they
concluded that the model build time was significant, thereby not feasible for real-life
network environments.

The authors of [34] present a bagging ensemble method to address the significant
model building time of reference [57], but with a REPTree base classifier. They claimed
to have achieved less model building time with a lower false positive. However, they
recorded a lower accuracy of 99.67% on the 10-fold cross-validations but a better accuracy
of 81.29% on the test dataset.

The authors of [58] use ensemble methods such as stacking, bagging, and boosting to
mitigate the high false alarm rates and enhance the detection rate of the system proposed
in reference [32]. The proposed ensemble method used artificial neural networks, decision
trees, Naïve Bayes, rule induction, k-nearest neighbor, and genetic algorithms. They
claimed to achieve an accuracy of 99% in detecting known attacks. However, it could only
achieve 60% detection accuracy for novel attacks with the longest execution time.

Furthermore, the authors of [59] present an insightful ensemble model that constitutes
various base classifiers such as Naive Bayes, Partial Decision List (PART), J48, and C5.0.
They claimed exciting findings, for example, better accuracy for J48, C5.0, Naïve Bayes,
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and PART. In conclusion, the paper claimed to have observed the most accurate results
when J48, Naïve Bayes, and PART classifiers were combined.

Moreover, the authors of [50] presented a promising approach, including a preprocess-
ing stage that efficiently selects the ideal features subsets of the KDD99 and UNSW-NB15
datasets. In addition, the paper uses a genetic algorithm search strategy and a logistic
regression learner-based wrapper approach for feature selection, selecting the best features
by maximizing classification accuracy and minimizing the number of features. Finally,
they utilize C4.5, NBTree, and the Random Forest algorithm on relevant feature subsets as
an enhanced classifier. As a result, they claimed encouraging results of 99.90% accuracy,
a detection rate of 99.81%, a false alarm rate of 0.105%, and a detection rate of 99.98%
for denial of service attack with only 18 features of the KDD99 dataset. Moreover, the
paper claimed a reasonable classification accuracy and a FAR of 6.39% for the UNSW-NB15
dataset. Lastly, the authors highlight the complexity of the UNSW-NB15 dataset and
recommend more research on various approaches to improve its classification accuracy,
which has been achieved in this paper.

Equally, the authors of [60] proposed a system that minimizes the model building
time and dataset complexity. It uses IG to select related features for each available attack
and combine the different obtained features used during the classification stage. They
evaluated their models using the test dataset and claimed to achieve better results when
the PART and Random forest classifiers are used with the product probability rule.

The authors of [15] proposed an intelligent and efficient feature selection using
correlation-based feature selection (CFS) and an ensemble classifier of C4.5, Random
Forest (RF), and Forest by Penalizing Attributes (Forest PA) algorithms. They used the
voting method to aggregate the probability distributions of the base classifiers for attack
classification. The authors evaluated the CFS-BA-ensemble technique on three different
datasets: NSL-KDD, Aegean WiFi Intrusion Dataset (AWID), CIC-IDS2017 dataset, and
they claimed to have outperformed many related cutting-edge approaches. In summary,
using 10-fold cross-validation, the proposed ensemble approach claimed a performance
accuracy of 99.8%, 0.1% FAR, and 36.28 s model building time for the NSL-KDD. Like-
wise, an accuracy of 99.9% and 99.5%, and a model-building time of 92.62, and 98.42 s for
the AWID and CIC-IDS2017, respectively. Finally, they performed various statistical and
detailed comparative analyses.

Furthermore, the authors of [28] produced a novel trustworthy dataset named Game
Theory and Cyber Security (GTCS) with 83 attributes and a labeled class of normal or attack
that helps to mitigate the current IDS dataset challenges and simulate negligible attacks
like botnet, infiltration, DDoS, and brute force. The authors use the InfoGainAttributeEval
algorithm with Ranker to simply the novel dataset, then evaluated it with an enhanced
ensemble based on multiple classifiers with different Hyperparameter optimization to
address the current accuracy and FAR challenges. The ensemble classifier uses the majority
voting technique to combine the prediction of the best three classifiers, like J48, IBK, and
MLP. The authors used 10-fold cross-validation, and the proposed method outperformed all
the three base classifiers with an accuracy of 98.62% and a false positive of 0.029. Therefore,
the authors concluded that the proposed system could improve detection accuracy, increase
TPR, and minimize FPR.

In conclusion, regardless of the immense contribution of the above and existing
literature in mitigating the challenges of current IDSs, it is evident that there is still an
urgent need to propose new approaches to help improve the significant findings in these
existing pieces of literature. For example, the proposal of a much diverse, comprehensive,
and optimized ensemble classifier with a much better detection accuracy, a negligible
false alarm rate, and most importantly, an acceptable model building and testing time.
Additionally, most of the current studies predominantly use supervised machine learning
algorithms to designed and deployed IDSs with better detection and lower false alarm rates,
which comes with colossal challenges of acquiring sufficient labeled datasets. Therefore,
in contrast to most of the above studies, this paper focuses on the systematic design,
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implementation, and evaluation of robust and efficient unsupervised machine learning
algorithms with numerous strengths, abbreviated KODE.

Unlike many existing studies, this paper also comprehensively evaluated the proposed
efficient feature selection method and ensemble classifier on three benchmark datasets to
ensure reliable and consistent results. Finally, based on the authors’ knowledge, this paper,
for the first time, also integrates these four different types of unsupervised algorithms
(KODE) as an ensemble classifier. Therefore, based on the above contribution, one can
conclude that this paper has somehow contributed to the existing knowledge of this
research domain.

4. Materials and Methods

This section briefly discussed the synopsis and statistical details of the three standard
IDS datasets used for performance evaluation and discussed the various approaches
utilized for the data preprocessing phase. Finally, it presents the methodologies utilized
to design and implement the proposed system and concludes with the evaluation metrics
utilized for the performance analysis.

4.1. Summary and Statistical Details of the Benchmark Datasets

The phenomenal effort of the security experts in crafting data security measures for
real-life network environments and computer systems such as encryption, data anonymiza-
tion, and some data privacy laws like the EU’s GDPR has stimulated an incredible difficulty
in obtaining evaluation datasets for IDSs [61]. Thereby leads to massive challenges of
acquiring real-life network traffic and computer systems datasets.

Nonetheless, the past decades have witnessed numerous simulated datasets to address
the challenges mentioned earlier. Almost all these datasets mimic the essential features of
real-life network traffics [15]. The standard freely available datasets for IDSs performance
evaluation are DARPA98, NSL-KDD, ADFA, KDDCUP 99, CIC-IDS2017, and UNSW-NB15.
Based on this existing trend and the systematic analysis of reliability and consistency, this
paper chose CIC-IDS2017, UNSW-NB15, and NSL-KDD datasets to evaluate the proposed
system. The following sections briefly describe the chosen datasets for the evaluation of
our system.

4.1.1. Summarized Description of the CIC-IDS2017 Dataset

The Canadian Institute for Cybersecurity presents a novel, sophisticated, and compre-
hensive CIC-IDS2017 dataset [62], satisfying the eleven significant standards. For instance,
attack diversity, the wide-ranging feature set of 80 network flow features, and the essential
protocols for building a trustworthy and comprehensive benchmark dataset. Moreover,
the authors intelligently designed the dataset to capture network traffic for five days from
Monday-Friday, which comprises benign traffic for Monday, regarded as the regular day,
and the remaining days with state-of-the-art attack traffics such as DDoS, Brute Force,
Heart-bleed, and Infiltration. Finally, considering the computational overhead of the entire
CIC-IDS2017 dataset, a subset of this dataset was made by arbitrarily picking 565,053 oc-
currences for test evaluation. Table 1 provides the statistical summary of the CIC-IDS2017
dataset.

4.1.2. Synopsis of the UNSW-NB15 Dataset

According to the authors of [63], the UNSW-NB15 IDS dataset is motivated to address
the immense challenges of its predecessor datasets. For example, massive irrelevant records,
an incomprehensive reflection of current attacks, numerous fundamental missing values,
and the imbalance between the benign and attack records. This dataset has 175,341 records,
which entails the realistic representation of actual modern normal network behaviors and
modern-day malicious attack events [36].
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Table 1. Statistics of CIC-IDS2017 dataset.

Category Training Set Testing Set

Normal 536,937 453,877
Botnet 1180 324
DDoS 34,880 25,597
DoS 60,765 50,317

FTP_Patator 4763 1585
Probe 36,176 31,753

SSH_Patator 3538 1177
Web Attack 4320 423

Total Number of Records 682,559 565,053

Additionally, the design of this dataset is more complex in correlation with the other
benchmark datasets, for example, KDDCUP 99, consequently enhancing the performance
evaluation of current NIDs. The IXIA traffic generator assembled the records for UNSW-
NB15 with three virtual servers. The two servers disseminated the regular traffic packets,
and the third one was assigned to spread the malicious network traffic. Interested readers
can refer to reference [63] for details of the technical documentation of the dataset, and
Table 2 presents the statistical synopsis of the dataset.

Table 2. Statistics of UNSW-NB15 dataset.

Category Training Set Testing Set

Normal 56,000 37,000
Attacks 119,341 45,332

Total Number of Records 175,341 82,332

4.1.3. Outline of the NSL-KDD Dataset

Lastly, the authors of [64] proposed an enhanced version of KDDCup’99, commonly
referred to as NSL-KDD, to alleviate the earlier mentioned challenges [15,63]. It constitutes
a fair proportion of 125,973 training to 47,600 testing samples, respectively. Regardless of
the significant inherent challenge of the NSL-KDD dataset, for instance, the inadequate
reflection of current low footprint attack scenarios, it is still considered the most preferred
IDSs evaluation dataset because of its distinctive attribute of maximizing predictions for
classifiers [15]. It consists of four attack categories with 41 attributes and a single labeled
class distinguishing between malicious or regular network traffic [21]. Finally, interested
readers can refer to reference [64] for the detailed theoretical and technical documentation
of the NSL-KDD dataset. Table 3 presents the statistical outline of the attack and regular
records of the NSL-KDD dataset.

Table 3. Statistics of NSL-KDD dataset.

Category Training Set Testing Set

Normal 67,343 45,000
Attack 80,046 2600

Total Number of Records 125,973 47,600

4.2. Data Preprocessing

According to the authors of [59], data preprocessing is the most tedious but funda-
mental step in data mining because it can simplify and improve the effectiveness of data
mining processes. Moreover, data usually comes from heterogeneous platforms and can be
noisy, excess, incomplete, and conflicting. As a result, it is imperative to change unpolished
data into meaningful data for investigation and information disclosure. Consequently,
this study’s pre-preprocessing steps include the following processes as summarized in the
subsequent sections:
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4.2.1. Data Cleaning and Removal of White Spaces

This paper starts with an essential practice of removing or fixing incorrect, duplicate or
incomplete records and filling missing values within the given datasets, commonly referred
to as data scrubbing or cleaning, which significantly ensure accurate, efficient, effective, and
reliable predictions [65]. Based on the author’s findings, there were no redundant records
in the UNSW-NB15’s test set with only a few duplicates in the training datasets. However,
we removed the repeated features of NSL-KDD and CIC-IDS2017 datasets. Equally, we
remove the white or blank spaces of the multi-class labels to avoid misleading the models
during training.

4.2.2. Label Encoding

Some features of the datasets are categorical values, which is not acceptable as an
appropriate input for most machine learning algorithms such as the K-means. Therefore,
it is essential to encode these features into numerical values before fitting our models.
Among the two most popular approaches are one-hot and ordinal encoding. Consequently,
using these techniques, this paper assigned integer values to each categorical value [15].
For instance, the values of 0, 1, and 2 are assigned to ICMP, TCP, and UDP protocol types
of the NSL-KDD dataset, respectively, and the remaining datasets’ categorical values have
been handle as well. Finally, binary labels of all the datasets are already in 0’s and 1’s.

4.2.3. Data Normalization

The authors of [28] have significantly highlighted how various imbalance scales of
features can seriously deteriorate the performance of regression or classification models.
Therefore, it is imperative to normalize these discrepancies within the dataset features
so that negligible and dominant values can be within an acceptable range. For instance,
the large values of “Src Bytes”, “Dst Bytes”, and “Duration” of the connection of the CIC
IDS2017 dataset can dominate the smaller values of “Num Failed Logins”. As a result,
this paper systematically chooses the minimum-maximum technique [66] to normalize the
dataset features within the normalized range of [0, 1], enabling an easy understanding of
the data. The standard equation of the minimum-maximum method is as follows:

Xnormalized_value =
X− Xmin_value

Xmax_value − Xmin_value
(1)

where Xnormalized_value represents the normalized outcome, equally, the Xmin_value and Xmax_value
values of the results are 0 and 1, respectively, and the remaining values would be within
these ranges, which enables the features to have the same range and base point. Thus,
this approach overcomes the issues of bias, immensely reduces the model training and
testing time, and enables a fast convergence rate, thereby improving the reliability and
classification performance [66].

4.3. Utilized Base Clustering Algorithms

Due to the volume of the work, we will only provide a brief introduction of the base
clustering algorithms used for this research with references for detailed information. The
interested readers can also contact the corresponding author for detailed documentation
of the parameters of the classifiers and additional data. The clustering concept is an
unsupervised technique that enables a set of patterns usually in multidimensional space
vectors to be clustered into groups so that objects of the same groups or clusters are
more similar, whereas the objects from different clusters are unrelated [67]. Similarly,
it is a crucial task of clustering related objects into the same cluster such that they are
dissimilar to the objects of other clusters. Assuming λ is a set of objects, let ň be the
set of cluster identifiers. Assuming the function of the distance between objects δ (ε, ε’)
is given for set ň. It is essential to distribute the set λ into subsets or clusters, such as
assigning a label έj ∈ ň to each object εi ∈ λ in such a technique that the objects within
each cluster are closely correlated to the metric δ, and the objects from unlike clusters vary
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significantly [68]. However, cluster analysis is a challenging problem due to numerous
methods of determining the concept of similarity and dissimilarity. Therefore, to find a set
of clusters efficiently, we need to determine new similarity measures with some established
rules for assigning data points to various clusters or groups. For instance, the Euclidean
distances (D) is a standard similarity metric between data points Ẍ and Ỹ, defined as
||Ẍ− Ỹ|| [69].

Additionally, it is essential to note that smaller Euclidian distances mean more symme-
try, whereas more considerable distances mean less symmetry, which is commonly utilized
in the K-means and DBSCAN algorithms. Lastly, symmetry is one of the basic structures of
objects and shapes, meaning almost every fascinating area around us comprises a general-
ized form of symmetry [70]. Therefore, since symmetry is a widespread phenomenon in
the natural world, we can make concrete assumptions that clusters or objects contain some
symmetry, thereby qualifying our approach to be in the realm of symmetry phenomenon.

Firstly, K-means is a popular, simple, and yet a robust unsupervised centroid-based
clustering algorithm that clusters a given dataset into predetermined k clusters, such that
each sample is grouped with the nearest mean or similar data points. However, irrespective
of its advantages, it has a disadvantage of defining the fixed number of k clusters before
the training begins. Both K-means and DBSCAN commonly use the Euclidean distances as
the distance metrics for analysis [71].

Secondly, DBSCAN, (Density-Based Spatial Clustering of Applications with Noise) [72]
is also an unsupervised density-based clustering algorithm. It begins with an arbitrary
point and increases the cluster if a certain minimum number of points lie within a certain
radius of the point and iteratively grows the cluster by equally considering all points in the
radius and reiterating until there are no more points to add [72].

Moreover, the authors of [73] proposed the One-Class SVM, an upgraded version of
the supervised SVM, to mitigate the need for label datasets. The unsupervised algorithm
separates the entire data points from the original dataset by targeting the region where
most data points lie, labels it as +1, and assigns the remaining data points as −1. Finally, it
attempts to find a hyperplane that divides data points from the original with the highest
margin [14].

Lastly, the Expectation-Maximization (EM) algorithm uses a maximum likelihood
sort of parameter estimation technique and is perfectly suited for situations in which
the available dataset is partial. EM is an iterative technique that under specified definite
circumstances converges to values at a local or global maximum of the likelihood function,
and it comprises an expectation and a maximization step [74].

4.4. Feature Selection

The massive irrelevant and redundant features of real-world applications have consid-
erably challenged the effective and reliable classification of attacks by IDSs. Similarly, IDSs
built on these challenges usually require more training and testing time with high demand
for processing resources and, interestingly, very difficult to interpret [15,40]. Therefore, this
study proposed a hybrid feature selection approach, which incorporates genetic search
technique, rule-based engine, and CfsSubsetEval. A subset evaluator figures correlation
among all attributes and classes [75]. The attribute-class relationship with a stronger corre-
lation is more likely to be chosen, referred to as feature assessment. The genetic algorithm
assesses the importance of each property based on this feature assessment. If two-element
subsets have similar wellness esteem, the rule assessment stage returns the feature subset
with the lowest features count. Finally, the selected features are passed as input to KODE
for attack classification and produce the model.

4.4.1. Genetic Search

Based on a natural selection process, the genetic search utilizes the basic genetic
algorithm, which exploits computer systems to reproduce the cycle of natural selection
and evolution. The genetic algorithm (GA) is an optimization method for data mining,
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which usually starts with a haphazardly created populace of individual projects [50]. Every
population contains an individual, and each individual possesses a different subset of
algorithmic parameters. An individual fitness value is determined for each individual of
the population during each generation using a different fitness measure. Electronic genetic
recombination and blending are performed on the current populace of individuals during
each iteration to replace individuals with poor fitness scores with high-performing ones.
The fittest individuals replace the individuals with low fitness rates for the next computing
iteration [52].

4.4.2. CfsSubsetEval

The CfsSubsetEval is a filter-based evaluator method that assesses the significance of
any subsets of indicators based on the predictive ability of specific features alongside the
level of inter-correlation among the measured individual features. Consequently, favoring
subsets that are exceptionally correlated with the class but have low inter-correlation.
Similarly, it also enables the efficient identification of the predictive ability of every available
feature within the dataset. Nevertheless, the factor of redundancy among features plays a
significant role in this method [62,75].

4.4.3. Rule-Based Engine

The past decades have witnessed many researchers of machine learning applications
utilizing the rule-based engine. It is a derivation engine that selects one among numer-
ous choices depending on the relationship between the rule and the data. Additionally,
it matches the specified rules to input values and efficiently picks the ideal choice for
execution [76], commonly referred to as “conflict resolution”.

Table 4 entails the summarized procedures of the proposed hybrid feature selection
model, and the subsequent section presents details of the feature selection steps and
algorithm’s pseudo-code depicting the approaches of the proposed system.

Table 4. Steps of the proposed feature selection model.

01 Discovering correlation of feature subsets for classification.
02 Selecting feature subsets with a stronger correlation.
03 Compute the value of fitness for chosen feature subsets.
04 Return the feature subsets with the most elevated fitness score.
05 If two feature subsets have a similar value of fitness score, return a subset that has the lowest features count.
06 Applying the proposed Ensemble system (KODE) on the chosen feature subsets to categorize or classify the attacks.

4.4.4. Feature Selection Steps

1. Defining Subset

An attribute or feature Xi is supposed to be significant if and only if there lies some xi
and y where q (Xi = xi) > 0 to such an extent that:

Q (Z = z | Xi = xi) 6= q (Z = z) (2)

Based on the above definition, Xi is important if finding out its value can alter the
approximations for the class label Z, or in other words, if Z is conditionally dependent
on Xi.

2. Defining CfsSubsetEval

In case we know the correlation among all features in the wake of a test and the
external variable and inter-correlation among all pairs provided, at that point, correlation
in a composite test comprising the summed-up segments as well as an external variable
might be anticipated as below:
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R(xc) =
TR(xi)√

T + T(T − 1)rii
(3)

where R(xi) is the relationship between all summed-up segments and an external variable,
T is the total number of segments, while R(xc) is the average correlation between segments
and external variable, while rii is the average relationship between segments.

3. Defining Genetic Search

GA is an inquiry enlivened by regular advancement. This hereditary inquiry utilizes
the fitness process, which is the straight mix of accuracy and simplicity.

Fitness(X) =
3
4

A +
1
4
= 1− (S + F)

2
(4)

Here X denotes a subset of features, while A represents average accuracy for cross-
validation and S denotes the number of training tests, while F represents the subset of
features.

4. Rule Assessment Step

The rule base engine returns a subset of features (Vi) with minimum features (XF)
in case there are multiple subsets for features (F>) with comparable fitness esteem, else
turning features subset with highest fitness esteem (Fhi) to the base classifier as shown in
the formula below:

R =

{
Vi, i f Vi ∈ F > ∩ X f
Vi, i f Fhi ∩ ∅

(5)

The summarized procedures of the proposed hybrid feature selection model and the
details of the algorithm are equally presented in Algorithm 3.

Algorithm 3 The Proposed Hybrid Feature Selection Algorithm

Input: S (F1, F2, . . . , Fk, Fc) //A training dataset of \ features
Output Class Ci //A desired optimal subset
01 Start by arbitrarily creating an underlying populace P.
02 Process correlation (CfsSubsetEval) between features subsets and classification
03 Select subset of features with high correlation
04 Ascertain f(x:CfsSubsetEval) for every part x ∈ p.
05 Characterize a likelihood dissemination p over the individuals from p where p(x)/f(x).
06 Select two populace individuals x and y regarding p.
07 Applying hybrid to x as well as y to create novel populace individuals x’ as well as y’
08 Apply change to x’ as well as y’
09 Supplement x’ as well as y’ into p’.
10 In the event that |p’| < |p|, iterate to step 4
11 Now let p← p’
12 If there exist more generations to measure, iterate to 2.
13 Return x ∈ p where f(x) is most noteworthy.
14 if any two subsets of features have a similar fitness value
15 Return the subset of features lowest number of subset attributes or features
16 beginning weight←irregular (x)
17 for all cases p as well as for each output node j
18 Compute Activation (j)
19 for every input node i to output node (j) Do
20 Delta W = LearningConst * Error-j * Activation-i
21 W (t) = W + DeltaW until error is adequately little or expires
22 For I = length of p
23 For J = L (length) of t, if (j = = i) & ci = t[j]
24 Else increase i by 1
25 return Ci
26 End;



Symmetry 2021, 13, 1764 17 of 34

Table 5 presents the best-selected features of the proposed hybrid feature selection
method, which has demonstrated the capability of efficiently selecting relevant features
for attack classification of the asymmetric probability distributions between malicious
and normal instances, which proved to have significantly reduced the issue of the curse
of dimensionality and overfitting consequences. Furthermore, the authors of [77] have
demonstrated that integrating symmetry concepts into the model design and building can
drastically reduce model overfitting and complexity challenges, eventually necessitating
less training data, training time, and computing resources, all of which have been achieved
in our approach. Therefore, we can conclude that our work has some correlation with
the symmetry phenomenon. It is essential to note that the feature selection objective of
this research is not to present all the sets of selected features during the entire experiment
using the k-fold cross-validation. Instead, suggest or choose a few combinations of relevant
features from each dataset that significantly enhanced the accurate and consistent detection
of various malicious attacks within the utilized datasets.

Table 5. Selected features of the NSL KDD, CIC-IDS 2017 and UNSW-NB15 datasets.

NSL KDD CIC-IDS 2017 UNSW-NB15
No Feature Name No Feature Name No Feature Name

f_4 flag f_2 Bwd.Packet.Length.Min f_2 dur
f_5 Src_ bytes f_3 Fwd.Packet.Length.Min f_3 xport
f_6 Dst_bytes f_6 Total.Length.of.Bwd.Packets f_4 xserv

f_15 Min.Packet.Length f_15 Flow Bytes/s f_23 dwin
f_17 radiotap.channel.type.cc f_17 Flow IAT Max f_25 tcprtt
f_26 srv_serror-rate f_21 Subflow.Fwd.Bytes f_27 synack
f_30 diff_ srv_ rate f_14 Min.Packet.Length f_28 ackdat
f_29 same_sev_rate f_12 Bwd.Packet.Length.Std f_30 trans_dept

f_13 Bwd.Packet.s f_31 resp_body_len35ct_srv_src
f_30 dest_host_srv_diff_host_rate f_36 ct_state_ttl
f_39 dest_host_srv_serror_rate f_43 attack_cat
f_45 Down/Up Ratio
f_59 Idle Max

The confusion matrices presented in Figure 2A–C illustrate the performance of the pro-
posed feature selection and ensemble method on 10-fold cross-validation. The subsequent
section highlights the performance in detail.
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As presented in Figure 3, the proposed experimental framework summarized the
critical steps of the HFS-KODE ensemble classifier. Firstly, the utilized datasets go through
a preprocessed phase, as explained earlier in material and methods section. The next step
involves the feature selection phase, where we measure and select feature subsets with
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higher correlation using methods explained in the feature selection steps. Finally, the
training phase uses these features to build an efficient and consistent ensemble classifier
consisting of K-means, One-Class SVM, DBSCAN, and Expectation-Maximization (KODE).
Moreover, we use the final trained model (Detection Engine) in the classification phase
with the average of probabilities rule and voting technique to classify the test dataset as
benign or various attacks types within the test dataset based on the clusters created during
the training phased.
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4.5. Adopted Model Evaluation Metrics

According to the authors of [78], the most commonly used evaluation metrics for the
current intrusion detection models are Accuracy (ACC), Detection rate (DR), and FAR.
However, the authors in [79] claimed that DR is the most crucial metric for IDS performance
evaluation. Hence, this work used Precision, F-measure, and MBT, and MTT for a more
comprehensive and reliable evaluation of the proposed model in addition to the metrics
mentioned above.

It is important to note that a synopsis of the four measures, as shown in Table 6, is
required to understand the utilized metrics better, and a summary of the adopted metrics
also follows [40]:

Table 6. A taxonomy of Classical Intrusion Detection System.

Class Actual Predicted Description

True Negative (+) (+) An instance classified as a legitimate network traffic.

False Positives (+) (-) A legitimate network traffic flagged as an attack, an existing massive
challenge in anomaly IDS.

False Negative (-) (+) Unfortunate cases of classifying a malicious network traffic as a legitimate
traffic, equally a huge challenge.

True Positive (-) (-) Malicious network traffic successfully flagged as an attack.

Where (+) represents a normal instances, and (-) represents an attack or anomalous instances.
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4.5.1. Accuracy (ACC)

It evaluates the ratio of network traffic flows that are classified correctly over the total
network traffic, and it is one of the most intuitive performance measures and calculated as
follows:

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(6)

4.5.2. Detection Rate (DR)

Similarly called recall or sensitivity, it calculates the percentage of correctly predicted
intrusion traffic flow to all the instances in the actual class, and computed as given below:

Detection Rate (DR) =
TP

TP + FN
(7)

4.5.3. Precision

It evaluates the ratio of detected intrusion traffic that is correct to all the predicted
positive observations, computed as follows:

Precision =
TP

TP + FP
(8)

4.5.4. F1-Measure (F1)

Likewise termed as F1-score is a more effective measure than accuracy, especially for
evaluating IDSs’ imbalanced datasets. It is simply the harmonic average of detection rate
and precision, computed as given below:

F1-Measure (F1) =
2X(Recall× Precision)

Recall + Precision
(9)

4.5.5. False Alarm Rate (FAR)

Likewise termed as false-positive rates are the percentage of regular network traffic
flows that are incorrectly classified, computed as given below:

False Posistive Rate (FAR) =
FP

FP + TN
(10)

4.5.6. Model Building/Testing Time (MBT/MTT)

Excluding the factors like the task switching of the CPU, model building, and model
testing time are the time taken to train and test our models to predict attacks on a new
dataset, which excludes the time taken for the feature selection phase. Furthermore, the
authors avoid executing heavy programs during the training and testing phase to minimize
possible interferences.

5. Results and Discussion

This section presents a detailed systematic analysis and performance validation of the
proposed system. For instance, measuring how well it can efficiently select the relevant
features among thousands of records and use these few selected features to classify network
traffics into either benign or malicious traffic accurately. Additionally, it provides a thor-
ough performance evaluation of the individual classifiers and KODE on each of the three
raw datasets, the selected features, various combination methods, and state-of-the-earth
approaches based on numerous metrics such as FAR, ACC, DR, Precision, F1-measure,
MBT, and MTT. Additionally, to mitigate the challenges of data sampling, the k-fold cross
validation parts are set to explicit limits of testing and training percentages that are not
apparent in the training stage to test the model’s quality, generalizability, and reliability.
Finally, to ensure effective and reliable results, all the performance results presented in
this work are based on the average output values of all ten repetitions of the k-fold cross-
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validation approach, where the value of k is 10 (k = 10). Finally, all the results presented in
this work are obtained using the various test datasets of the utilized benchmark datasets.

5.1. Comparison of Feature Selection with No Feature Selection

This section meticulously evaluates the performance of the proposed novel approach
using the original features of the three datasets and the selected features. Firstly, the hybrid
feature selection method has demonstrated the capability of efficiently selecting relevant
features for attack classification, as presented in Table 5, which significantly reduced
the curse of dimensionality. Furthermore, the overall performance evaluation of feature
selection for the three datasets has demonstrated the accurate classification of most of
the attacks within the utilized datasets, except for only a few of the attacks not correctly
classified, as demonstrated in Figure 2A–C. Therefore, the subsequent sections present
the systematic comparative evaluation of the proposed unsupervised clustering-based
ensemble (KODE) with the utilized base classifiers to assess their performance based on
the metrics mentioned earlier. Table 7 present the performance of the base classifiers and
KODE on the test dataset based on the average values of the 10-fold cross-validation for
the metrics, which reveals exciting findings for the original and the selected features of
the NSL-KDD datasets. For instance, it reveals that KODE did not perform as expected on
the original dataset features, such as a performance accuracy of 92.03%, a detection rate
of 0.90, and 2140.2 s of model testing time. Moreover, KODE records the highest model
building time of 441.6 s with a vast false alarm rate of 0.090, while the EM records only
65.4 s model building time but a massive 671.4 s of model testing time. Consequently, the
authors correlate the poor performance of KODE to the curse of dimensionality and the
complexity of the original features of the dataset [59].

Table 7. Performance analysis for NSL-KDD with no feature selection on the test dataset.

Classifier Accuracy DR FAR Precision F-Measure Building (S) Testing (S)

K-mean 95.34 0.996 0.133 0.913 0.952 12 531.6
OneClass

SVM 86.03 0.86 0.089 0.804 0.832 128.4 1656.6

DBSCAN 82.27 0.827 0.128 0.827 0.823 235.2 7.8
EM 61.06 0.62 0.61 0.86 0.74 65.4 671.4

KODE 92.03 0.9 0.09 0.902 0.903 441.6 2140.2

(A). Performance Analysis for NSL-KDD with Eight (8) Selected Features on the Test Dataset

K-mean 99.72 0.997 0.011 0.992 0.992 154.2 213.6
One-Class

SVM 98.82 0.988 0.012 0.992 0.99 3 21

DBSCAN 98.66 0.986 0.014 0.986 0.985 79.2 9
EM 71.03 0.71 0.012 0.714 0.78 54 212.4

KODE 99.73 0.999 0.01 0.992 0.993 120 208.8

Interestingly, K-means records the best performance accuracy of 95.34%, a detection
rate of 0.996, and only 12 s model building time among the base classifiers. However, it
records a massive 531.6 s of model testing time and a colossal false alarm rate of 0.133.
The authors associated the performance of K-means with efficient hyperparameter tuning.
However, due to the lack of expert domains, the authors cannot conclusively agree to
why K-means achieved such a decent performance on the original features of the dataset.
Moreover, the EM algorithm records the overall poorest performance on the original
and selected features with a performance accuracy of 71.03 and a detection rate of 0.71
and 212.4 s of model testing time. Finally, KODE yields pleasing results for the selected
features, such as accuracy of 99.73%, 0.999 detection rate, the lowest FAR of only 0.010.
Likewise, it also recorded better performance for the remaining metrics, like a drastically
reduced model building and testing time of 120 and 208.8 s, respectively. Thus, based
on the above performance evaluation, we can conclude that our hybrid feature selection
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method yielded the best results when combined with the ensemble classifier. Moreover,
the proposed method has achieved its objective of strictly minimizing the false alarm rates,
model building, and testing time, thereby outperforming the individual base classifiers as
anticipated.

Similarly, KODE recorded some unpleasing results for the original features of CIC-
IDS2017 datasets, as presented in Table 8. For example, it records a performance accuracy
of only 89.15%, a detection rate of 0.891, and a false alarm rate of 0.012. Unfortunately, it
also records the highest model testing time of 4958.4 s but only 217.2 s of model building
time. These poor performances could result from the sophisticated and imbalanced nature
of the dataset, as discussed in reference [62]. Surprisingly, K-means recorded good results
like an F-measure of 0.971, a performance accuracy of 97.89%, and a detection rate of 0.978.
However, it recorded the highest FAR of 0.129 with a massive 3669 s model testing time
contrary to KODE, which records the lowest false alarm rate of 0.012 but with a much
higher model testing time. The EM algorithm achieves the minimum model building and
testing time of 185.4 and 25.8, respectively, but with an overall poorest performance for the
remaining metrics.

Table 8. Performance evaluations for CIC-IDS2017 dataset with NO feature selection on the test dataset.

Classifier Accuracy DR FAR Precision F-Measure Building (S) Testing (S)

K-mean 97.89 0.978 0.129 0.907 0.971 394.2 3669
One-Class

SVM 96.23 0.809 0.049 0.956 0.947 32.4 4880.4

DBSCAN 81.24 0.824 0.106 0.803 0.812 185.4 25.8
EM 79.21 0.78 0.102 0.789 0.792 125.4 24.6

KODE 89.15 0.891 0.012 0.908 0.889 217.2 4958.4

(A). Performance Evaluations for CIC-IDS2017 with Thirteen (13) Selected Features on the Test Dataset

K-mean 99.72 0.997 0.011 0.992 0.992 154.2 213.6
One-Class

SVM 98.92 0.989 0.011 0.982 0.99 3 21

DBSCAN 97.76 0.977 0.012 0.986 0.985 79.2 9
EM 95.32 0.952 0.013 0.96 0.949 87.6 10.2

KODE 99.99 0.997 0.011 0.992 0.993 120 208.8

Additionally, using the selected features of the CIC-IDS2017 datasets as shown in
Table 8A, KODE registers some exciting results like the highest accuracy and detection
rate of 99.99% and 0.997, respectively. Further, it records a precision of 0.992 and an
F-measure of 0.993 together with a negligible model building and testing time of 120.0
and 208.8 s. In contrast, K-means records the highest model building and testing time,
while one-class SVM and DBSCAN achieve the lowest model building and testing time,
respectively. Therefore, the authors conclusively agreed that the proposed feature selection
and the ensemble approach have effectively and efficiently selected the relevant features
and reliably classified most attacks within the utilized datasets.

Furthermore, based on the results presented in Table 9, DBSCAN, Expectation- Max-
imization, and KODE did not perform well as presumed for the original features of the
imbalanced UNSW-NB15 dataset. However, One-Class SVM and K-means produce excit-
ing results on the same original features. For instance, a performance accuracy of 96.79 and
a detection rate of 0.9679 for K-means, whereas One-Class SVM records 96.23 performance
accuracy and a detection rate of 0.962. However, they recorded the highest false alarm
rates of 0.121 and 0.051, except for DBSCAN, which records 0.103. Similarly, they recorded
the highest performance on the original features with a precision of 0.965 and 0.962, an
F-measure of 0.976 and 0.962 for K-means and One-Class SVM, respectively. Nonetheless,
except for DBSCAN and Expectation-Maximization, they also recorded the highest model
building and testing time. Considering the findings presented in Table 9A, KODE achieves
the overall best performances for the selected features of the UNSW-NB15 dataset, with
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the Expectation-Maximization recording the overall lowest performance. For example, it
achieves the highest accuracy of 99.99% with a lesser model building and testing time. More
importantly, it achieves a nominal false alarm rate of only 0.01 with a decent F-measure and
precision. Interestingly, both K-means and KODE achieve impressive accuracy, detection
rate, precision, and F-measure for the selected features. However, as mentioned above,
KODE recorded the lowest false alarm rate, thereby achieving an overall best performance
compared to K-means and the remaining base classifiers.

Table 9. Performance comparisons for UNSW-NB15 dataset with NO feature selection on the test dataset.

Classifier Accuracy DR FAR Precision F-Measure Building (S) Testing (S)

K-mean 96.79 0.967 0.121 0.965 0.967 94.2 189
One-Class

SVM 96.23 0.962 0.051 0.962 0.962 30.6 307.2

DBSCAN 81.22 0.812 0.103 0.812 0.812 48.72 72.6
EM 84.56 0.85 0.012 0.845 0.841 50.7 79.2

KODE 89.85 0.898 0.011 0.898 0.898 217.2 192

(A). Performance comparisons for UNSW-NB15 with eleven (11) selected features on the test dataset

K-mean 99.92 0.992 0.08 0.992 0.992 155.4 210.6
One-Class

SVM 97.92 0.972 0.07 0.979 0.97 0.6 23.4

DBSCAN 98.76 0.987 0.011 0.987 0.985 78.6 129
EM 96.34 0.963 0.012 0.963 0.963 73.8 122.4

KODE 99.99 0.99 0.01 0.99 0.99 120 204.6

5.2. Assessment of the Proposed HFS with Other Feature Selection Methods

To further assess the consistency and performance of the proposed hybrid feature
selection method. This section presents numerous experiments, which intuitively compares
the performance of the proposed method with well-established feature selection methods.
Some of the systematic selected methods for this comparison are Correlation-based Feature
Selection (CFS), Bat Algorithm (BA), Genetic Algorithm (GA), Information Gain (IG), and
Passive-Aggressive (PA).

The findings presented in Figure 4A,B summarized the results of the evaluation of HFS
with various cutting-edge feature selection methods using the three benchmark datasets
with various metrics. Figure 4A illustrates that the proposed method (HFS) achieves the
best accuracy on all three datasets compared to other well-known methods. For example, it
achieves a performance accuracy of 99.91%, 99.73%, and 99.9% on the UNSW-NB15, NSL-
KDD, and CIC-IDS2017 datasets, respectively. On the other hand, although the BA method
records a decent performance accuracy compared to the remaining adopted approaches,
such as 99.46%, 98.82%, and 98.85% on the three datasets, it is still below the performance
of HFS. Additionally, all the adopted methods, including HFS, achieved the lowest score
for the NSL-KDD compared to the remaining two datasets with CFS, IG, and PA only
recording 95.36%, 95.12%, and 95.64% on the NSL-KDD, respectively.

Similarly, HFS obtained the highest detection rate for all the datasets, with the highest
of 99.93 on the UNSW-NB15 dataset, addressing the low detection rate highlighted in
reference [50]. Nonetheless, it only records a detection rate of 94.64% on the NSL-KDD
dataset. Likewise, the BA method records reasonable detection rates for all the datasets like
97.23 and 96.45 on UNSW-NB15 and CICIDS-2017, respectively. However, it only manages
to achieve 91.34% on the NSL-KDD dataset. At the same time, IG, CFS, and PA attained the
lowest performance, especially on the NSL-KDD dataset. Based on these performances, it
is evident that HFS has demonstrated pleasing results compared to the adopted methods,
thereby it is an efficient and reliable method among all the selected approaches for the
evaluation.
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Moreover, Figure 5A,B present the evaluation results of HFS with other methods for
the false alarm rates and F-measure metrics. As illustrated in Figure 5B, the HFS method
has outclassed all the other methods. For example, an F-measure of 0.999, 0.997, and
0.998 for UNSW-NB15, NSL-KDD, and CICIDS-2017, respectively. On the same note, it
is essential to note that BA has performed very well on all the datasets but below the
performance of the proposed HFS method. In addition, the NSL-KDD dataset recorded the
lowest F-measure in all the adopted approaches, including HFS. However, the authors can
only correlate this to the complex nature of the dataset as of now.

Interestingly, HFS achieves all the above pleasing results with the lowest false alarm
rate for all the datasets, like 0.11, 0.16, and 0.09 for UNSW-NB15, NSL-KDD, and CIC-
IDS2017, respectively, as presented in Figure 5A. Similarly, except for the BA and CFS
methods, all the other methods, including HFS, recorded the highest false alarm rates on
the NSL-KDD dataset. It is worth noting that CFS and IG achieved the highest false alarm
rate of 3.98 on both the UNSW-NB15 and NSL-KDD datasets. Considering the overall
performance of the HFS method, it would be fair to state that it has significantly outper-
formed the other conventional methods, thereby making it superior among the selected
approaches in many current studies in terms of efficiency, reliability, and performance.
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Figure 6A,B presents the evaluation results of the number of selected features with
their respective time for HFS and other methods. For example, Figure 6A illustrated that
the HFS method achieved a notable performance in terms of the features selected, such
as achieving the lowest selected features of 8 features for the NSL-KDD dataset and the
same time, acceptable records of 11 and 13 selected features for the UNSW-NB15 and
CIC-IDS2017, respectively. Similarly, BA, IG, and PA achieve a realistic performance on the
number of selected features, with the BA and PA methods recording the lowest number
of selected features after the HFS method. In contrast, CFS emerged with the lowest
performance on all the datasets, like 26 and 21 selected features on UNSW-NB15, and
CIC-IDS2017, respectively. Similarly, Information Gain also struggled by selecting 21 and
17 features on the UNSW-NB15 and CIC-IDS2017.

Finally, despite the considerable reduction in the model building and testing time on
the selected features from all the datasets, HFS has underperformed in feature selection time
compared to other methods, as shown in Figure 6B, especially for the CFS and IG method.
On the other hand, the CFS and IG methods outperformed our proposed method in the
time taken to select features. However, this is not very important considering the overall
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performance of HFS. Additionally, the results presented in Figure 6A,B have revealed
exciting findings of the NSL-KDD dataset. For instance, all the methods recorded the least
time for selecting features and selected the minimum number of features on NSL-KDD
compared to other datasets, and this also could have a possible correlation with the poor
performance of the said dataset in some of the initial evaluations. However, the authors
cannot conclude why this happened. To conclude, looking at the above performance, one
can conclude that HFS has demonstrated the ability to efficiently and effectively select
the necessary features within an acceptable time frame, thereby having a competitive
advantage compared to other methods.
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5.3. Evaluation of KODE with (Voting) and Other Classification Methods

Likewise, the authors conducted yet another set of experiments with the hybrid
feature selection to further evaluate the performance of KODE with other state-of-the-art
classification methods, such as AdaBoost, C4.5, Gradient Boosted Machine (GBM), and
KNN. Initially, KODE-based voting with the Average of Probabilities (AOP) combination
rules is selected as it emerges as the best combination rule method during the experiment,
as explained in the subsequent sections. It is important to note that all the results presented
in this evaluation are the average values of the outputs of the 10-fold cross-validation
approach [80]. Additionally, to validate the reliability and effectiveness of the comparison,
it is essential to ensure an accurate comparison of the classifiers and similarly crucial to
calculate the statistical significance of the individual classifiers [81].
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Consequently, the authors have applied a statistical comparison to assess the signif-
icant differences among different classifiers as indicated in reference [82]. Finally, these
evaluations adopted the null hypothesis that all the classifiers show equal performance
with no performance variation to test the performance of these classifiers. Therefore, if the
performance of any algorithm is different, then this hypothesis will be rejected. Moreover,
this paper used the Nemenyi post-hoc test [82] to test the above null hypothesis, and the
subsequent section discusses the results attained.

Based on the evaluation results of KODE with other classification methods as shown in
Figure 7A,B, it is evident that KODE has outclassed the other selected classification methods
with exciting F-measures for all the datasets. Similarly, all the remaining classification
methods attained acceptable F-measure results but below the proposed ensemble classifier.
Conversely, while KODE achieved reasonable detection rates for all the datasets, it is
essential to highlight that both GBM and the KNN classification algorithm attained the least
accuracy score, as indicated in Figure 6B, especially for the NSL-KDD dataset. For instance,
they recorded an overall 98% accuracy for the NSL-KDD dataset, probably resulting from
the complex nature of the datasets as discussed in many existing studies [62].
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Lastly, Figure 8A,B presents the false alarm and detection rate of KODE with other
classification methods. These findings revealed that KODE appeared as the best among all
the selected algorithms for this evaluation. For instance, Figure 8A revealed that KODE
with voting has attained the best performances with the highest detection rate of 99.93%
and 99.73% for UNSW-NB15 and CICIDS-2017, but only managing to record a detection rate
of 96.64% for the NSL-KDD dataset. However, it still emerged as the best performance for
this dataset compared to other established algorithms. Similarly, all the remaining selected
classification methods recorded exciting detection rates for the UNSW-NB15 and CICIDS-
2017 datasets; nevertheless, they recorded the lowest detection rates for the NSL-KDD
dataset with C4.5 and KNN recording the least of 94.83, and 94.51, respectively. Likewise,
the findings presented in Figure 8B illustrated that KODE has drastically mitigated the
false alarm rate challenges with just 0.11, 0.16, and 0.9 for the UNSW-NB15, NSL-KDD, and
CICIDS-2017 datasets. However, Adaboosting, GBM, KNN appeared to have recorded the
worst performance of false alarm rates for all the datasets, especially on the UNSW-NB15
and NSL-KDD datasets. Nonetheless, C4.5 has achieved decent performances of FAR for all
the datasets with only 0.082 and 0.11 for NSL-KDD, and CICIDS-2017 datasets, respectively.
Based on the above performances, the authors have concluded significant performance
differences among the chosen well-known algorithm and KODE, hence rejecting the earlier
adopted null hypothesis.

Symmetry 2021, 13, 1764 27 of 35 
 

 

all the selected algorithms for this evaluation. For instance, Figure 8A revealed that KODE 
with voting has attained the best performances with the highest detection rate of 99.93% 
and 99.73% for UNSW-NB15 and CICIDS-2017, but only managing to record a detection 
rate of 96.64% for the NSL-KDD dataset. However, it still emerged as the best performance 
for this dataset compared to other established algorithms. Similarly, all the remaining se-
lected classification methods recorded exciting detection rates for the UNSW-NB15 and 
CICIDS-2017 datasets; nevertheless, they recorded the lowest detection rates for the NSL-
KDD dataset with C4.5 and KNN recording the least of 94.83, and 94.51, respectively. 
Likewise, the findings presented in Figure 8B illustrated that KODE has drastically miti-
gated the false alarm rate challenges with just 0.11, 0.16, and 0.9 for the UNSW-NB15, 
NSL-KDD, and CICIDS-2017 datasets. However, Adaboosting, GBM, KNN appeared to 
have recorded the worst performance of false alarm rates for all the datasets, especially 
on the UNSW-NB15 and NSL-KDD datasets. Nonetheless, C4.5 has achieved decent per-
formances of FAR for all the datasets with only 0.082 and 0.11 for NSL-KDD, and CICIDS-
2017 datasets, respectively. Based on the above performances, the authors have concluded 
significant performance differences among the chosen well-known algorithm and KODE, 
hence rejecting the earlier adopted null hypothesis. 

 
Figure 8. Evaluation of the proposed ensemble classification (KODE) with other classification methods. (A) Attack detection
rate of (KODE) with voting and other classification methods; (B) False Alarm Rate of (KODE) with voting and other
classification methods.
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5.4. Comparison of Various Adopted Combination Rules

This section elaborates on the various experimental results obtained using selected
combination rules with the HFS-KODE based ensemble approach. The well-known combi-
nation rules used with the voting method for constructing ensemble classifiers in existing
studies are the product of probabilities, majority voting, minimum probability, an average
of probabilities (AOP), and maximum probability [83]. Furthermore, since the numbers
of classes are more significant than the base classifiers and the decent performance of the
AOP over majority voting, the authors conclusively agreed to adopt the AOP combination
rule for decision-making. In this paper, the average of the predicted probabilities’ highest
value determined the class label. Similarly, this paper utilized the vote meta-algorithm that
uses a specified combination rule to harness the strength of various individual base classi-
fiers. Refer to reference [15] for detailed documentation of the technical and mathematical
definition of the concepts as mentioned above. Additionally, it is essential to note that all
the evaluations results are obtained using the average accuracy of the output value of the
10-fold cross-validation technique to avoid model overfitting, thereby providing reliable
and consistent results [21]. The subsequent section presents and discusses the findings of
the experiments.

Table 10 presents the accuracy evaluation results of the selected combination rules
on the available attacks of the NSL-KDD datasets. For instance, all the combination rules
achieved good performances on the benign samples. The average of probabilities recorded
the highest performance accuracy of 99.9% for regular instances and 99.58% for probe
attacks. Nevertheless, it failed to replicate the same impressive performance accuracy for
the other attacks, especially U2R. This could be due to the few instances of this attack
within the dataset.

Table 10. Accuracy comparison of different combination rules based on the NSL_KDD test dataset.

Attack Type Average of
Probabilities

Majority
Voting

Product of
Probability

Minimum
Probability

Maximum
Probability

Normal 99.91 99.89 97.19 97.56 98.45
Dos 99.09 99.78 99.01 99.31 99.01

PROBE 99.58 97.57 96.45 96.13 97.32
R2L 96.57 96.67 95.60 90.51 90.56
U2R 67.90 72.34 54.10 52.68 50.92

Unexpectedly, irrespective of the few available R2L and U2R instances, the majority
voting rule achieves the best performance compared to the average probabilities on the
NSL-KDD dataset. For example, it records an impressive performance accuracy of 99.78%,
99.67%, and 72.34% for DoS, R2L, and U2R, respectively. Finally, the U2R and R2L attacks
recorded the lowest performances accuracy for all the combination rules. Nevertheless,
the authors convincingly correlated this with the few available instances of these attacks
within the mentioned dataset.

On the other hand, the results presented in Table 11 revealed that the average of
probabilities achieves the overall best performance accuracy for all the attacks within
the UNSW-NB15 dataset, with the benign instances achieving the highest performance
accuracy of 99.97%. Moreover, both the Backdoor and DoS attacks achieved remarkable
performance accuracies of 99.34% and 99.20%, respectively. Contrarily, the Exploits attack
failed to replicate the same exciting performance accuracy with the lowest of 69.12% among
all dataset attacks for the AOP. Irrespective of these poor performances, the average of
probabilities achieved the best performance accuracy for this attack compared to other
combination rules. Lastly, the maximum likelihood recorded the lowest performance
accuracy of 48.43%. Consequently, this paper adopts the average of probabilities rule based
on the performances manifested in Table 11.
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Table 11. Accuracy comparison of different combination rules on the UNSW-NB15 test dataset.

Attack Type Average of
Probabilities

Majority
Voting

Product of
Probability

Minimum
Probability

Maximum
Probability

Benign 99.97 99.89 97.19 95.09 94.45
DoS 99.20 98.79 99.01 97.09 96.01

Fuzzers 98.94 97.89 96.15 94.07 93.32
Analysis 97.30 96.67 95.30 90.51 90.32
Backdoor 99.34 98.01 97.54 95.43 94.92
Generic 89.34 87.89 87.19 85.50 80.32

Shellcode 82.83 82.34 80.23 78.12 75.65
Worms 97.09 96.78 94.90 92.13 89.90

Reconnaissance 78.09 77.23 75.23 74.21 71.65
Exploits 69.12 68.67 54.56 50.32 48.43

Finally, Table 12 reports the final findings on comparing different combination rules
on the CIC-IDS2017 dataset. These findings revealed that the average of probabilities
combination rule undoubtedly succeeded as the best performing rule for most of the attack
classes in the dataset as shown in Table 12. For instance, DDoS, Web Attack, and Benign
achieved the highest accuracy of 99.99%, 99.97%, and 99.96%, respectively. In contrast, the
performance accuracy in Botnet, FTP-Patator, and DoS are 99.15%, 99.09%, and 98.89%,
respectively.

Table 12. Accuracy comparison of different combination rules on the CIC-IDS2017 test dataset.

Attack Type Average of
Probabilities

Majority
Voting

Product of
Probability

Minimum
Probability

Maximum
Probability

Benign 99.96 99.67 98.10 96.90 95.68
Botnet 99.15 98.34 96.98 95.90 93.41
DDoS 99.99 99.04 97.94 96.07 95.33
DoS 98.89 96.89 95.32 94.53 92.90

FTP_Patator 99.09 97.89 97.54 96.42 94.92
Probe 89.34 87.85 86.78 85.55 83.32

SSH_Patator 81.85 79.86 78.69 76.16 75.56
Web Attack 99.97 97.73 94.89 92.56 90.90

Interestingly, even though SSH_Patator consists of more instances than Botnet attack,
it still records the lowest accuracy for all the combination rules, the cause of which will
be investigated in future research. Finally, the Probe attack recorded the second-lowest
performance with an average accuracy of 86.57% for all the combination rules, only doing
better than SSH_Patator among all the attacks in the dataset. In summary, irrespective of
the excellent performance of the remaining combination rules, it is indisputable that the
average of probabilities achieved the overall best performance for all the different attacks
of the various datasets, thereby adopting the average of probabilities as the combination
rule for implementing the proposed ensemble.

5.5. Comparison of Our Proposed Approach with Other Cutting-Edge IDS Approaches

The past decade has witnessed the conventional IDS methodologies boosted with
numerous powerful machine learning security frameworks [84]. Irrespective of these
significant contributions, the existing literature confirms the urgent need to harness the
effectiveness of feature selection and ensemble methods to design consistent and optimized
IDSs with negligible false alarm rates and acceptable model building and testing time.
Therefore, this section compares the proposed HSF-KODE with some unique approaches
that have been published during the last five years. Most of these selected works use
ensemble classifiers with feature selection, with only a few studies without any feature
selection. Likewise, DCIC-IDS2017(Wed.), UNSW-NB15, AWID-CLS-R, AWID, and NSL-
KDD are standard datasets used for these evaluations with parameters such as classifier(s)
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used, features selection method, if any, accuracy, false alarm, and detection rates. The
proposed approach (HFS-KODE) has achieved a competitive advantage among the selected
methods, as presented in Table 13. For instance, it has recorded an incredible performance
accuracy of 99.997% with only 0.11 FAR, significantly addressing the low accuracy challenge
of the same dataset in reference [73].

Table 13. Comparison of current intrusion detection approaches with proposed approach.

IDS
Models

Utilized
Dataset

Feature
Selection

Base Classifier
Used FAR (%) ACC

(%)
DR
(%)

[20] CIC-IDS2018 Spearman’s rank
correlation LR, DT, and GB N/A 98.8 N/A

[84] NSL-KDD Information Gain RepTree N/A 89.85 N/A
[84] UNSW-NB15 Information Gain RepTree N/A 88.95 N/A

[60] NSL-KDD IG-Filters Voting (Random Forest, and
PART) 0.01 86.697 NA

[50] UNSW-NB15
and KDD99

Wrapper
(GA-LR)

C4.5, NBTree, and Random
Forest Algorithm 0.105 99.90 99.81

[78] UNSW-NB15 DT-based ANN, SVM, KNN, RF and
NB 27.73 86.41 97.95

[34] NSL-KDD Manually
selected Bagging(REPTree) 0.148 81.2988 N/A

[85] NSL-KDD NSGAII-ANN Random Forest 6.00 99.4 N/A
[85] UNSW-NB15 NSGAII-ANN Random Forest 6.00 94.8 N/A

Proposed
(KODE) CIC-IDS2017 HFS Voting (K-means, One-Class

SVM, DBSCAN, EM) 0.09 99.99 99.75

Proposed
(KODE) NSL-KDD HFS Voting (K-means, One-Class

SVM, DBSCAN, EM) 0.16 99.73 96.64

Approach
(KODE) UNSW-NB15 HFS Voting (K-means, One-Class

SVM, DBSCAN, EM) 0.11 99.997 99.93

Similarly, HFS-KODE records the highest detection rate of 99.93% on the UNSW-
NB15 dataset, compared to other studies. Moreover, the proposed approach achieved
the best performance on the CIC-IDS2017 dataset with a performance accuracy of 99.99%,
a detection rate of 99.75%, and only 0.09 false alarm rates compared to many available
approaches. Lastly, KODE achieved the best performance on the NSL-KDD dataset with
a detection rate of 96.64% and a performance accuracy of 99.73%. However, it achieved
the highest false alarm rates compared to [31]. Finally, unlike the selected studies and
many other approaches. HFS-KODE has demonstrated a competitive advantage among
the selected studies, such as achieving an overall higher accuracy, lower false alarm rate,
an acceptable model building and testing time, and a higher detection rate. Therefore, it
would be fair to conclude that the proposed IDS (HFS-KODE) has outclassed many existing
systems used for this assessment regarding performance accuracy, effectiveness, reliability,
and efficiency.

6. Conclusions and Future Work

The massive technological advancements made over the past decade has positively
influenced all aspects of life. Alongside this is the illegal mining of data, leading to the
need to provide reliable and effective IDSs. Nevertheless, existing studies have shown
that the curse of dimensionality from the unbalanced network traffic, low detection rates,
high false alarm rates, low accuracy, and the difficulty to attain sufficient labeled datasets
remain a challenge. Therefore, in this paper, we proposed a comprehensive and lightweight
hybrid feature selection (HFS) and an ensemble classifier (KODE) that efficiently selected
few relevant features and provided an accurate and consistent classification of the majority
of attacks within the utilized datasets. Firstly, using the strengths of CfsSubsetEval, genetic
search technique, and rule-based engine, this paper presents an HFS technique that selects
a relevant subset of features.
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Additionally, this work posits an inclusive ensemble approach that uses K-means,
One-Class SVM, DBSCAN, and Expectation-Maximization algorithms as an enhanced
lightweight classifier based on the average of probabilities rule. Finally, the paper evaluated
the final optimized IDS model on three modern benchmark IDS datasets based on 10-fold
cross-validation for consistent results, which achieved some pleasing results. For instance,
HFS-KODE outperformed all the individual base classifiers on the original and selected
features for the three datasets. It also outclassed state-of-the-earth feature selection methods,
as discussed above. Interestingly, and most importantly, our experimental results show
HFS-KODE has the best accuracy performance of 99.99%, 99.73%, and 99.997% for CIC-
IDS2017, NSL-KDD, and UNSW-NB15, respectively. Likewise, both CIC-IDS2017 and
UNSW-NB15 achieve the best detection rate of 99.75% and 99.93%, respectively, whereas
NSL-KDD records a detection rate of 96.64%, but with a highest false alarm rate of 0.16
compared to some selected studies.

Moreover, the HFS-KODE recorded a negligible false alarm of 0.09 and 0.11, with
only 11 and 13 selected features for CIC-IDS2017 and UNSW-NB15, respectively. Finally,
using various metrics, HFS-KODE provides remarkable performances with much lower
false alarm rates and drastically reduced model building and testing time than some
cutting-edge approaches. As a result, HFS-KODE could serve as a significant competitive
advantage within the IDS research domain.

However, irrespective of the impressive performance of HFS-KODE, it has some
obvious drawbacks that still need improvement, such as the detection rate of NSL-KDD
and reducing its false alarm rate of 0.16. Moreover, the competitive performance of KODE
and K-means has challenged our approach. However, our objectives were to select few
relevant features and provide consistent classification within an acceptable time frame
instead of comparing KODE and the base classifiers. In the future, we intend to: (i) Build a
correlation module to reduce the number of false alarm rates drastically. (ii) Investigate
why K-means has better or similar performances with KODE on the original and selected
features of all the three datasets, and (iii) finally evaluate the HFS-KODE with other current
datasets.
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