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Abstract: We analyzed recent experimental data on the disassembly of 28Si into 7α in terms of a
hybrid α-cluster model. We calculated the probability of breaking into several α-like fragments for
high l-spin values for identical and non-identical spin zero nuclei. Resonant energies were found
for each l-value and compared to the data and other theoretical models. Toroidal-like structures
were revealed in coordinate and momentum space when averaging over many events at high l. The
transition from quantum to classical mechanics is highlighted.

Keywords: spin quantization; heavy ion collision; hybrid α-cluster model

1. Introduction

Recent experimental data [1] have shown evidence of resonances in the disassembly
of the 28Si nucleus into 7α. The data were obtained from the collision of a 28Si beam at
35 MeV/A on a 12C target, the experiment was performed at the Cyclotron institute, Texas
A&M university. The authors of [1] tentatively associated these structures to the population
of toroidal high-spin isomers as predicted by a number of theoretical models [2–20]. In
particular the experimental analysis concentrated on the disassembly of the projectile
nucleus into α-like particles. The data show to a high degree of confidence some structures
at excitation energies 114, 126 and 138 MeV, respectively, close to the predicted toroidal
state at 143 MeV [12]. These encouraging results call for more experimental and theoretical
efforts to uncover these resonances also for different nuclei, different disassembly routes
and as a function of excitation energy. Due to the dynamics involved in the disassembly,
microscopic models such as the Anti-symmetrized Molecular Dynamics (AMD) model
[21] or Constrained Molecular Dynamics (CoMD) model [22] could be used, but they
may become numerically difficult to handle when a large number of events is needed.
Furthermore, they may not be able to describe in detail the α-like events as selected from
the data [1]. Hybrid models may help in overcoming numerical problems at the expense of
some physical insights [23].

It was observed already in the 1930s that α-like nuclei (12C, 16O,...) [24–29] display
many properties that can be easily explained by assuming that those nuclei are made of
α particles with no internal structure. Inspired by these many works we implemented a
dynamical model where α particles interact through suitable chosen two body forces. We
enforced two main variations with respect to what can be found in the literature. The first
is the α-α interaction. For simplicity we used the phenomenological Bass potential (for
A = 4) widely used for low energy heavy ion collisions [30]. This potential is very attractive
at short distances thus the particles strongly overlap, overcoming the Coulomb repulsion.
As a second ingredient of the model, we treat α particles as Gaussian distributions with
widths given by their radius. Overlapping particles experience Pauli blocking because of
the internal structure of the αs. Thus, we include a repulsive effect due to the increase of
the Fermi energy opportunely adjusted to take into account finite size effects [31]. With
such simple assumptions we are able to reproduce the binding energies of even-even N = Z
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nuclei up to mass 104 with less than 5% discrepancy to the experimental data. We do not
want to stress much the properties of the model since our main goal is to simulate the
dynamics of the disassembly to compare to data at least qualitatively. Furthermore, we
would like to confirm or disprove the existence of exotic unstable shapes using a simple
and transparent model and hope to be of guidance for future experiments.

We dubbed the model the hybrid α-cluster model (hαc). It is a semi-classical model
since it includes Pauli blocking effects. In fact the model ground states display strongly
overlapping α-particles and a strong repulsion due to the increase of the Fermi energy.
It means that ground states cannot be described by α-point particles and the nucleons
degrees of freedom are essential. Systems excited by some external probes expand and the
α-degrees of freedom may become dominant. Notice that since the repulsion is due to the
Pauli blocking and the Coulomb potential, heavy ion collisions using this model can be
simulated at energies above the Coulomb barrier up to maybe 80 MeV/A as we discuss
below. At higher energies we may need to introduce a suitable collision term, which is
a task to be discussed in the future. We introduced another quantum effect in the initial
conditions, i.e., we give to the nucleus at time zero a quantized angular momentum l = lz
along the z-axis. We assume that the angular momentum is transferred in the collision
of 28Si and 12C, or 28Si and 28Si. The substantial difference between the two systems is
that only even-l values in the entrance channel are allowed in the latter case. Changing
the initial angular momentum revealed a wealth of model features ranging from a first
order phase transition of dynamical origin to the formation of short living toroids when
averaging over events. Due to its simplicity and numerical affordability, we can make
prediction to be tested in future experiments.

2. The Hybrid α-Cluster Model

In our model α-degrees of freedom are treated explicitly while nucleon (protons and
neutrons) degrees of freedom are treated implicitly hence the hαc acronym. The interaction
between the α-particles is given by the Coulomb repulsion (in the monopole–monopole
approximation for simplicity) and the nuclear attraction. The latter is approximated as
Vαα = VBass(A = 4), i.e., the Bass potential for mass A = 4 nuclei [30]. Coulomb repulsion
is not sufficient to prevent a strong overlap among α-particles. Overlapping nuclei increase
the repulsion due to the combined action of the Pauli principle and Heisenberg uncertainty
principle, in particular the Fermi energy (per α-particle) is given by:

EF
Nα

= 4 · xF · εF · ρ2/3. (1)

ρ = ρ
ρ0

is the reduced density, εF = 3
5 εF = 21 MeV is the average kinetic energy of infinite

nuclear matter, the factor of four takes into account the fact that we are dealing with α
and not nucleons. For small nuclei corrections are needed to take into account finite size
effects, which reduce the Fermi energy thus the parameter xF. In ref. [31], Equation 5.5,
such correction was discussed for medium light nuclei resulting in xF = 0.65 for 8Be. For
overlapping α-clusters only one nucleon in one α particle is identical to another nucleon
in the other α. This parameter takes into account the fact that the Heisenberg uncertainty
principle is at play as well for non-identical nucleons [32]. The overlap between α-particles
can be described as Gaussian distributions with standard deviation proportional to the
α-radius rα = r041/3:

ρ = 2 · e−β( r
rα
)2

. (2)

The parameter β = 1.22 is fitted to reproduce the binding energy of 12C, it is the only free
parameter entering the model if we exclude the radius parameter r0. The value of r0 has
some consequences regarding the moment of inertia, which we discuss below. For the
purpose of this paper we use r0 = 1.15 fm, unless otherwise noted, similar to the parameters
entering the Bass potential [30]. At maximum overlap ρ = 2 and εF

Nα
= 86.7 MeV which

is the maximum repulsion in the two body channel to compare to the nuclear attraction
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Vαα(r = 0) = −58 MeV. This implies that colliding nuclei will become transparent at
beam energies well above the Coulomb barrier, similar to Time Dependent Hartree-Fock
calculations [33]. A suitable collision term may remedy this shortcoming but it is outside
the purpose of this work [34]. Equations (1) and (2) give the repulsion between particles
and we treat it as a classical two-body force.

The classical Hamilton equations of motion

〈ṙi〉 =
∂H

∂〈pi〉
, 〈ṗi〉 = −

∂H
∂〈ri〉

, (3)

for interacting α-particles are solved numerically using the O(dt5) Runge–Kutta method,
dt = 1 fm/c is a typical time step used in the calculations. At the highest excitation energies
or angular momenta discussed in this paper, the particle velocities become very large thus
we implemented relativistic kinematics. This correction is important but we stress that the
description in terms of classical interactions is still valid. To obtain the nuclear ground
states and their binding energies, the equations of motion were solved adding a friction
force until a minimum and stable configuration is reached. The particles position are saved
on a file and used as initial positions in dynamical simulations. To generate events, the
initial positions are rotated randomly for each event and/or many different ground states
are generated.

In Figure 1, we plot the binding energies of α-cluster nuclei as function of the mass
number A. The free parameter β of the model was fixed to reproduce the 12C binding
energy. This leads to an overestimation of the binding energy of 8Be of 2.6 MeV: 59.1 MeV
theory vs. 56.5 MeV experiment [35]. This is an important feature since fixing the free
parameter to the binding energy of 8Be would lead to a general underestimation of all
the other nuclei. It implies that the α-particles must be more overlapping for heavier
nuclei, thus the increase in Fermi energy. It confirms our discussion above that the correct
description of nuclear ground states must be in terms of nucleonic degrees of freedom
while α-clusters may dominate at lower densities, i.e., in the expansion stage of the nuclear
dynamics. Our hybrid model reproduces the binding energies of nuclei up to mass 104
with an error less than 5%. In Figure 1, we have included for comparison the contribution
to the binding due to the α binding energy, full diamonds. We notice that changing the
value of r0 to 1.26 fm produces a similar agreement to the binding energies with β = 1.02.
Thus, these data are not able to constrain the parameter values to high degree and we will
investigate fusion cross sections of even-even N = Z nuclei for further constraints.

Figure 1. (Color online) Binding energy of even-even N = Z nuclei as function of the mass number.
Full circles refer to experiments and open squares to the hαc model. The full diamonds refer to the
number of α-particles times the experimental α-binding energy.
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Once the initial conditions are found, we can generate many initial ground states
to be used as initial conditions in dynamical calculations. We treat each α-particle as a
Gaussian distribution normalized to one of radius (variance) rα. In Figure 2, we plot the
density averaged over ensembles at two different times. Naturally the system is stable
and the central density is rather reasonable. The displayed system is 28Si and we are
going to concentrate on this nucleus for the remainder of this paper since it was carefully
investigated in ref. [1]. The calculated binding energy is 236.9 MeV (236.5 MeV from
experiments). An important quantity is the moment of inertia I, which can be obtained
in our model by opportunely integrating over the density plotted in Figure 2. This gives
I = 1.3× 105 MeV·fm2 and Ψ = h̄2

2I = 0.15 MeV, close to the moment of inertia of a sphere
of radius R = 1.15A1/3 = 3.5 fm and 28Si mass. This result should not surprise since the
initial configurations are obtained by randomly oriented ground state initial condition and
this procedure produces spherical shapes on average. Notice that increasing the value of
r0 → 1.26 fm gives Ψ = 0.125 MeV for a sphere, a result that we test briefly below.

Figure 2. (Color online) Ground state density distribution of 28Si at time t = 150 fm/c (full symbols)
and t = 1500 fm/c (open symbols). The density is averaged over 50 events.

3. Fusion Cross Sections of Identical Spin Zero Nuclei

The total fusion cross section of the nuclear reaction is

σ(Ecm) =
πh̄2

2µEcm

∞

∑
l=0

(2l + 1)Πl =
∞

∑
l=0

σl , (4)

where Ecm is the reaction energy in the center of mass frame, µ is the reduced mass of the
reaction system and Πl is the fusion probability of the reaction at angular momentum l.
We simulate the reactions of identical spin zero nuclei, thus only even l-values are allowed,
28Si + 28Si and 12C + 12C at different angular momenta l for a given Ecm to obtain the fusion
probability Πl with hαc model. In Figure 3, we plot the fusion cross section of 28Si + 28Si
and 12C + 12C as function of the reaction energy in the center of mass frame. The fusion
cross sections calculated from the neck model are also presented for comparison [36,37].
The hαc model can reproduce the experimental cross section data qualitatively. While for
12C + 12C at high Ecm where there are no experimental data, the difference between neck
model and hαc model is quite large. Naturally, the model interaction can be improved for a
better description of the data, but of course fusion below the barrier needs the inclusion of
tunneling [37].
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Figure 3. (Color online) Fusion cross-section for (left) 28Si+28Si and (right) 12C + 12C as function of
the center of mass energy.

4. Rotations and Dynamical First Order Phase Transition

In this section, we will explore the dynamical properties of a 28Si nucleus rotating
along the z-axis with initial orbital angular momentum l = lz, in units of h̄. We assume
that the orbital angular momenta are transferred through the collision with the 28Si target
nuclei. Due to angular momentum and parity conservation, l must be even in the entrance
channel. The amount of angular momentum transferred during the interaction of the two
nuclei must be simulated microscopically but this is presently outside the validity of this
model. For simplicity and numerical convenience we will restrict our investigation to even
l. There are many methods theoretically to give the nucleus an initial angular momentum
l, a popular one is the cranking model [1,3–14]. Since we are dealing with individual
particles (7α) we will use the following ansatz to give the initial momenta Ky, Kx (h̄-units)
to particle i:

Ky(i) =
x(i)
r2

xy
l; Kx(i) = −

y(i)
r2

xy
l. (5)

In Equation (5) r2
xy = ∑i(x(i)2 + y(i)2) and the sum is extended to all the constituents

α-particles of the nucleus. Different events are obtained by different ground states initial
positions and we give the initial momenta according to Equation (5). Because of the finite
number of particles, this will produce classical fluctuations, while the orbital momenta are
quantized. This method is more justified when the excitation energy or angular momenta
l is larger, i.e., at higher entropies. Of course one should not be surprised that we are
utilizing the concept of entropy since our equations of motion are time reversible invariant.
Entropy arises from events mixing and averages over phase space. Notice also that for each
event there may be some angular momentum along the x and y directions, see Equation (5),
but on average we have 〈lx〉 = 〈ly〉 = 0, this contributes to the initial classical fluctuations.

In Figure 4, we plot the excitation energy as function of l(l + 1) recovering the
familiar linear behavior [38]. The error bars are given by the variances obtained from
event averaging and they are quite small at small l values as expected. The slope of this
plot is proportional to the inverse of the moment of inertia and agrees with our estimate
in the previous section for a rigid sphere. Changing the values of r0 and β produces the
expected variation, see Figure 4. The moment of inertia is a dynamical quantity since the
system expands and breaks into fragments at high E∗, thus the obtained value refers to
time t = 0 fm/c. The calculations give the most probable energies E∗ for each value of l,
the values obtained are reported in Table 1.
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Figure 4. (Color online) Excitation energy as function of l(l + 1) for 28Si. Full squares are obtained
with the parameter values r0 = 1.15 fm and β = 1.22, open circles with r0 = 1.26 fm and β = 1.02.
The extracted slopes Ψ are consistent with the values obtained from rotating spheres discussed in
the text.

Table 1. Most probable energies for each initial angular momentum l. In parenthesis the values
obtained with r0 = 1.26 fm and β = 1.02. The experimental values are E∗ = 114, 126 and 138 MeV,
respectively, but for a different system, 28Si + 12C [1] which admits non-even l-values (not directly
accessible to the experiment).

l l(l + 1) E∗(MeV)

0 0 0.00
2 6 0.66 (0.58)
4 20 2.68(2.2)
6 42 6.11 (5.03)
8 72 11.0 (8.95)

10 110 17.4 (14.0)
12 156 25.4 (20.2)
14 210 34.0 (27.4)
16 272 44.9 (35.8)
18 342 54.9 (45.3)
20 420 67.1 (55.7)
22 506 80.4 (67.3)
24 600 95.2 (79.8)
26 702 111.0 (93.4)
28 812 129.0 (108.0)
30 930 147.0 (124.0)
32 1056 167.0 (140.0)
34 1190 188.0 (158.0)
36 1332 211.0 (177.0)
38 1482 234.0 (196.0)
40 1640 258.0 (217.0)

An interesting physical quantity is the excitation energy as function of the kinetic
energy of the particles. If the system would reach thermal equilibrium, the latter quantity
could be related to the temperature. In Figure 5, we plot these quantities and notice the
peculiar behavior for Ek near 25 MeV. The increase in excitation energy for fixed kinetic
energy signals the occurrence of a first order phase transition and signals the opening of
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new channels such as evaporation, ‘fission’ and fragmentation, i.e., the sudden increase of
the degrees of freedom of the system, from one nucleus to many fragments. We notice that
we get a finite probability of breaking into 7α for l = 16, and E∗(7α) = 54 MeV, which gives
the model lowest excitation energy (in 1000 events) when breaking into 7α. The question
remains if the transition is of thermal origin. A signature of thermal equilibrium is to
observe the same features for each coordinate. We know that the nucleus is rotating along
the z-axis, thus we expect the momenta along the same axis to be small, zero on average,
see Equation (5). To reach equilibrium, energy must be transferred from the other directions
and this may be impossible for high l-values (and angular momentum conservation). From
the large ‘error bars’ (i.e., variances due to the initial conditions) in Figure 5 we may guess
that the system becomes more and more chaotic but that does not prove that thermal
equilibrium is reached. A definite answer to this problem may be obtained by repeating
the plot as function of the kinetic energy along the z-axis, Ekz. If the system reaches thermal
equilibrium multiplying Ekz by a factor of 3 should reproduce Figure 5.

Figure 5. (Color online) Excitation energy as function of the kinetic energy of α-particles. The steep
increase of E∗ for Ek = 25 MeV indicates a first order phase transition. Error bars are the variances of
each quantity due to the fluctuations in the initial conditions for fixed l.

In Figure 6, we plot E∗ as function of 3× Ekz, compare to Figure 5. At low energy we
observe an increase of E∗ up to about 25 MeV where the phase transition occurs. Higher l-
values or E∗ values do not produce an increase in Ekz but just an increase in the variances. It
means that even if we increase the excitation energy the system does not have enough time
to transfer kinetic energy from the x-y plane to the z-direction, i.e., to reach thermalization.
This can be interpreted as an apparent maximum temperature that the system may sustain.
Such behavior could be compared to the Lyapunov exponent of an expanding system as
discussed in ref. [39], it proves that the phase transition is of dynamical origin. These
findings could be experimentally tested [1].

In Figure 7, we plot the density distribution at two different times t = 150 fm/c and
1500 fm/c at E∗ = 34 MeV, i.e., in the region of the phase transition. The bump that we
observe at later times is due to the escape (evaporation) of one α-particle in some events
thus doubling the number of degrees of freedom.
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Figure 6. (Color online) Excitation energy as function of the kinetic energy (times 3) along the
rotation z-axis, compare to Figure 5. It indicates an apparent classical maximum ‘temperature’
(T = 2Ekz ≈ 13 MeV) the system may sustain. The phase transition is dynamical and due to the
opening of new degrees of freedom (evaporation, ‘fission’ and multifragmentation). Toroidal-like
structures appear above the phase transition.

Figure 7. (Color online) Density distribution of 28Si rotating along the z-axis. The full symbols are
obtained at t = 150 fm/c and the open ones at t = 1500 fm/c, compare to Figure 2. The small
density increase at large r is due to α-particle evaporation in some events. For this plot, 50 events
were generated.

There have been suggestions that highly rotating nuclei may display toroidal shapes [2–19]
and this was also the focus of the experimental investigation in ref. [1]. Our model allows
us to study the shape evolution as function of time for given l or E∗. In Figure 8, we plot
the coordinates of each α-particle in the x-y plane at two different times, 200 fm/c and
600 fm/c. Notice that only the events breaking into 7α are included in the plot. We use
a simple algorithm to recognize the fragments, i.e., we assume that two particles belong
to the same fragment if their relative distance is less than 5 fm. This may not be the best
approach to recognize fragments at earlier times but it is of little importance since we
follow the expansion for very long times. Using this algorithm we can easily estimate the
probability of decays into all possible channels allowed by dynamics.
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Figure 8. (Color online) Time evolution of the disassembly of 28Si in the rotation plane. A total of
1000 events are generated; only events breaking into 7α are plotted.

In Figure 8, we see that at 200 fm/c matter is missing at the center during the expansion,
left panel. At a later time, more α-particles are recognized and a toroidal shape is observed,
notice the change of scales. This is due to the combined effect of the angular momentum
and averaging over events.

We can repeat the same considerations in momentum space, see Figure 9. At later
times the system expands under the influence of Coulomb only and this explains why little
expansion is seen in momentum space at the two different times, compare to Figure 8.

Figure 9. (Color online) Same as Figure 8 in momentum space. Since 7α events only are plotted,
fewer events have been recognized at shorter times.

5. Cross Section Estimate

It is instructive to give an estimate of the cross-section in order to get some deeper
insight into the process and be of guidance and stimulus to more experimental and
theoretical investigations [1]. The cross section is given in Equation (4). We consider
the reaction 28Si on 12C at 35 MeV/A [1], thus Ecm = 294 MeV. In order to extend the sum
to even l-values only, we assume that the angular momenta are transferred in symmetric
Si + Si collisions. Tl gives the probability that in the collision a certain angular momentum
l and/or excitation energy E∗ is transferred to the 28Si, see Table 1. This is the part missing
in the calculation and we will estimate it from the available phase space in the reaction.
We assume that the maximum excitation energy EM that can be transferred to the Si is
proportional to its mass, thus:

EM =
28
40

Ecm = 206 MeV. (6)
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To get this excitation energy in Si + Si we estimate a beam energy E/A = 29.4 MeV and this
could be an interesting experiment to confirm our findings and widen the results of ref. [1]
and also to investigate the angular momentum transfer to each nucleus during the reaction.

Our simple ansatz for the available phase space is:

Tl = e
− E∗

EM−E∗ . (7)

Tl → 0 if the excitation energy E∗ > EM. This crude approximation guarantees that the
cross section vanishes at large excitation energies or large l-values. In particular from Table
1 we expect l-values up to 34, while for the set with r0 = 1.26 fm we expect a contribution
up to l = 38. More l-values included in Equation (4) produce larger cross sections, but
these cannot be constrained by the data of ref. [1] since other exit channels including free
fermions (p, t, 3He etc.) or other fragments are not in the model and these channels may
reduce the probabilities especially at high excitation energies.

The hαc model provides the probability Πl for the system to break into different open
channels for a given l-value using the simple fragment recognizing algorithm discussed
above. This quantity is plotted in Figure 10 for the channels as indicated in the inset. We
have included in the 7α channel events where one or more 8Be are produced, this is to
simulate the experimental data where those events are implicitly included; however, recall
that the model binding energy of 8Be is overestimated. For reference we have included
the experimental points from ref. [1] with huge error bars just to indicate the position of
the resonances. We have seen in the Figures 8 and 9 that those values correspond indeed
to short living toroidal states. These results can be compared to the toroidal shell model
results reported in ref. [1], table II. Notice that the two models differ on the way the orbital
angular momenta is given to the system. The 7α channel dominates at high E∗ values, while
lower resonances are dominated by events where at least one large fragment is present.
The larger is the heaviest fragment the smaller is the resonant energy. This is qualitatively
similar to what was observed in the data [1]. We stress the fact that all the possible α-decay
channels can be estimated in the present model. To include channels where nucleons or
other fragments are produced we could couple the hαc model to a statistical one [23]. These
competing channels will decrease the probability that only α-channels are relevant, thus
we expect that our cross sections are overestimated.

Figure 10. (Color online) Decay probability vs. excitation energy for 28Si. Different symbols indicate
the largest fragment in the decay. The full circles include decays into 7α and any other combination
with one or more 8Be. We have included for reference the experimental results [1] with large error
bars since the probabilities are not known. The experimental error on E∗ was estimated about 5% of
its value.



Symmetry 2021, 13, 1777 11 of 16

The experiment [1] provided the reaction cross section per unit energy and different α-
decay channel. The hαc model gives the energy distribution for each channel whose central
values E∗ are reported in Table 1, and the variances Σl are reported in the Figures 3–5.
We notice that when selecting particular channels (i.e., 7α), the most probable energies
E∗ and their variances change, see Figure 10, and we use these values in the following
calculations. We assume that the energy distribution for each l-value is given by the
Gaussian distribution normalized to one, gl(E, E∗, Σl), with units 1/MeV. Thus, we write
the differential cross section as:

dσ

dE
=

∞

∑
l=0

σl gl(E, E∗, Σl). (8)

In Figure 11, we plot the differential cross section for the 7α channel only. Different
l-values contributions are included and indicated in the inset. The estimated cross-section
is generally above the experimental one given by the open crosses. The integrated cross
section is a factor 8 above the data (1.9 mb) partly due to the many different open decay
channels not included in the model. Notwithstanding these differences there are some
interesting features to notice. The model gives distinguishable bumps at low energies and
l = 16–22. The lowest l-values are in a region where experimental values have large error
bars. The experimental cross section starts from 62 MeV (55 MeV in the hαc model) [40,41].
Another feature worth noticing is the increase of the widths for increasing l-values, see also
Figure 4. When those widths become very large, different l-values distributions overlap and
they cannot be distinguished anymore. This signals the crossing into classical dominated
dynamics where using the impact parameter becomes a good approximation. Our results
suggest that repeating the experiment say at higher beam energies may not reveal more
values of E∗ because they overlap with nearby l-values. Lower beam energies may reveal
the wealth of distinguishable E∗ as in Figure 11. Of course a crucial point would be to have
a detector with better granularity and coverage. If not just even l-values are admitted in
the entrance channel (i.e., Si + C collisions) may open different scenarios. On the same
footing experiments using a 29Si on an identical target would also be interesting to confirm
these findings. The 29Si beam would have the problem that neutrons are emitted and those
are usually difficult to detect in coincidence with 7α.

Figure 11. (Color online) Differential cross-section as function of the excitation energy for the
disassembly of 28Si into 7α. Contributions for different l-values are also included, see inset.
Experimental error bars are 4 MeV on the excitation energy and we used the standard error on
the differential cross-section. In this plot, ‘bumps’ in the experimental distributions can be noticed at
170 MeV and 190 MeV, not discussed in [1] because they are in a region of low statistics. Experiments
with higher statistics may confirm or disprove resonances in this energy region, see Table 1.
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Interesting consequences of our model can be derived from a simple inspection of
Equations (5)–(8) and the oscillations displayed in Figure 11. Indeed similar features
have been investigated in the fusion of two heavy ions below and above the Coulomb
barrier [37,42,43]. Equation (8) suggests some simple scaling of the cross section by defining
the dimensionless quantity:

ξ =
2µEEcm

πh̄2
dσ(E)

dE
. (9)

In the equation above, the Ecm term is important when comparing the same system at
two different beam energies. It does not guarantee overall scaling since at different beam
energies, different l-values maybe relevant and we expect variations on the tail of the
distributions. Similar to fusion reactions [42], Equation (9) gives the ‘energy-weighted
excitation function’ (EWEF). Notice that in low energy fusion reactions it could be convenient
to replace Equation (9) with [42,43]: ξ = Ecm

σR

dσ(Ecm)
dEcm

, where σR is the reaction cross-section.
Since many exit channels are available in fragmentation reactions, it is useful to define

the dimensionless excitation energy as:

E =
E
Q

. (10)

where the Q-value depends on the exit channel, in ref. [1] the decay of 28Si in 7α was
analyzed in detail and Q(7α) = 33.6 MeV. In Figure 12, we compare the experimental
dimensionless quantities [1], open crosses, to the hαc model (full squares). The model
calculations have been divided by a factor 8 to take into account the difference to the data
in the total cross-section [1], compare to Figure 11. Standard errors have been included
to the data to indicate the region of low statistics, thus of particular interest is the region
2.4 < E < 5.2. Figure 12 does not add much to Figure 11 but it will become a more
interesting observable when data at different beam energies and different combinations of
projectile and target will be available.

Figure 12. (Color online) Scaled differential cross section vs. scaled excitation energy, see text. The
model results have been divided by a factor 8 to match the data.

Oscillations in the EWEF can be better displayed by defining its first and second derivative:

D(E) =
dξ

dE
, B(E) =

d2ξ

dE2 . (11)

The first derivative of the EWEF is plotted in Figure 13 as function of the dimensionless
excitation energy. Interesting structures in the energies of interest can be noticed. In
particular the data show peaks at E = 3.4, 3.6 and 4.1, corresponding to E∗ = 114, 122 and
138 MeV, respectively, very close to the data analysis of ref. [1]. More peaks may be seen at
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E = 3.1, 4.5 and 4.7 (E∗ = 104, 151 and 158 MeV) but in a region where statistics is rather
low thus the need for higher statistics experiments. As expected, the model calculations
display definite peaks especially at low excitation energies where the data is poor thus
impossible to compare, see also Table 1. The average data trend is rather well reproduced
by the model.

Figure 13. (Color online) First derivative of the energy-weighted excitation function vs. scaled
excitation energy, see text. Peaks at E/Q(7α) = 3.4, 3.6 and 4.1 maybe noticed in the experimental
data corresponding to E∗ = 114, 122 and 138 MeV, respectively, compare to ref. [1] and Table 1. Peaks
at higher or lower scaled excitation energies are in regions where error bars are large (not reported in
the figure for clarity), see Figure 11.

In Figure 14, we repeat our analysis for the second derivative of the EWEF. In this plot
the difference between model and data is more marked. Peaks in the model calculations
occur especially for E <3 while for the data E >3. The peaks are consistent to those
obtained from the first derivative of the EWEF.

Figure 14. (Color online) Second derivative of the energy-weighted excitation function vs. scaled
excitation energy, see text. Peaks can be noticed as in Figure 13. Error bars are not reported in the
figure for clarity.

To complete our comparison to fusion reactions we define the logarithmic derivative
as [42,43]:

L(E) =
D(E)
ξ(E)

. (12)



Symmetry 2021, 13, 1777 14 of 16

This quantity has the obvious property that all constants entering the EWEF and its
derivative cancel out, for instance the factor of 8 used to normalize the model to the data.
In Figure 15, we plot L(E) as function of E and remark the substantial differences to the
previous plots. Peaks in the data remain only for the values reported in ref. [1]. The model
calculations show large fluctuations in the low energy region and in analogy to the fusion
hindrance we can interpret these as a signature of the lowest resonances for this particular
decay channel. Notice however that the model peaks reported in Figure 11 at E = 55 MeV
have very low statistics and are not included in this plot (off scale). If this interpretation
is correct we can assume that the L(E) becomes monotonic at large energies, i.e., in the
classical limit. Unfortunately not much can be inferred from the low energy data since
error bars are large, notice however that in the high-energy region of low statistics, the data
show a flat behavior thus suggesting that low energy resonances are reachable with more
statistics, better detectors and maybe lower beam energy.

Figure 15. (Color online) Logarithmic derivative of the energy-weighted excitation function vs.
scaled excitation energy, see text. Peaks can be noticed as in Figure 13. Error bars are not reported in
the figure for clarity.

6. Conclusions

In this work, we have introduced a semi-classical model for nuclei whose constituents
are α particles. In the ground state, the α-particles strongly overlap and this gives rise to
repulsion due to the increase of the Fermi energy. This means that a proper description
of the nuclear ground state must be done in terms of nucleonic degrees of freedom with
the possibility that expanding nuclei coalesce into α-clusters. We have applied our hybrid
model to the fragmentation results [1] of 28Si breaking into even-even N = Z nuclei only. We
have found preferential values of the excitation energies for each l-value but also larger and
larger variances in the energy distribution due to the fluctuations in the initial conditions,
which are classical in origin. For high l-values, the fluctuations become very large and
different l-distributions overlap signaling the approach to classical mechanics. We have
shown that the spin quantization could be determined experimentally in various different
experimental situations by changing the beam energies and the masses of the colliding
nuclei including radioactive species. These experiments require very well performing
4π detectors, high statistics and one could take advantage of running the experiments
in inverse kinematics. A dynamical phase transition was also revealed together with the
limiting temperature that the system could sustain. Above the phase transition, toroidal-
like shapes are observed when averaging over many events. These findings may open up a
new route of research based on the seminal results of ref. [1] and be linked to the oscillations
seen in fusion reactions above and below the Coulomb barrier [42,43]. We have discussed
scaled energy weighted excitation functions and its derivatives. We have shown how these
quantities consistently display interesting features similar to the barrier fluctuations in
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fusion reactions. We believe this work may open a new route of investigations to link
fusion reaction to deep-inelastic, incomplete fusion and fragmentation. Well performing 4π
detectors are needed to improve the energy resolution and granularity and high statistics
data are essential. More theoretical work is finally needed to link the proposed analysis to
nuclear fundamental properties.
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