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Abstract: Through a combination of overlap functions (which have symmetry and continuity) and a
fuzzy β-covering fuzzy rough set (FCFRS), a new class of FCFRS models is established, and the basic
properties of the new fuzzy β-neighborhood lower and upper approximate operators are analyzed
and studied. Then the model is extended to the case of multi-granulation, and the properties of a
multi-granulation optimistic fuzzy rough set are mainly investigated. By theoretical analysis for
the fuzzy covering (multi-granulation) fuzzy rough sets, the solutions to problems in multi-criteria
decision-making (MCDM) and multi-criteria group decision-making (MCGDM) problem methods
are built, respectively. To fully illustrate these methodologies, effective examples are developed. By
comparing the method proposed in this paper with the existing methods, we find that the method
proposed is more suitable for solving decision making problems than the traditional methods, while
the results obtained are more helpful to decision makers.

Keywords: fuzzy rough set; overlap function; fuzzy β-covering; MCDM; MCGDM

1. Introduction
1.1. Look Back to Fuzzy Rough Set

Rough set theory, first proposed by Polish scientist Pawlak in 1982, is a mathematical
tool to deal with uncertain knowledge [1]. Covering rough set theory is an important
extension form of classical rough set theory and also an important theoretical method for
processing incomplete information system data [2]. Since the classical rough set theory
can only be applied to the complete theory of discrete data attributes in the export of the
domain division, but the data in the daily production are various, the complete discrete
data of the classical rough set model is no longer applicable and at this time can be covered
using the export field to study specific problems [3]. Therefore, it is of practical significance
to study the rough set model based on covering. As data are increasingly characterized by
large capacity, diversity, value and authenticity, data processing using the covered rough
set method has become a research hotspot in domestic and foreign academic circles [4–8].

Attribute values in many problems are of symbolic and true type [9], and rough
set theory has limitations when processing a truth data set. Fuzzy set theory [10] was
proposed by the famous Azerbaizan cybernetics expert Zadeh in 1965. Fuzzy set theory can
effectively deal with fuzzy concepts, and it is very useful for solving the limitation of rough
set theory in dealing with true data sets. Due to the complementarity and difference of
the two theories, the research on the combination of rough set theory and fuzzy set theory
has been widely concerned in the past twenty years. In this way, the idea of combining
rough set theory and fuzzy set theory can be found in different mathematical fields. The
concept of the fuzzy rough set [11] was first proposed by Dubois and Prade combining
rough set theory and fuzzy set theory. Based on this, many researchers use different fuzzy
logic connectives to define various types of fuzzy rough set models [12–17], which further
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expands the theory of fuzzy rough set. On the other hand, as is commonly known, the
theory of rough sets has already been successfully used in various aspects of practical
issues, for instance, in multi-attribute decision-making [18], knowledge discovery [19],
granular machine learning [20], and data analysis [21], etc.

To study fuzzy rough sets from another perspective, Zakowski first proposed replacing
binary fuzzy relation with covering in 1983 to obtain covering-based rough sets [22]. Once
developed, it aroused widespread discussion. For more extensive and general research,
some scholars extend the covering-based rough set to a more general form, that is, the fuzzy
covering-based rough set model. For example, Li, Leung and Zhang proposed two pairs
of generalized lower and upper approximation operators based on fuzzy covering [23].
In addition, D’eer explored fuzzy neighborhood operators based on fuzzy neighborhood
systems, a fuzzy minimum description and a fuzzy maximum description. However, the
definition of fuzzy coverings is still limited to research [24–26]. In 2016, Ma suggested
building fuzzy β-covering instead of fuzzy covering, where β ∈ (0, 1]. In the same year,
with the help of fuzzy β-covering, Ma defined another class of fuzzy β-covering-based
fuzzy rough sets by a fuzzy β-neighborhood [27]. Models based on fuzzy covering rough
sets have been widely used in specific problems, such as decision problems [28–30]. On
the basis of the fuzzy covering rough set model, the fuzzy operator is changed to extend
the model to make it more widely usable. The fuzzy covering fuzzy rough set model
based on the triangular norm is applied to the uncertain multi-attribute decision making
problem [31,32] and compared with the existing decision making methods, better decision
results are obtained. In 2010, Qian et al. proposed the multi-granularity fuzzy rough
set and discussed it from optimistic and pessimistic perspectives, respectively, which
enriched the theory of fuzzy rough set [33,34]. Since then, the research of multi-granularity
rough sets has become a hot topic. Scholars extended the multi-granularity rough set
model in various directions, for example, replacing the binary relation with fuzzy covering,
using different approximate operators to construct new models, etc. [35]. Zhan et al. and
M. Atef et al. [36,37] applied a new extended model for solving MAGDM problems.

1.2. Look Back to Overlap Function

Overlap function (which has symmetry and continuity) is the extension of a continuous
triangular norm, which is widely used in image processing, data classification and multi-
attribute decision making. In 2009, Bustince et al. first proposed the overlap function [38]
(a kind of aggregation function and uncombined fuzzy logic connecter), which originated
from the practical application of image processing and data classification. In the problem
of image processing, Bustince et al. used the overlap function to calculate the threshold
value of an image and then carried out the research in [39]. In classification problems, Amo
et al. use overlap functions to discuss (fuzzy) evaluations of classification of results [40].
In 2013, Bedregal et al. studied some important properties of overlapping functions [41],
such as migrancy, homogeneity and idempotence. In 2015, Dimuro and Bedregal studied
the basic properties of overlap functions and their residual implication [42]. At the same
time, the authors of [43] studied the n-dimensional overlap function and its properties
and the application of the overlap function in the classification problem based on fuzzy
rules. In 2021, the concept of intuitionistic overlap function was proposed for the first time
and its properties were studied [44]. In recent years, researchers combined the overlap
function and fuzzy rough set theory [45,46] and found that the overlap function has a
wider application prospect.

1.3. Motivation of Our Research

On the one hand, the overlap function can be regarded as a new extension of the
logical connective “and”, which is different from the usual fuzzy logical connective t-norm.
Therefore, they can be used to define upper fuzzy rough approximation operators in fuzzy
rough sets instead of classical joining operators, and correspondingly, lower fuzzy rough
approximation operators can be defined by their induced residual implication. On the
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other hand, from the aspects of application, our research will be based on a combination of
covering fuzzy rough sets and overlap functions not only to enrich the theory of rough set
but to expand the application scope of rough set. Fuzzy rough sets based on the overlap
function discussion plays a huge role in the practical application, which can not only
give us another possible method for dealing with practical problems (e.g., multi-attribute
decision making, data classification, etc.) but can also provide us with more theoretical
basis than before, helping us to deal with practical problems more conveniently.

In addition, as far as we know, there is no research on the fuzzy rough set model of
fuzzy covering based on the overlap function and multi-granulation fuzzy rough set model
of fuzzy covering based on the overlap function. Therefore, in order to fill this research
gap, we propose two types of models, namely fuzzy β-covering fuzzy rough set model
based on the overlap function, and this is extended to the multi-granulation case, i.e., the
FCOMGFRS model based on the overlap function and the FCPMGFRS model based on the
overlap function.

1.4. The Relationship between Some Extension Models of Rough Sets

In the rough set model proposed by Pawlak, asking for binary relations is an equivalent
relation, which has high requirements and limits the application of the rough set model.
Therefore, the extension of the rough set model is an important research direction for rough
set theory, including the constructional method, that is, taking the general fuzzy relation,
partition, covering, and domain, etc. as the basic elements, further defining the upper and
lower rough approximate operators, and thus, deriving the rough set system. Furthermore,
rough sets based on different logical operators (such as logical “and”, t-norm, overlap
function, etc.) are also a type of method for constructing rough set extension models
(see Figure 1). Therefore, various extended forms of rough sets can be obtained by using
different research methods from different viewpoints. The research of extended models
and the applications based on them have become a new research hotspot. The two types
of models proposed in this paper are extensions of the existing models. On the basis of
the research work of the existing rough set based on the triangular norm, the new model
is obtained by replacing the logical operator, and its theoretical properties and practical
applications are studied.

Figure 1. The extension process of rough sets.

1.5. Outline of the Present Paper

We review some preliminary concepts and results in Section 2. Next, we establish
the FCFRS model based on the overlap function and study the basic properties of this
model and give some examples in Section 3. In Section 4, we have established two multi-
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granulation fuzzy rough set models that are the FCOMGFRS model and the FCPMGFRS
model based on the overlap function, and mainly study the properties of the FCOMGFRS
model. In Section 5, we put forward the MCMD problem method of the FCFRS model
based on the overlap function. In Section 6, we propose the concrete example and provide
a comparison analysis with other methods. In Section 7, we present the MCGDM method
and verify the validity of the model with an example. We conclude our work and outline
future research in Section 8.

2. Preliminary Concepts and Results

In this section, let us review some basic concepts of overlap function, fuzzy set theory,
fuzzy covering rough theory and multi-granulation rough sets.

2.1. Overlap Function

Definition 1 ([16]). For a mapping T: [0, 1] ∗ [0, 1] → [0, 1], if it satisfies the commutative,
associative and increasing with the boundary condition T(1, x) = x for each x ∈ [0, 1], then refer
to T as a t-norm.

Definition 2 ([33]). A bivariate function O : [0, 1]2 → [0, 1] is called an overlap function, if for
each x, y ∈ [0, 1], the following conditions hold:

(O1) O(x, y) = O(y, x);
(O2) O(x, y) = 0 if and only if xy = 0;
(O3) O(x, y) = 1 if and only if xy = 1;
(O4) O(x, y) is increasing;
(O5) O(x, y) is continuous;

Example 1.
(1) Each continuous t-norm with no nontrivial zero factor is an overlap function.
(2) For each p > 0, the function Op : [0, 1]2 → [0, 1], defined by,

Op(x, y) = xpyp

is an overlap function. Especially when p = 1, it is both an overlap function and t-norm.
(3) The function Om : [0, 1]2 → [0, 1], defined by,

Om(x, y) = min{
√

x,
√

y}

is an overlap function.
(4) The function OMid : [0, 1]2 → [0, 1], defined by,

OMid(x, y) = xy
x + y

2

is an overlap function.
(5) The function OmM : [0, 1]2 → [0, 1], defined by,

OmM(x, y) = min{x, y}max{x2, y2}

ia an overlap function.

Definition 3 ([16]). For a mapping ϕ: [0, 1] ∗ [0, 1] → [0, 1], if ϕ satisfies ϕ(0, 0) = ϕ(0, 1) =
ϕ(1, 1) = 1 and ϕ(1, 0) = 0, then ϕ is a fuzzy implicator operator. For each x, y, z ∈ [0, 1], if
ϕ satisfies x ≤ y ⇒ ϕ(x, z) ≥ ϕ(y, z), ϕ is left monotonic decreasing. If ϕ satisfies y ≤ z ⇒
ϕ(x, y) ≤ ϕ(x, z), ϕ is right monotonic increasing. When ϕ is both left monotonic and right
monotonic, ϕ is a called hybrid monotonic.
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In the following, we show the definition of residual implication derived from the
overlap function and some related examples.

Definition 4 ([33] ). Suppose O : [0, 1]2 → [0, 1] is an overlap function, then the bivarite function
RO : [0, 1]2 → [0, 1] defined by, for each x, y ∈ [0, 1],

RO(x, y) = max{z ∈ [0, 1]|O(x, z) ≤ y}

is said to be residual implication induced from overlap function O.

Example 2. Some residual implications derived from overlap functions:
(1) Let the function be O2(x, y) = x2y2, the residual implication derived from overlap function

O2 is defined by,

RO(x, y) =

{
1 x2 ≤ y√

y
x2 x2 > y

(2) Let the function be Om(x, y) = min{
√

x,
√

y}, the residual implication derived from the
overlap function Om is defined by,

RO(x, y) =
{

1
√

x ≤ y
y2 √

x > y

2.2. Fuzzy Sets Theory and Fuzzy Covering Rough Theory

Definition 5 ([10]). The fuzzy set (or fuzzy subset) A on argument domain X is a mapping that
goes from X to [0, 1] (called membership function):

µA : X → [0, 1]

For every x ∈ X, µA(x) is called the membership of x with respect to A.

Now we proceed to review some basic knowledge to fuzzy covering approximation
spaces and neighborhoods:

Definition 6 ([10]). Let U be a universe and C be a family of subsets of U. If no element in C is
an empty set and U =

⋃
A∈C A, then C is called a covering of U, and the pair (U, C) is called a

covering approximation space.
For each x ∈ U, defined the neighborhood of x as:

Nx =
⋂
{A ∈ C : x ∈ A}.

Definition 7 ([34]). Let (U, C) be a covering approximation space and X ⊆ U. The lower
approximation P−(X) and the upper approximation P+(X) of X are defined by:

P−(X) = {x ∈ U : Nx ⊆ X}, P+(X) = {x ∈ U : Nx ∩ X 6= ∅}.

Definition 8 ([15]). Let U be a universal. A fuzzy subset Ã of U is a function assigning to each x
of U a value Ã ∈ [0, 1]. We denote by F(U) the set of all fuzzy subsets of U.

For any Ã, B̃ ∈ F(U), we say that Ã contained in B̃, denoted by Ã ⊆ B̃ , if Ã(x) ≤ B̃(x) for
all x ∈ U. When say Ã = B̃ iff Ã ⊆ B̃ and B̃ ⊆ Ã. For all x ∈ U, the union of Ã and B̃ denoted
as Ã ∪ B̃, is defined by (Ã ∪ B̃)(x) = Ã(x) ∨ B̃(x); the intersection of Ã and B̃ denoted as Ã ∩ B̃,
is defined by (Ã ∩ B̃)(x) = Ã(x) ∧ B̃(x).

The following defines the fuzzy β-covering and the fuzzy β-neighborhood.
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Definition 9 ([24]). Let U be a universal and F(U) be the fuzzy power set of U. For each β ∈ (0, 1],
C̃ = {C̃1, C̃2, . . . , C̃n}, with C̃i ∈ F(U) (i = 1, 2, . . . , n), and (

⋃
i=1n C̃i)(x) ≥ β for any x ∈ U.

The pair (U, C̃) is a fuzzy β-covering approximation space (FCAS) .

Definition 10 ([23]). Suppose (U, C̃) is FCAS, for each x ∈ U then the fuzzy β-neighborhood
Ñβ of x is:

Ñβ
x =

⋂
{C̃i ∈ C̃ : C̃i(x) ≥ β}.

Proposition 1 ([24]). Suppose (U, C̃) is FCAS, then the following is true:
(1) For each x ∈ U, Ñβ

x (x) ≥ β;
(2) ∀x, y, z ∈ U, if Ñβ

x (y) ≥ β and Ñβ
y (z) ≥ β, then Ñβ

x (z) ≥ β;

(3) For each β ∈ [0, 1], there exist C̃i ⊇
⋃{Ñβ

x : C̃i(x) ≥ β, x ∈ U}, where i = 1, 2, . . . , n;
(4) If 0 < β1 ≤ β2 ≤ 1, then Ñβ1

x ⊆ Ñβ2
x for all x ∈ U.

The following definition is of two rough set models on the basis of the fuzzy β-covering
and the fuzzy β-neighborhood.

Definition 11 ([27]). Suppose (U, C̃) is FCAS, For 0 < β ≤ 1, assume that C̃ = {C̃1, C̃2, . . . , C̃n}
is a fuzzy β-covering of U. For each A ∈ F(U), the lower and upper approximation operators
P̃−(A) and P̃+(A) of A as:

P̃−(A)(x) =
∧

y∈U
(1− Ñβ

x (y) ∨ A(y)),

and
P̃+(A)(x) =

∨
y∈U

(Ñβ
x (y) ∧ A(y)).

If P̃−(A) 6= P̃+(A), then A is called a fuzzy β-covering rough set (FCRS).

Definition 12 ([31]). Suppose (U, C̃) is a FCAS. For 0 < β ≤ 1, assume that C̃ = {C̃1, C̃2, . . . , C̃n}
is a fuzzy β-covering of U, then the fuzzy β-covering lower and upper approximation operators
C̃−(A) and C̃+(A) of A ∈ F(U) are respectively constructed as follows: for each x ∈ U,

C̃−(A)(x) =
∧

y∈U
ϕ(Ñβ

x (y), A(y)),

and
C̃+(A)(x) =

∨
y∈U

T(Ñβ
x (y), A(y)).

where T is a t-norm, ϕ is an implicator derived from t-norm.
If C̃−(A) 6= C̃+(A), we say that A is fuzzy β-covering based (ϕ, T)-fuzzy rough set.

If C̃−(A) = C̃+(A), we say that A is a definable fuzzy β-covering based (ϕ, T)-fuzzy rough
set.

2.3. Multi-Granulation Rough Sets

In the classical rough set, the set A on the domain U is roughly represented by A
knowledge granule derived from A single equivalent binary relation, and the concept A is
approximated by approximation. Based on the multi-granulation structure, the classical
single-granulation rough set is extended to a multi-granulation rough set, and then the
optimistic and pessimistic multi-granulation rough sets are defined.

Formally, we can define an information system as a binary group, namely: S = (U, AT),
where U is the set of all objects, called the domain; AT is a collection of all attributes.
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Definition 13 ([33,34]). Suppose S = (U, AT) is a knowledge system. Let A1, A2, . . . , Am ∈ AT
be m attributes in AT. For each X ⊆ U, its optimistic lower and upper approximations with respect
to A1, A2, . . . , Am are defined as follows:

(
m

∑
i=1

Ai)
o(X) = {x ∈ U : [x]A1 ⊆ X ∨ [x]A2 ⊆ X ∨ · · · ∨ [x]Am ⊆ X},

(
m

∑
i=1

Ai)o(X) =∼ (
m

∑
i=1

Ai)
o(∼ X).

where ∼ X is the complement of X, and ((∑m
i=1 Ai)

o, (∑m
i=1 Ai)o) is called the optimistic multi-

granulation rough set of X about attributes A1, A2, . . . , Am.

Proposition 2 ([33,34]). Suppose S = (U, AT) is a knowledge system. Let A1, A2, . . . , Am ∈ AT
be m attributes in AT. For each X ⊆ U, its optimistic upper approximations with respect to
A1, A2, . . . , Am are defined as follows:

(
m

∑
i=1

Ai)o(X) = {x ∈ U : [x]A1 ∩ X 6= φ ∧ [x]A2 ∩ X 6= φ ∧ · · · ∧ [x]Am ∩ X 6= φ}.

Definition 14 ([33,34]). Suppose S = (U, AT) is a knowledge system. Let A1, A2, . . . , Am ∈ AT
be m attributes in AT. For each X ⊆ U, its pessimistic lower and upper approximations with
respect to A1, A2, . . . , Am are defined as follows:

(
m

∑
i=1

Ai)
p(X) = {x ∈ U : [x]A1 ⊆ X ∧ [x]A2 ⊆ X ∧ · · · ∧ [x]Am ⊆ X},

(
m

∑
i=1

Ai)p(X) =∼ (
m

∑
i=1

Ai)
p(∼ X).

where ∼ X is the complement of X, and ((∑m
i=1 Ai)

p, (∑m
i=1 Ai)p) is called the pessimistic multi-

granulation rough set of X about attributes A1, A2, . . . , Am.

Proposition 3 ([33,34]). Suppose S = (U, AT) is a knowledge system. Let A1, A2, . . . , Am ∈ AT
be m attributes in AT. For each X ⊆ U, its pessimistic upper approximations with respect to
A1, A2, . . . , Am are defined as follows:

(
m

∑
i=1

Ai)p(X) = {x ∈ U : [x]A1 ∩ X 6= φ ∨ [x]A2 ∩ X 6= φ ∨ · · · ∨ [x]Am ∩ X 6= φ}.

Definition 15 ([35]). Suppose S = (U, AT) is a knowledge system. Let A1, A2, . . . , Am ∈ AT
be m attributes in AT. For each X ⊆ F (U) its optimistic lower and upper approximations with
respect to A1, A2, . . . , Am are defined as follows: for each x ∈ U

(
m

∑
i=1

Ai)
o(x) =

m∨
i=1

∧
y∈U
{y ∈ [x]Ai},

(
m

∑
i=1

Ai)o(x) =
m∧

i=1

∨
y∈U
{y ∈ [x]Ai}.

If (∑m
i=1 Ai)

o 6= (∑m
i=1 Ai)o, then A is called the optimistic multi-granulation fuzzy rough

set (OMGFRS).
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Definition 16 ([32]). Suppose S = (U, C̃, AT) be a fuzzy covering knowledge system. For
0 < β ≤ 1, assume that C̃ = {C̃1, C̃2, . . . , C̃n} is a fuzzy β-covering of U. For each X̂ ∈ F(U),
we defined the fuzzy β optimistic multi-granulation fuzzy rough lower and upper approximation as
follows:

P−
o
∑m

i=1(Ai)
(X̂)(x) =

m∨
i=1

∧
y∈U
{(1− Ñβ

x (y)) ∨ X̂(y)},

P+o
∑m

i=1(Ai)
(X̂)(x) =

m∧
i=1

∨
y∈U
{Ñβ

x (y) ∧ X̂(y)}.

If P−o
∑m

i=1(Ai)
(X̂) 6= P+o

∑m
i=1(Ai)

(X̂), then X̂ is called the fuzzy β-covering based optimistic
multi-granulation fuzzy rough set (FCOMGFRS).

3. FCFRS Based on Overlap Function

In this section, we propose a new kind of rough set model, that is, a fuzzy β-covering
fuzzy rough set (FCFRS) model based on the overlap function, and study its properties.

Definition 17. Let (U, C̃) be FCAS and C̃ = {C̃1, C̃2, . . . , C̃n} be a fuzzy β-covering of U for
some β ∈ (0, 1]. For each A ∈ F(U), the lower and upper approximation C̃−(A) and C̃+(A) of A
are respectively defined by: for each x ∈ U,

C̃−
Ñβ

x
(A)(x) = inf

y∈U
RO(Ñβ

x (y), A(y))

C̃+

Ñβ
x
(A)(x) = sup

y∈U
O(Ñβ

x (y), A(y))

If C̃−
Ñβ

x
(A) 6= C̃+

Ñβ
x
(A), we say that A is FCFRS based on the overlap function O and its

implicator RO. If C̃−(A) = C̃+(A), we say that A is a definable FCFRS based on the overlap
function O and its implicator RO.

Next, we give an example to illustrate Definition 17.

Example 3. Let U = {x1, x2, x3, x4, x5, x6} and C̃ = {C̃1, C̃2, C̃3, C̃4, C̃5} be a family of fuzzy
sets on U shown in Table 1.

Table 1. A family of fuzzy sets on U.

C̃ x1 x2 x3 x4 x5 x6

C̃1 0.7 0.6 0.4 0.5 0.1 0.6
C̃2 0.5 0.3 0.3 0.7 0.4 0.8
C̃3 0.4 0.3 0.5 0.5 0.2 0.4
C̃4 0.3 0.7 0.8 0.2 0.6 0.1
C̃5 0.2 0.3 0.5 0.6 0.1 0.5

Then, C̃ is a fuzzy β-covering of U, let β = 0.5 calculate the fuzzy β-neighborhood of x ∈ U
shown in Table 2.



Symmetry 2021, 13, 1779 9 of 27

Table 2. Fuzzy β-neighborhood of x ∈ U.

C̃ x1 x2 x3 x4 x5 x6

Ñ0.5
x1

0.5 0.3 0.3 0.5 0.1 0.6
Ñ0.5

x2
0.3 0.6 0.4 0.2 0.1 0.1

Ñ0.5
x3

0.2 0.3 0.5 0.2 0.1 0.1
Ñ0.5

x4
0.2 0.3 0.3 0.5 0.1 0.4

Ñ0.5
x5

0.3 0.7 0.8 0.2 0.6 0.1
Ñ0.5

x6
0.2 0.3 0.3 0.5 0.1 0.5

Let A = 0.5
x1

+ 0.3
x2

+ 0.7
x3

+ 0.6
x4

+ 0.2
x5

+ 0.3
x6

. Suppose that O(x, y) = min{
√

x,
√

y} and

RO(x, y) =
{

1 ,
√

x ≤ y
y2 ,

√
x > y

By Definition 17:

C̃−
Ñβ

x
(A)(x) =

0.04
x1

+
0.04
x2

+
0.04
x3

+
0.04
x4

+
0.04
x5

+
0.04
x6

C̃+

Ñβ
x
(A)(x) =

0.71
x1

+
0.63
x2

+
0.71
x3

+
0.71
x4

+
0.84
x5

+
0.71
x6

.

Now let us explore some properties of the fuzzy β-covering fuzzy rough set based on
the overlap function:

Proposition 4. Suppose that (U, C̃) is FCAS, and C̃ = {C̃1, C̃2, . . . , C̃n} is a fuzzy β-covering of
U for some β ∈ (0, 1]. For each A, B ∈ F(U), the model verifies the following properties:

(i) C̃−
Ñβ

x
(A) ⊆ A ⊆ C̃+

Ñβ
x
(A);

(ii) C̃−
Ñβ

x
(U) = U;

(iii) C̃+

Ñβ
x
(φ) = φ;

(iv) If A ⊆ B then C̃−
Ñβ

x
(A) ⊆ C̃−

Ñβ
x
(B);

(v) If A ⊆ B then C̃+

Ñβ
x
(A) ⊆ C̃+

Ñβ
x
(B);

(vi) when RO satisfies continuous and right monotonic, then C̃−
Ñβ

x
(
⋃

i∈I Ai) ⊇
⋃

i∈I C̃−
Ñβ

x
(Ai),

C̃−
Ñβ

x
(
⋂

i∈I Ai) =
⋂

i∈I C̃−
Ñβ

x
(Ai);

(vii) when O satisfies continuous and monotonic, then C̃+

Ñβ
x
(
⋃

i∈I Ai) =
⋂

i∈I C̃+

Ñβ
x
(Ai),

C̃+

Ñβ
x
(
⋂

i∈I Ai) =
⋂

i∈I C̃+

Ñβ
x
(Ai).

Proof.
(i) This proposition is clearly held.
(ii) By the definition of residual implication, we have RO(x, 1) = 1. For each x ∈ U,

then
C̃−

Ñβ
x
(U)(x) = inf

y∈U
RO(Ñβ

x (y), U(y)) = inf
y∈U

RO(Ñβ
x (y), 1) = 1 = U(x).

(iii) For each x ∈ U, we have

C̃+

Ñβ
x
(φ)(x) = sup

y∈U
O(Ñβ

x (y), φ(y)) = sup
y∈U

O(Ñβ
x (y), 0) = 0 = φ(x).

(iv) For each x ∈ U, then:

C̃−
Ñβ

x
(A)(x) = inf

y∈U
RO(Ñβ

x (y), A(y)) ≤ inf
y∈U

RO(Ñβ
x (y), B(y)) = C̃−

Ñβ
x
(B)(x).
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(v) If A ⊆ B, then

C̃+

Ñβ
x
(A)(x) = sup

y∈U
O(Ñβ

x (y), A(y)) ≤ sup
y∈U

O(Ñβ
x (y), B(y)) = C̃+

Ñβ
x
(B)(x).

(vi) Because RO satisfies continuous and right monotonic, for each x ∈ U, we have

C̃−
Ñβ

x
(
⋃
i∈I

Ai)(x) = inf
y∈U

RO(Ñβ
x (y), (

⋃
i∈I

Ai)(y)) = inf
y∈U

RO(Ñβ
x (y), (sup

i∈I
Ai)(y))

= inf
y∈U

sup
i∈I

RO(Ñβ
x (y), Ai(y)) ≥ sup

i∈I
inf
y∈U

RO(Ñβ
x (y), Ai(y)) = sup

i∈I
C̃−

Ñβ
x
(Ai)(x) = (

⋃
i∈I

C̃−
Ñβ

x
(Ai))(x).

And

C̃−
Ñβ

x
(
⋂
i∈I

Ai)(x) = inf
y∈U

RO(Ñβ
x (y), (

⋂
i∈I

Ai)(y)) = inf
y∈U

RO(Ñβ
x (y), (inf

i∈I
Ai)(y))

= inf
y∈U

inf
i∈I

RO(Ñβ
x (y), Ai)(y)) = inf

i∈I
inf
y∈U

RO(Ñβ
x (y), Ai)(y)) = inf

i∈I
C̃−

Ñβ
x
(Ai)(x) = (

⋂
i∈I

C̃−
Ñβ

x
(Ai))(x).

Hence C̃−
Ñβ

x
(
⋃

i∈I Ai) ⊇
⋃

i∈I C̃−
Ñβ

x
(Ai) and C̃−

Ñβ
x
(
⋂

i∈I Ai) =
⋂

i∈I C̃−
Ñβ

x
(Ai).

(vii) when O satisfies continuous and monotonic, for each x ∈ U, we have

C̃+

Ñβ
x
(
⋃
i∈I

Ai)(x) = sup
y∈U

O(Ñβ
x (y), (

⋃
i∈I

Ai)(y)) = sup
y∈U

O(Ñβ
x (y), (sup

i∈I
Ai)(y))

= sup
y∈U

sup
i∈I

O(Ñβ
x (y), Ai)(y)) = sup

i∈I
sup
y∈U

O(Ñβ
x (y), Ai(y)) = sup

i∈I
C̃+

Ñβ
x
(Ai(x) = (

⋃
i∈I

C̃+

Ñβ
x
(Ai))(x).

And

C̃+

Ñβ
x
(
⋂
i∈I

Ai)(x) = sup
y∈U

O(Ñβ
x (y), (

⋂
i∈I

Ai)(y)) = sup
y∈U

O(Ñβ
x (y), (inf

i∈I
Ai)(y))

= sup
y∈U

inf
i∈I

O(Ñβ
x (y), Ai)(y)) = inf

i∈I
sup
y∈U

O(Ñβ
x (y), Ai)(y)) = inf

i∈I
C̃+

Ñβ
x
(Ai)(x) = (

⋂
i∈I

C̃+

Ñβ
x
(Ai))(x).

Hence C̃+

Ñβ
x
(
⋃

i∈I Ai) =
⋂

i∈I C̃+

Ñβ
x
(Ai) and C̃+

Ñβ
x
(
⋂

i∈I Ai) =
⋂

i∈I C̃+

Ñβ
x
(Ai).

In particular, we find that idempotativity is not held for the Fuzzy β-covering fuzzy
rough set model based on the overlap function, i.e., C̃−

Ñβ
x
(C̃−

Ñβ
x
(A)) 6= C̃−

Ñβ
x
(A) and

C̃+

Ñβ
x
(C̃+

Ñβ
x
(A)) 6= C̃+

Ñβ
x
(A). We will show it with a concrete example as follows:

Example 4 (Continue Example 3). Let U = {x1, x2, x3, x4, x5, x6} and C̃ = {C̃1, C̃2, C̃3, C̃4, C̃5}
be a family of fuzzy sets U, and by calculating, we have:

C̃+

Ñβ
x
(A)(x) =

0.71
x1

+
0.63
x2

+
0.71
x3

+
0.71
x4

+
0.84
x5

+
0.71
x6

.

C̃+

Ñβ
x
(C̃+

Ñβ
x
(A)(x)) =

0.77
x1

+
0.77
x2

+
0.71
x3

+
0.71
x4

+
0.84
x5

+
0.71
x6

.

Obviously, C̃+

Ñβ
x
(A)(x) 6= C̃+

Ñβ
x
(C̃+

Ñβ
x
(A)(x)), in a similar way, we can find C̃−

Ñβ
x
(A)(x) 6=

C̃−
Ñβ

x
(C̃−

Ñβ
x
(A)(x)). Thus, the idempotativily is not holding.

4. FCMGFRSs Based on Overlap Function

In this section, we introduce a fuzzy β-covering based optimistic multi-granulation
fuzzy rough set based on the overlap function (briefly, FCOMGFRS based on the overlap



Symmetry 2021, 13, 1779 11 of 27

function), a fuzzy β-covering based pessimistic multi-granulation fuzzy rough set (briefly,
FCPMGFRS based overlap function), and studied some properties of the FCOMGFRS
model.

Definition 18. Let (U, C̃) be the FCAS, C̃ = {C̃1, C̃2, . . . , C̃n} be a fuzzy β-covering of U for
some β ∈ (0, 1]. For each A ∈ F(U), the lower and upper approximation C−o

∑m
i=1(Ñβ

x )i
(A) and

C+o
∑m

i=1(Ñβ
x )i

(A) of A are, respectively, defined by: for each x ∈ U,

C−
o
∑m

i=1(Ñβ
x )i

A(x) =
m∨

i=1

inf
y∈U

RO((Ñβ
x )i(y), A(y))

C+o
∑m

i=1(Ñβ
x )i

A(x) =
m∧

i=1

sup
y∈U

O((Ñβ
x )i(y), A(y))

If C−o
∑m

i=1(Ñβ
x )i

A 6= C+o
∑m

i=1(Ñβ
x )i

A, then A is called the FCOMGFRS model based on the

overlap function.

Definition 19. Let (U, C̃) be the FCAS and C̃ = {C̃1, C̃2, . . . , C̃n} be a fuzzy β-covering of U
for some β ∈ (0, 1]. For each A ∈ F(U), the lower and upper approximation C−

p

∑m
i=1(Ñβ

x )i
(A) and

C+p

∑m
i=1(Ñβ

x )i
(A) of A are, respectively, defined by: for each x ∈ U,

C−
p

∑m
i=1(Ñβ

x )i
A(x) =

m∧
i=1

inf
y∈U

RO((Ñβ
x )i(y), A(y))

C+p

∑m
i=1(Ñβ

x )i
A(x) =

m∨
i=1

sup
y∈U

O((Ñβ
x )i(y), A(y))

If C−p

∑m
i=1(Ñβ

x )i
A 6= C+p

∑m
i=1(Ñβ

x )i
A, then A is called the FCPMGFRS model based on the

overlap function.

Due to the similarity of the two models, in this paper, we only discuss the FCOMGFRS
model based on the overlap function. In the following, we employ an example to illustrate
the above concepts.

Example 5 (Continue Example 3). C̃ is a fuzzy β-covering of U, let β = 0.6 calculate the fuzzy
β-neighborhood of x ∈ U shown in Table 3.

Table 3. Fuzzy β-neighborhood of x ∈ U.

C̃ x1 x2 x3 x4 x5 x6

Ñ0.6
x1

0.7 0.6 0.4 0.5 0.1 0.6

Ñ0.6
x2

0.3 0.6 0.4 0.2 0.1 0.1

Ñ0.6
x3

0.3 0.7 0.8 0.2 0.6 0.1

Ñ0.6
x4

0.2 0.3 0.4 0.5 0.1 0.5

Ñ0.6
x5

0.3 0.7 0.8 0.2 0.6 0.1

Ñ0.6
x6

0.5 0.3 0.3 0.5 0.1 0.6
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It is not difficult to verify that both Ñ0.5
xi

and Ñ0.6
xi

are fuzzy β-neighborhood of x. Therefore,
we can obtain the lower and upper approximation of the FCOMGFRS model based on the overlap
function as follows:

C−
o
∑m

i=1(Ñβ
x )i

A(x) =
0.04
x1

+
0.04
x2

+
0.04
x3

+
0.04
x4

+
0.04
x5

+
0.04
x6

;

C+o
∑m

i=1(Ñβ
x )i

A(x) =
0.71
x1

+
0.63
x2

+
0.71
x3

+
0.71
x4

+
0.84
x5

+
0.71
x6

.

From the definition of the lower and upper approximation operators of the FCOMGFRS
model based on the overlap function, it is possible to deduce the following properties.

Proposition 5. Suppose that (U, C̃) be FCAS, C̃ = {C̃1, C̃2, . . . , C̃n} is a fuzzy β-covering of U
for some β ∈ (0, 1]. For each A, B ∈ F(U), the model verifies the following properties:

(i) C−o
∑m

i=1(Ñβ
x )i

(A) ⊆ A ⊆ C+o
∑m

i=1(Ñβ
x )i

(A);

(ii) C−o
∑m

i=1(Ñβ
x )i

(U) = U;

(iii) C+o
∑m

i=1(Ñβ
x )i

(φ) = φ;

(iv) If A ⊆ B then C−o
∑m

i=1(Ñβ
x )i

(A) ⊆ C−o
∑m

i=1(Ñβ
x )i

(B);

(v) If A ⊆ B then C+o
∑m

i=1(Ñβ
x )i

(A) ⊆ C+o
∑m

i=1(Ñβ
x )i

(B);

(vi) when RO satisfies continuous and right monotonic, then

C−o
∑m

i=1(Ñβ
x )i

(A ∩ B) ⊆ C−o
∑m

i=1(Ñβ
x )i

(A)
⋂
C−o

∑m
i=1(Ñβ

x )i
(B), C−o

∑m
i=1(Ñβ

x )i
(A ∪ B) ⊇ C−o

∑m
i=1(Ñβ

x )i
(A)

⋃
C−o

∑m
i=1(Ñβ

x )i
(B);

(vii) when O satisfies continuous and monotonic, then

C+o
∑m

i=1(Ñβ
x )i

(A ∩ B) ⊆ C+o
∑m

i=1(Ñβ
x )i

(A)
⋂
C+o

∑m
i=1(Ñβ

x )i
(B), C+o

∑m
i=1(Ñβ

x )i
(A ∪ B) ⊇ C+o

∑m
i=1(Ñβ

x )i
(A)

⋃
C+o

∑m
i=1(Ñβ

x )i
(B).

Proof.
(i) This proposition is clearly held.
(ii) By the definition of residual implication, we have RO(x, 1) = 1. For each x ∈ U,

then

C−
o
∑m

i=1(Ñβ
x )i

(U)(x) =
m∨

i=1

inf
y∈U

RO((Ñβ
x )i(y), U(y)) =

m∨
i=1

inf
y∈U

RO((Ñβ
x )i(y), 1) = 1 = U(x).

(iii) For each x ∈ U, we have

C+o
∑m

i=1(Ñβ
x )i

(φ)(x) =
m∧

i=1

sup
y∈U

O((Ñβ
x )i(y), (φ)(y)) =

m∧
i=1

sup
y∈U

O((Ñβ
x )i(y), 0) = 0 = φ(x).

(iv) For each x ∈ U, then:

C−
o
∑m

i=1(Ñβ
x )i

(A)(x) =
m∨

i=1

inf
y∈U

RO((Ñβ
x )i(y), A(y)) ≤

m∨
i=1

inf
y∈U

RO((Ñβ
x )i(y), B(y)) = C−

o
∑m

i=1(Ñβ
x )i

(B)(x).

(v) If A ⊆ B, then

C+o
∑m

i=1(Ñβ
x )i

(A)(x) =
m∧

i=1

sup
y∈U

O((Ñβ
x )i(y), A(y)) ≤

m∧
i=1

sup
y∈U

O((Ñβ
x )i(y), B(y)) = C+o

∑m
i=1(Ñβ

x )i
(B)(x).

(vi) Because RO satisfies continuous and right monotonic, for each x ∈ U, we have

C−
o
∑m

i=1(Ñβ
x )i

(A ∩ B)(x) =
m∨

i=1

inf
y∈U

RO((Ñβ
x )i(y), (A ∩ B)(y)) =

m∨
i=1

inf
y∈U

RO((Ñβ
x )i(y), (A ∧ B)(y))
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=
m∨

i=1

[ inf
y∈U

RO((Ñβ
x )i(y), A(y)) ∧ inf

y∈U
RO((Ñβ

x )i(y), B(y))] ≤
m∨

i=1

inf
y∈U

RO((Ñβ
x )i(y), A(y))

∧ m∨
i=1

inf
y∈U

RO((Ñβ
x )i(y), B(y))

= C−o
∑m

i=1(Ñβ
x )i

A(x)
⋂
C−o

∑m
i=1(Ñβ

x )i
B(x);

According to the (iv), C−o
∑m

i=1(Ñβ
x )i

(A ∪ B) ⊇ C−o
∑m

i=1(Ñβ
x )i

(A)
⋃
C−o

∑m
i=1(Ñβ

x )i
(B) is held.

(vii)

C+o
∑m

i=1(Ñβ
x )i

(A ∪ B)(x) =
m∧

i=1

sup
y∈U

O((Ñβ
x )i(y), (A ∪ B)(y)) =

m∧
i=1

sup
y∈U

O((Ñβ
x )i(y), (A ∨ B)(y))

=
m∧

i=1

[sup
y∈U

O((Ñβ
x )i(y), A(y)) ∨ sup

y∈U
O((Ñβ

x )i(y), A(y))] ≥
m∧

i=1

sup
y∈U

O(Ñβ
x (y), A(y))

∨ m∧
i=1

sup
y∈U

O(Ñβ
x (y), B(y))

= C+p
∑m

i=1(Xi)
A(x)

⋃
C+p

∑m
i=1(Xi)

B(x)

According to the (v), C+o
∑m

i=1(Ñβ
x )i

(A ∩ B) ⊆ C+o
∑m

i=1(Ñβ
x )i

(A)
⋂
C+o

∑m
i=1(Ñβ

x )i
(B) is hold.

5. Method for Multi-Criteria Decision-Making (MCDM) Problem with Fuzzy Information

Aiming at the combination of multi-criteria decision-making (MCDM) problems
and the fuzzy β-covering fuzzy rough set model based on the overlap function models,
in this section, we propose a new class of problem solving methods inspired by Zhang’s
article [23].

5.1. Background Description

Let U = {xi : i = 1, 2, . . . , n} be a domain of discourse, C̃ = {C̃j : j = 1, 2, . . . , m} be a
set of criteria , where C̃j(xi) represents the value of xi for criteria C̃j. Let β ∈ (0, 1], and C̃ is
a fuzzy β-covering on U.

In the standard fuzzy TOPSIS method, for a fuzzy set A, we first obtain both the
fuzzy positive and negative ideal solutions A+ and A− based on the set of criteria C̃j : j =
1, 2, . . . , m. Then, we calculate the positive and negative ideal fuzzy distance d+i and d−i
of each xi. Finally, we calculated their closeness coefficient and ranks of all alternatives
xi : i = 1, 2, . . . , n.

5.2. Decision-Making Method

Now we are prepared to expound the decision-making method. It is based on the
fuzzy β-covering fuzzy rough set model based on the overlap function.

Firstly, we obtain the decision-making matrix A with fuzzy information, which is
formally expressed as follows:

A =



a11 a12 . . . a1m
a21 a22 . . . a2m
. . . . . .
. . . . . .
. . . . . .

an1 an2 . . . anm

 (1)

where aij is the decision-maker’s evaluation value of xi for criteria C̃j, i.e., C̃j(xi) = aij.
For the criteria weight, W = {w1, w2, . . . , wm} and ∑m

i=1 wi = 1, wi ∈ [0, 1] for j =
1, 2, . . . , m. From matrix A, the following formulas provide us with the positive ideal fuzzy
set A+, the negative ideal fuzzy set A− and the integrated ideal fuzzy set A∗ as follows:

A+ = {(x1, max
1≤j≤m

a1j), (x2, max
1≤j≤m

a2j), . . . , (xn, max
1≤j≤m

anj)};
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A− = {(x1, min
1≤j≤m

a1j), (x2, min
1≤j≤m

a2j), . . . , (xn, min
1≤j≤m

anj)};

A∗ = {(x1, ∑
1≤j≤m

a1jwj), (x2, ∑
1≤j≤m

a2jwj), . . . , (xn, ∑
1≤j≤m

anjwj)}.

Next, we calculate the lower and upper approximation of A+, A− and A∗ by the fuzzy
β-covering fuzzy rough set model based on the overlap function. Then, we calculate the
positive and negative distance of each xi. The following formulas provide us with the
positive and negative ideal fuzzy distance d+i and d−i of each xi as follows:

d+i = α(d(C̃−(A+)(xi), C̃−(A∗)(xi))) + (1− α)(d(C̃+(A+)(xi), C̃+(A∗)(xi)));

d−i = α(d(C̃−(A−)(xi), C̃−(A∗)(xi))) + (1− α)(d(C̃+(A−)(xi), C̃+(A∗)(xi))).

where α ∈ [0, 1] is a controlling value and d(a, b) = |a− b|.
Lastly, we calculate the closeness coefficient associated with each alternative xi through

the following formula:

ρ =
d−i

d+i + d−i
, i ∈ (1, 2, . . . , n).

According to the value of ρ, the ranking of all alternatives is determined and we can
select the best of them.

5.3. Decision-Making Steps

Input MCDM with fuzzy information and β.
Output The ranking for all alternatives.
Step 1: The decision-making matrix A with information is obtained.
Step 2: Using the formulas, calculate the positive ideal fuzzy set A+, the negative

ideal fuzzy set A− and the integrated ideal fuzzy set A∗.
Step 3: Using the fuzzy β-covering fuzzy rough set based on the overlap function,

calculate the lower and the upper approximation of A+, A− and A∗, respectively.
Step 4: Using the formulas, calculate the positive ideal fuzzy distance d+i and the

negative ideal fuzzy distance d−i of xi.
Step 5: Using the formulas, calculate the closeness coefficient ρ of each alternative xi.
Step 6: Rank the alternatives, and choose the best element.

6. MCDM Problem with Fuzzy β-Covering Fuzzy Rough Set

In general, MCDM problems are characterized by incomplete information, so we need
to use rough set theory, which is a mathematical theory that effectively deals with data incon-
sistencies, to solve such problems. Therefore, specific problems are proposed in this section,
which are solved by using different rough set models and analyzed comprehensively.

6.1. Problem Description

Assume that a school is planning to hire six teachers, respectively, from their per-
sonality, teaching ability, oral expression ability, teaching-plan writing ability and work
experience for five aspects of evaluation. Let U = {x1, x2, x3, x4, x5, x6} represent a group
of six teachers and C̃ = {C̃1, C̃2, C̃3, C̃4, C̃5} represent five criteria that are represented as
follows:

1. C̃1 represents the personality;
2. C̃2 represents the teaching ability;
3. C̃3 represents the oral expression ability;
4. C̃4 represents the teaching-plan writing ability;
5. C̃5 represents the work experience.
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This decision-making matrix A with fuzzy information is shown in Table 1 (continue
Example 3). Then, we obtain the positive ideal A+, negative ideal A− and integrated ideal
A∗ shown in Table 4.

Table 4. The positive ideal A+, negative ideal A− and integrated ideal A∗.

x1 x2 x3 x4 x5 x6

A+ 0.7 0.7 0.8 0.7 0.6 0.8
A− 0.2 0.3 0.3 0.2 0.1 0.1
A∗ 0.41 0.39 0.48 0.54 0.29 0.52

Case 1: Om(x, y) = min{
√

x,
√

y} and RO(x, y) =

{
1

√
x ≤ y

y2 √
x > y

; α = 0.5. The

lower and upper approximations are denoted as:

C̃−
Ñβ

x
(A)(x) = inf

y∈U
ROm(Ñβ

x (y), A(y))

C̃+

Ñβ
x
(A)(x) = sup

y∈U
Om(Ñβ

x (y), A(y)).

Next, the lower and upper approximation of the fuzzy β-covering fuzzy rough set
model based on the overlap function of A+, A− and A∗ are, respectively, calculated in
Table 5.

Table 5. The lower and upper approximations of A+, A− and A∗.

x1 x2 x3 x4 x5 x6

C̃+

Ñβ
x
(A+) 0.77 0.77 0.71 0.72 0.89 0.71

C̃−
Ñβ

x
(A+) 0.49 0.49 0.71 0.49 0.36 0.49

C̃+

Ñβ
x
(A−) 0.55 0.55 0.55 0.55 0.55 0.55

C̃−
Ñβ

x
(A−) 0.01 0.01 0.01 0.01 0.01 0.01

C̃+

Ñβ
x
(A∗) 0.72 0.63 0.69 0.72 0.68 0.71

C̃−
Ñβ

x
(A∗) 0.08 0.08 0.08 0.08 0.08 0.08

By calculating, the positive ideal fuzzy distance d+i and the negative ideal fuzzy
distance d−i of xi shown in Table 6.

Table 6. The positive ideal fuzzy distance and negative ideal fuzzy distance of xi.

x1 x2 x3 x4 x5 x6

d+i 0.23 0.275 0.325 0.21 0.245 0.205
d+i 0.12 0.075 0.105 0.12 0.1 0.115

Next, we calculate the closeness coefficient ρ of alternatives shown in Table 7.

Table 7. Closeness coefficient of xi.

x1 x2 x3 x4 x5 x6

ρ 0.343 0.214 0.244 0.365 0.289 0.359

By the Table 7, we can rank all of the alternatives as x4 � x6 � x1 � x5 � x3 � x2,
and from this result, we can see that candidate x4 is the best option.
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Case 2: O2(x, y) = x2y2 and RO(x, y) =

{
1 x2 ≤ y√

y
x2 x2 ≤ y

; α = 0.5. The lower and

upper approximations denoted as:

C̃−
Ñβ

x
(A)(x) = inf

y∈U
RO2(Ñβ

x (y), A(y))

C̃+

Ñβ
x
(A)(x) = sup

y∈U
O2(Ñβ

x (y), A(y)).

Next the lower and upper approximation of the fuzzy β-covering fuzzy rough set
based on the overlap function of A+, A− and A∗ are, respectively, calculated in Table 8.

The calculations of the positive ideal fuzzy distance d+i and the negative ideal fuzzy
distance d−i of xi are shown in Table 9.

Next, we calculate the closeness coefficient ρ of alternative, as shown in Table 10.
By the Table 10, we can rank all alternatives as x4 � x1 � x6 � x2 � x3 � x5, and

from this result, we can see that candidate x4 is the best option.

Table 8. The lower and upper approximations of A+, A− and A∗.

x1 x2 x3 x4 x5 x6

C̃+

Ñβ
x
(A+) 0.2304 0.1764 0.16 0.1344 0.4096 0.21

C̃−
Ñβ

x
(A+) 1 1 1 1 1 1

C̃+

Ñβ
x
(A−) 0.01 0.0324 0.0225 0.01 0.0576 0.01

C̃−
Ñβ

x
(A−) 0.53 0.91 1 0.41 0.53 0.63

C̃+

Ñβ
x
(A∗) 0.0973 0.0548 0.0576 0.0729 0.1476 0.0676

C̃−
Ñβ

x
(A∗) 1 1 1 1 0.8660 1

Table 9. The positive ideal fuzzy distance and negative ideal fuzzy distance of xi.

x1 x2 x3 x4 x5 x6

d+i 0.0666 0.0608 0.0512 0.0308 0.762 0.0712
d+i 0.2787 0.0562 0.0176 0.3265 0.213 0.2138

Table 10. Closeness coefficient of xi.

x1 x2 x3 x4 x5 x6

ρ 0.8071 0.4803 0.2558 0.9138 0.2185 0.7502

6.2. Sensitivity Analysis Based on Our Proposed Method

In this section, a sensitivity analysis of the multi-criteria decision making methods is
demonstrated.

A comparative analysis among the methods WA, and OWA, etc., together with our
proposed method, is studied in this section through numerical examples of comparing the
methods. Moreover, a drawback of WA, OWA and TOPSIS methods is that they cannot
make the best decision in many situations, for example, Zhang’s sample in [23] shows that
it does not make good decisions. We find the method we proposed can make up for this
situation. Next, according to the numerical example, we compare our method together
with other methods, as shown in Table 11.
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Table 11. Comparison of different methods.

Methods Ranking of Alternatives

WAmethod17 x4 � x6 � x3 � x1 � x2 � x5
OWAmethod17 x4 � x3 � x6 � x2 � x1 � x5

TOPSISmethod18 x4 � x6 � x3 � x1 � x2 � x5
method based on (ϕ, T)31 x4 � x6 � x3 � x5 � x1 � x2

method based on (C̃ROm
, C̃Om) x4 � x6 � x1 � x5 � x3 � x2

method based on (C̃RO2
, C̃O2) x4 � x1 � x6 � x2 � x3 � x5

Through Table 11, we find that although the specific ranking of the alternatives by
some methods is a little different, the best alternative is the same. This situation illustrates
the effectivity of our proposed method.

Then we summarize the rankings that we obtain under different customizations of
the factors presented in Table 12.

Through Table 12, we found that different α results in the same best alternative, which
is x4. No matter what the value of α is, it does not affect the first three terms.

Table 12. Comprehensive comparison of all decision making results based on the (C̃RO2
, C̃O2 ) model.

Different Value of α Ranking of Alternatives

α = 0.1 x4 � x1 � x6 � x2 � x5 � x3
α = 0.2 x4 � x1 � x6 � x2 � x5 � x3
α = 0.3 x4 � x1 � x6 � x2 � x5 � x3
α = 0.4 x4 � x1 � x6 � x2 � x5 � x3
α = 0.5 x4 � x1 � x6 � x2 � x3 � x5
α = 0.6 x4 � x1 � x6 � x5 � x2 � x3
α = 0.7 x4 � x1 � x6 � x5 � x2 � x3
α = 0.8 x4 � x1 � x6 � x5 � x2 � x3
α = 0.9 x4 � x1 � x6 � x5 � x2 � x3

The decision making method proposed in this paper is based on the extension of
the t-norm method, which expands its scope in specific applications and can better order
objects, so that decision makers can make a better judgment. Through specific examples,
the comparison results of the two models are shown in Table 13.

Table 13. Comprehensive comparison of all decision making results.

Different Value of α Methods Ranking of Alternatives

α = 1 method based on (ϕ, T) x4 � x6 � x2 ≈ x1 ≈ x3 ≈ x5
α = 1 method based on (ϕ, T) x4 ≈ x6 � x3 � x1 � x5 � x2
α = 1 method based on (C̃RO2

, C̃O2) x4 � x1 � x6 � x5 � x3 � x2

6.3. Short Comparison of the Fuzzy β-Covering Fuzzy Rough Set Model Based on Overlap Function

In this part, in order to illustrate the results obtained in this paper more clearly,
we show a short comparison of the fuzzy β-covering fuzzy rough set model based on the
overlap function.

As another extension form of logic AND, the overlap function is different from the
triangle norm because it has no associativity and has more advantages in the application
than the triangle norm. For example, in classification involving n-dimensional input
problems, n-dimensional overlap functions have been successfully used. On the other side,
a fuzzy rough set, which is an effective mathematical tool for dealing with uncertain and
incomplete information, has already been successfully used in various aspects, for instance
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in knowledge discovery [19], granular machines learning [20], and data analysis [21], etc.
Therefore, using the overlap function and its residual implication to construct an upper
and lower fuzzy approximate operator can not only provide us another possible method to
deal with practical problems but also broaden the application scope of rough set theory.

7. An Approach to Multi-Criteria Group Decision-Making (MCGDM) Based on
FCOMGFRS Model

In this section, we will present a novel approach to multi-criteria group decision-
making (MCGDM) based on FCOMGFRS models and give an MCGDM problem to il-
lustrate the advantages of the extended model. Aiming at the combination of MCGDM
problems and the FCOGMFRS based on the overlap function model, we propose a new
class of problem solving methods inspired by Atef’s article [37].

7.1. Background Description

Let U = {x1, x2, . . . , xn} be n alternatives and D = {d1, d2, . . . , dm} be m decision-
makers. λi is the weight vector for experts, where λi ≥ 0 for i = 1, 2, . . . , m and ∑m

i=1 λi = 1.
Then F(Ai) = F(Ai1),F(Ai2), . . . ,F(Aim) is each expert’s evaluation of a set of criteria.
The expert presents the assessments for the collection of alternatives concerning criteria
F(Ai) using a family of mappings gi : U × F(Ai)→ [0, 1], where gi(xi,F(Aij)) ∈ [0, 1] for
i = 1, 2, . . . , n and j = 1, 2, . . . , m. Therefore, we institute the MCGDM with an information
system. Based on the proposed covering methods, we prefer a decision-making algorithm
to detect the best alternative in the following steps. Now, we can make the decision using
the following steps.

Step 1: Produce the decision-making object of the universe of fuzzy β information.
Through the TOPSIS theory, we have:

pm = {F(Aij), max
1≤i≤n

(gl(xi,F(Aij))) : i = 1, 2, . . . , l, j = 1, 2, . . . , m};

and
pm = {F(Aij), min

1≤i≤n
(gl(xi,F(Al j))) : j = 1, 2, . . . , m, l = 1, 2, . . . , t}.

Step 2: Calculate the respective distances Dm and Dm as follows:

Dm = d(F(Amj)(xi),F(Amj)(p);

and
Dm = d(F(Amj)(xi),F(Amj)(p).

where d(X̂, Ŷ) =
√

1
n ∑n

i=1(X̂(xi)− Ŷ(xi))2 and n is the radix of U .
Step 3: Calculate the lower and upper approximations of the best and worst decision-

making objects with fuzzy β information through the community of experts pertaining
to the criteria set by Definition 18 to the multiple criterion decision-making information
method under the β ∈ (0, 1] precision parameter. They are each listed as follows:

C−
o
∑m

i=1(Ñβ
x )i

Dm(x) =
m∨

i=1

inf
y∈U

RO((Ñβ
x )i(y),Dm(y));

and

C+o
∑m

i=1(Ñβ
x )i

Dm(x) =
m∧

i=1

sup
y∈U

O((Ñβ
x )i(y),Dm(y)).

C−
o
∑m

i=1(Ñβ
x )i

Dm(x) =
m∨

i=1

inf
y∈U

RO((Ñβ
x )i(y),Dm(y));
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and

C+o
∑m

i=1(Ñβ
x )i

Dm(x) =
m∧

i=1

sup
y∈U

O((Ñβ
x )i(y),Dm(y)).

Step 4: Calculate the closeness coefficient degree by:

Rm =
Wm(xi)

Wm(xi) +Wm(xi)
.

where Wm(xi) = ϕ(C−o
∑m

i=1(Ñβ
x )i

Dm(xi),C+o
∑m

i=1(Ñβ
x )i

Dm(xi)) and Wm(xi) =

ϕ(C−o
∑m

i=1(Ñβ
x )i

Dm(x)i,C+o
∑m

i=1(Ñβ
x )i

Dm(xi)). (ϕ(x, y) = x + y− x ∗ y) are the worst and the

best decision-making objects for individual ranking function of experts for the candidates
xi, and 0 ≤Wm(xi),Wm(xi) ≤ 1.

Step 5: Calculate the group ranking function by the following equation and rank the
alternatives.

R(xi) =
t

∑
m=1

λmRm(xi).

7.2. Illustrative Example

In this section, we will use a specific example to illustrate the above steps.

Example 6. Assume that a school is planning to hire six teachers U = {x1, x2, . . . , x6}, respec-
tively, from personality, teaching ability, oral expression ability, teaching-plan writing ability and
work experience; five aspects Ci = {c1, c2, c3, c4, c5} for evaluation. The weight of three experts are
λ1 = 0.4, λ2 = 0.1, λ3 = 0.5. Next, we illustrate it through specific examples.

Step 1: Each expert’s assessment of each teacher is shown in Tables 14–16.

Table 14. Table for expert 1.

U c11 c12 c13 c14 c15

x1 0.82 0.71 0.46 0.55 0.52
x2 0.73 0.32 0.65 0.58 0.84
x3 0.56 0.68 0.36 0.78 0.44
x4 0.53 0.48 0.74 0.65 0.91
x5 0.66 0.53 0.57 0.72 0.43
x6 0.28 0.76 0.52 0.45 0.77

Table 15. Table for expert 2.

U c21 c22 c23 c24 c25

x1 0.78 0.56 0.67 0.26 0.59
x2 0.35 0.77 0.49 0.69 0.55
x3 0.51 0.37 0.79 0.42 0.67
x4 0.85 0.68 0.57 0.75 0.48
x5 0.58 0.34 0.73 0.81 0.43
x6 0.53 0.75 0.46 0.59 0.71



Symmetry 2021, 13, 1779 20 of 27

Table 16. Table for expert 3.

U c31 c32 c33 c34 c35

x1 0.56 0.75 0.39 0.67 0.48
x2 0.76 0.36 0.68 0.45 0.55
x3 0.84 0.55 0.35 0.58 0.65
x4 0.43 0.53 0.74 0.69 0.63
x5 0.59 0.71 0.65 0.48 0.55
x6 0.37 0.66 0.56 0.42 0.78

Step 2: According to the importance of these five attributes, we give the following results for
three experts:

p1 = {(F(c11), 0.82), (F(c12), 0.76), (F(c13), 0.74), (F(c14), 0.78), (F(c15), 0.91)};

and

p1 = {(F(c11), 0.28), (F(c12), 0.32), (F(c13), 0.36), (F(c14), 0.45), (F(c15), 0.43)}.

p2 = {(F(c21), 0.85), (F(c22), 0.77), (F(c23), 0.79), (F(c24), 0.81), (F(c25), 0.71)};

and

p2 = {(F(c21), 0.35), (F(c22), 0.34), (F(c23), 0.46), (F(c24), 0.26), (F(c25), 0.43)}.

p3 = {(F(c31), 0.84), (F(c32), 0.75), (F(c33), 0.74), (F(c34), 0.69), (F(c35), 0.78)};

and

p3 = {(F(c31), 0.37), (F(c32), 0.36), (F(c33), 0.35), (F(c34), 0.42), (F(c35), 0.48)}.

Step 3: If the consistency consensus threshold is β = 0.6, which produces Ñ0.6
xi

as displayed
in Tables 17–19.

Table 17. Table for Ñ0.6
xi

of expert 1.

C̃ x1 x2 x3 x4 x5 x6

Ñ0.6
x1

0.71 0.32 0.56 0.48 0.53 0.28

Ñ0.6
x2

0.46 0.65 0.36 0.53 0.43 0.28

Ñ0.6
x3

0.55 0.32 0.68 0.48 0.53 0.45

Ñ0.6
x4

0.46 0.58 0.36 0.65 0.43 0.45

Ñ0.6
x5

0.55 0.58 0.56 0.53 0.66 0.28

Ñ0.6
x6

0.52 0.32 0.44 0.48 0.43 0.76

Table 18. Table for Ñ0.6
xi

of expert 2.

C̃ x1 x2 x3 x4 x5 x6

Ñ0.6
x1

0.67 0.35 0.51 0.57 0.58 0.46

Ñ0.6
x2

0.26 0.69 0.37 0.68 0.34 0.59

Ñ0.6
x3

0.59 0.49 0.67 0.48 0.43 0.46

Ñ0.6
x4

0.26 0.35 0.37 0.68 0.34 0.53

Ñ0.6
x5

0.26 0.49 0.42 0.57 0.73 0.46

Ñ0.6
x6

0.56 0.55 0.37 0.48 0.34 0.71
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Table 19. Table for Ñ0.6
xi

of expert 3.

C̃ x1 x2 x3 x4 x5 x6

Ñ0.6
x1

0.67 0.36 0.55 0.53 0.48 0.42

Ñ0.6
x2

0.39 0.68 0.35 0.43 0.59 0.37

Ñ0.6
x3

0.48 0.55 0.65 0.43 0.55 0.37

Ñ0.6
x4

0.39 0.45 0.35 0.63 0.48 0.42

Ñ0.6
x5

0.39 0.36 0.35 0.53 0.65 0.56

Ñ0.6
x6

0.48 0.36 0.55 0.53 0.55 0.66

Step 4: Calculate the distances Dm and Dm as follows:

D1 =
0.248

x1
+

0.269
x2

+
0.315

x3
+

0.189
x4

+
0.261

x5
+

0.306
x6

;

and
D1 =

0.307
x1

+
0.307

x2
+

0.241
x3

+
0.317

x4
+

0.247
x5

+
0.259

x6
.

D2 =
0.276

x1
+

0.276
x2

+
0.293

x3
+

0.146
x4

+
0.261

x5
+

0.228
x6

;

and
D2 =

0.246
x1

+
0.278

x2
+

0.209
x3

+
0.352

x4
+

0.293
x5

+
0.278

x6
.

D3 =
0.243

x1
+

0.233
x2

+
0.210

x3
+

0.219
x4

+
0.184

x5
+

0.259
x6

;

and
D3 =

0.225
x1

+
0.231

x2
+

0.250
x3

+
0.237

x4
+

0.232
x5

+
0.212

x6
.

Situation 1.
Step 5: When O2(x, y) = x2y2, calculate the lower and upper approximations of the best and

worst decision-making objects as follows:
(E1)

C+O
∑m

i=1(Xi)
D1(x) =

0.0276
x1

+
0.0305

x2
+

0.0419
x3

+
0.0165

x4
+

0.0294
x5

+
0.0408

x6

C−
O
∑m

i=1(Xi)
D1(x) =

0.743
x1

+
0.798

x2
+

0.863
x3

+
0.639

x4
+

0.699
x5

+
0.727

x6

C+O
∑m

i=1(Xi)
D1(x) =

0.0421
x1

+
0.0396

x2
+

0.0285
x3

+
0.0399

x4
+

0.0282
x5

+
0.0292

x6

C−
O
∑m

i=1(Xi)
D1(x) =

0.78
x1

+
0.803

x2
+

0.721
x3

+
0.893

x4
+

0.764
x5

+
0.771

x6
.

(E2)

C+O
∑m

i=1(Xi)
D2(x) =

0.0342
x1

+
0.0321

x2
+

0.0363
x3

+
0.0146

x4
+

0.0288
x5

+
0.0259

x6

C−
O
∑m

i=1(Xi)
D2(x) =

0.739
x1

+
0.773

x2
+

0.833
x3

+
0.607

x4
+

0.721
x5

+
0.721

x6

C+O
∑m

i=1(Xi)
D2(x) =

0.0305
x1

+
0.0348

x2
+

0.0211
x3

+
0.0492

x4
+

0.0365
x5

+
0.0345

x6

C−
O
∑m

i=1(Xi)
D2(x) =

0.74
x1

+
0.811

x2
+

0.703
x3

+
0.941

x4
+

0.832
x5

+
0.798

x6
.
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(E3)

C+O
∑m

i=1(Xi)
D3(x) =

0.0265
x1

+
0.0229

x2
+

0.0186
x3

+
0.019

x4
+

0.0180
x5

+
0.0292

x6

C−
O
∑m

i=1(Xi)
D3(x) =

0.735
x1

+
0.742

x2
+

0.705
x3

+
0.742

x4
+

0.659
x5

+
0.771

x6

C+O
∑m

i=1(Xi)
D3(x) =

0.0227
x1

+
0.0225

x2
+

0.0153
x3

+
0.0223

x4
+

0.0227
x5

+
0.0196

x6

C−
O
∑m

i=1(Xi)
D3(x) =

0.707
x1

+
0.739

x2
+

0.862
x3

+
0.772

x4
+

0.741
x5

+
0.697

x6
.

Step 6: By the formula, we obtain the worst and the best decision-making objects as follows:

W1 =
0.75
x1

+
0.81
x2

+
0.87
x3

+
0.64
x4

+
0.71
x5

+
0.74
x6

,W1 =
0.79
x1

+
0.81
x2

+
0.73
x3

+
0.89
x4

+
0.77
x5

+
0.78
x6

W2 =
0.75
x1

+
0.78
x2

+
0.84
x3

+
0.61
x4

+
0.73
x5

+
0.73
x6

,W2 =
0.75
x1

+
0.82
x2

+
0.71
x3

+
0.94
x4

+
0.84
x5

+
0.81
x6

W3 =
0.74
x1

+
0.75
x2

+
0.71
x3

+
0.74
x4

+
0.67
x5

+
0.78
x6

,W3 =
0.71
x1

+
0.74
x2

+
0.86
x3

+
0.78
x4

+
0.75
x5

+
0.71
x6

Thus, we evaluate a closeness coefficient as follows:

R1 =
0.5127

x1
+

0.5021
x2

+
0.4563

x3
+

0.5818
x4

+
0.5212

x5
+

0.5130
x6

R2 =
0.5
x1

+
0.5117

x2
+

0.4581
x3

+
0.6064

x4
+

0.5348
x5

+
0.5250

x6

R3 =
0.4902

x1
+

0.4989
x2

+
0.5488

x3
+

0.5099
x4

+
0.5289

x5
+

0.4747
x6

.

Step 7: Based on these results, we calculate the group optimal index as follows:

R =
0.5002

x1
+

0.5014
x2

+
0.5027

x3
+

0.5483
x4

+
0.5264

x5
+

0.4951
x6

and hence obtain the ranking order as:

x4 � x5 � x3 � x2 � x1 � x6

According to the order, we think the fourth is the best candidate.
Situation 2.
Step 5: When OmM(x, y) = min{x, y}max{x2, y2}, the lower and upper approximations

of the decision-making objects are as follows:
(E1)

C+O
∑m

i=1(Xi)
D1(x) =

0.1132
x1

+
0.1136

x2
+

0.1331
x3

+
0.0750

x4
+

0.1103
x5

+
0.1333

x6

C−
O
∑m

i=1(Xi)
D1(x) =

0.6084
x1

+
0.6433

x2
+

0.7456
x3

+
0.5477

x4
+

0.6337
x5

+
0.6728

x6

C+O
∑m

i=1(Xi)
D1(x) =

0.1378
x1

+
0.1297

x2
+

0.1018
x3

+
0.1258

x4
+

0.1044
x5

+
0.1128

x6

C−
O
∑m

i=1(Xi)
D1(x) =

0.6839
x1

+
0.7266

x2
+

0.6089
x3

+
0.7986

x4
+

0.6164
x5

+
0.6264

x6
.
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(E2)

C+O
∑m

i=1(Xi)
D2(x) =

0.1238
x1

+
0.1166

x2
+

0.1237
x3

+
0.0601

x4
+

0.1103
x5

+
0.0993

x6

C−
O
∑m

i=1(Xi)
D2(x) =

0.6234
x1

+
0.6371

x2
+

0.6934
x3

+
0.4814

x4
+

0.5248
x5

+
0.5667

x6

C+O
∑m

i=1(Xi)
D2(x) =

0.1104
x1

+
0.1174

x2
+

0.0886
x3

+
0.1397

x4
+

0.1237
x5

+
0.1211

x6

C−
O
∑m

i=1(Xi)
D2(x) =

0.6059
x1

+
0.6579

x2
+

0.5670
x3

+
0.8868

x4
+

0.7612
x5

+
0.6490

x6
.

(E3)

C+O
∑m

i=1(Xi)
D3(x) =

0.1091
x1

+
0.0984

x2
+

0.0887
x3

+
0.0869

x4
+

0.0801
x5

+
0.1128

x6

C−
O
∑m

i=1(Xi)
D3(x) =

0.6022
x1

+
0.5987

x2
+

0.5684
x3

+
0.5895

x4
+

0.5320
x5

+
0.6083

x6

C+O
∑m

i=1(Xi)
D3(x) =

0.1010
x1

+
0.0976

x2
+

0.1056
x3

+
0.0941

x4
+

0.0980
x5

+
0.0923

x6

C−
O
∑m

i=1(Xi)
D3(x) =

0.5795
x1

+
0.5961

x2
+

0.6201
x3

+
0.6133

x4
+

0.5974
x5

+
0.5667

x6
.

Step 6: By the formula, we obtain the worst and the best decision-making objects as follows:

W1 =
0.65
x1

+
0.68
x2

+
0.78
x3

+
0.58
x4

+
0.67
x5

+
0.72
x6

,W1 =
0.73
x1

+
0.76
x2

+
0.65
x3

+
0.82
x4

+
0.66
x5

+
0.67
x6

W2 =
0.67
x1

+
0.68
x2

+
0.73
x3

+
0.51
x4

+
0.58
x5

+
0.61
x6

,W2 =
0.65
x1

+
0.69
x2

+
0.61
x3

+
0.90
x4

+
0.79
x5

+
0.69
x6

W3 =
0.65
x1

+
0.64
x2

+
0.61
x3

+
0.63
x4

+
0.57
x5

+
0.65
x6

,W3 =
0.62
x1

+
0.64
x2

+
0.66
x3

+
0.65
x4

+
0.64
x5

+
0.61
x6

Thus, we evaluate a closeness coefficient as follows:

R1 =
0.5271

x1
+

0.5071
x2

+
0.4542

x3
+

0.5862
x4

+
0.4934

x5
+

0.4827
x6

R2 =
0.4922

x1
+

0.5067
x2

+
0.4529

x3
+

0.6378
x4

+
0.5780

x5
+

0.5314
x6

R3 =
0.4906

x1
+

0.4989
x2

+
0.5211

x3
+

0.5096
x4

+
0.5279

x5
+

0.4818
x6

.

Step 7: Based on these results, we calculate the group optimal index as follows:

R =
0.5054

x1
+

0.5109
x2

+
0.4875

x3
+

0.5531
x4

+
0.5191

x5
+

0.4871
x6

and hence obtain the ranking order as:

x4 � x5 � x2 � x1 � x3 � x6

From the calculations, we conclude that the fourth system analysis engineer is the best
alternative among the others.

Situation 3.
Step 5: When O3(x, y) = x3y3, calculate the lower and upper approximations of the best and

worst decision-making objects as follows:
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(E1)

C+O
∑m

i=1(Xi)
D1(x) =

0.0046
x1

+
0.0053

x2
+

0.0086
x3

+
0.0021

x4
+

0.0051
x5

+
0.0082

x6

C−
O
∑m

i=1(Xi)
D1(x) =

0.9377
x1

+
0.9931

x2
+

1
x3

+
0.9109

x4
+

0.9831
x5

+
1
x6

C+O
∑m

i=1(Xi)
D1(x) =

0.0087
x1

+
0.0079

x2
+

0.0048
x3

+
0.0079

x4
+

0.0047
x5

+
0.0049

x6

C−
O
∑m

i=1(Xi)
D1(x) =

1
x1

+
1
x2

+
0.9573

x3
+

1
x4

+
0.9652

x5
+

0.9658
x6

.

(E2)

C+O
∑m

i=1(Xi)
D2(x) =

0.0063
x1

+
0.0058

x2
+

0.0069
x3

+
0.0017

x4
+

0.0049
x5

+
0.0042

x6

C−
O
∑m

i=1(Xi)
D2(x) =

0.9717
x1

+
0.9935

x2
+

1
x3

+
0.8358

x4
+

0.9831
x5

+
0.9256

x6

C+O
∑m

i=1(Xi)
D2(x) =

0.0053
x1

+
0.0065

x2
+

0.0041
x3

+
0.0109

x4
+

0.0069
x5

+
0.0064

x6

C−
O
∑m

i=1(Xi)
D2(x) =

0.9351
x1

+
1
x2

+
0.9129

x3
+

1
x4

+
1
x5

+
0.9888

x6
.

(E3)

C+O
∑m

i=1(Xi)
D3(x) =

0.0043
x1

+
0.0035

x2
+

0.0025
x3

+
0.0026

x4
+

0.0024
x5

+
0.0049

x6

C−
O
∑m

i=1(Xi)
D3(x) =

0.9313
x1

+
0.9466

x2
+

0.9144
x3

+
0.9567

x4
+

0.8750
x5

+
0.9658

x6

C+O
∑m

i=1(Xi)
D3(x) =

0.0034
x1

+
0.0036

x2
+

0.0042
x3

+
0.0033

x4
+

0.0034
x5

+
0.0027

x6

C−
O
∑m

i=1(Xi)
D3(x) =

0.9077
x1

+
0.9439

x2
+

0.9691
x3

+
0.9822

x4
+

0.9453
x5

+
0.9034

x6
.

Step 6: By the formula, we obtain the worst and the best decision-making objects as follows:

W1 =
0.94
x1

+
0.99
x2

+
1
x3

+
0.91
x4

+
0.98
x5

+
1
x6

,W1 =
1
x1

+
1
x2

+
0.95
x3

+
1
x4

+
0.96
x5

+
0.96
x6

W2 =
0.97
x1

+
0.99
x2

+
1
x3

+
0.83
x4

+
0.98
x5

+
0.92
x6

,W2 =
0.93
x1

+
1
x2

+
0.91
x3

+
1
x4

+
1
x5

+
0.98
x6

W3 =
0.93
x1

+
0.94
x2

+
0.91
x3

+
0.95
x4

+
0.87
x5

+
0.96
x6

,W3 =
0.91
x1

+
0.94
x2

+
0.96
x3

+
0.98
x4

+
0.94
x5

+
0.91
x6

Thus, we evaluate a closeness coefficient as follows:

R1 =
0.5159

x1
+

0.5021
x2

+
0.4891

x3
+

0.5232
x4

+
0.4954

x5
+

0.4913
x6

R2 =
0.4905

x1
+

0.5016
x2

+
0.4770

x3
+

0.5446
x4

+
0.5042

x5
+

0.5164
x6

R3 =
0.4936

x1
+

0.4992
x2

+
0.5142

x3
+

0.5066
x4

+
0.5192

x5
+

0.4833
x6

.



Symmetry 2021, 13, 1779 25 of 27

Step 7: Based on these results, we calculate the group optimal index as follows:

R =
0.5022

x1
+

0.5006
x2

+
0.5004

x3
+

0.5171
x4

+
0.5082

x5
+

0.4899
x6

and hence obtain the ranking order as:

x4 � x5 � x1 � x2 � x3 � x6

According to the rank, we think the fourth candidate is the best.

7.3. Comparative Analysis

One of the main limitations of the traditional MCGDM problem with fuzzy informa-
tion is that it uses generalized operators with continuity under fuzzy binary relations, such
as triangular norms, to integrate different preference evaluations and decision makers. The
key problem of the traditional MCGDM problem is how to define the aggregation operators
effectively and precisely. First, covering-based fuzzy rough set models overcome this prob-
lem because they do not rely on fuzzy duality, but on the generalization of this relationship.
In particular, the multi-granulation fuzzy rough set based on fuzzy β-covering has stronger
advantages in dealing with such problems. Secondly, as a discontinuous aggregation
operator, the overlap function has a wide range of applications in data classification, image
processing and multi-attribute decision making and can effectively solve the problem of
data discontinuity in real life. The extended model of MGFRS based on the overlap function
in this paper can better deal with the MCGDM problem and allows decision makers to
obtain effective and clear ordering information. We made a preliminary attempt to study
the techniques and models based on the FCOMGFRS theory, which applies to MCGDM
problems with fuzzy information.

Here, we give a new approach to solve MCGDM problems according to the FCOMGFRS
model. Table 20 shows the comparisons between our approach and the previous ones.

Table 20. Comparison of different methods.

Methods Ranking of Alternatives

Zhan’s method47 (t-norm I) x4 � x1 � x6 � x2 ≈ x3 ≈ x5
Zhan’s method47 (t-norm II) x4 � x1 � x5 � x2 � x3 � x6
Zhan’s method47 (t-norm III) x4 � x2 � x1 � x3 � x5 � x6

Atef’s method48 x4 � x1 � x6 � x2 = x3 = x5
Our method based O2 x4 � x5 � x3 � x2 � x1 � x6
Our method based O3 x4 � x5 � x1 � x2 � x3 � x6

Our method based OmM x4 � x5 � x2 � x1 � x3 � x6

According to Table 20, the same optimal solution is obtained by different methods.
Firstly, it shows that the method proposed in this paper is feasible and effective. Secondly,
there are no two similar items in the ranking obtained by the method proposed in this
paper. Compared with the existing methods, the ranking order of decision makers can be
given more clearly, indicating that the method proposed in this paper has more advantages
in dealing with such problems.

8. Conclusions

Inspired by the literature [4,5,31], this paper presents the fuzzy β-covering fuzzy rough
set model based on the overlap function, which is an extended form of the fuzzy β-covering
based (ϕ, T)-fuzzy rough set model. As a kind of non-associative fuzzy logic connectives,
the overlap function is the extension of a continuous triangular norm. Replacing the
triangular norm with the overlap function can not only retain the important properties of
the original fuzzy β-covering fuzzy rough set model but also provide a more theoretical
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basis for us. It can also overcome the continuity feature in practical application problems
and enlarge the application range of a fuzzy rough set model. In order to solve the multi-
criteria decision making problem more effectively, a new method with a FCFRS model
based on the overlap function is proposed and compared with the existing methods, and
the feasibility, effectiveness and decision advantage of the method are verified. Based on
the fuzzy β-covering fuzzy rough set model based on the overlap function, we extend it to
the case of multi-granulation, give two kinds of multi-granularity fuzzy rough set models,
FCOMGFRS and FCPMGFRS models, and apply them to the MCGDM problem. Compared
with the existing methods, the results obtained are more helpful to decision makers. As a
further research topic, the variable precision fuzzy β-covering fuzzy rough set based on
the overlap function will be discussed in the following work [47–49] and applied to data
mining and knowledge discovery, etc.
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