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Abstract: The assembly is the last process of controlling the product quality during manufacturing.
The installation guidance should provide the appropriate assembly information, e.g., to specify the
components in each product. The installation guidance with low quality results in rework or the re-
source waste from the failure products. This article extends the dimensional chain assembly problem
proposed by Tsung et al. to consider the multiple dimensional chains in the product. Since there are
multiple dimensional chains in a product, the installation guidance should consider inseparability
and acceptability as computing the installation guidance. The inseparability means that the qualities
of all dimensional chains in the part should be evaluated together without separation, while the
acceptability stands for that the size of each product should be satisfied with the specification. The
simulated annealing (SA) algorithm is applied to design the assembly guidance optimizer named
as AGOMDC to compute the assembly guidance in the dimensional chain assembly problem with
multiple dimensional chains. Since SA has high performance in searching neighbor solutions, the
proposed approach could converge rapidly. Thus, proposed AGOMDC could be applied in real-world
application for the implementation consideration. The simulations consist of two parts: the feasibility
evaluation and the algorithm configuration discussion. The first part is to verify the inseparability
and acceptability that are the hard constraints of the assembly problem for the proposed AGOMDC,
and the second one is to analyze the algorithm configurations to calculate the assembly guidance
with 80% quality. The simulation results show that the inseparability and acceptability are achieved,
while the proposed AGOMDC only requires more than two seconds to derive the results. Moreover,
the recommended algorithm configurations are derived for evaluate the required running time and
product quality. The configurations with product quality 80% are that the temperature descent rate is
0.9, the initial temperature is larger than 1000, and the iteration recommended function is derived
based on the problem scale. The proposed AGOMDC not only helps the company to save the time of
rework and prevent the resource waste of the failure products, but is also valuable for the automatic
assembly in scheduling the assembly processes.

Keywords: dimensional chain analysis; tolerance optimization; simulated annealing

1. Introduction

Owing to information and communications technologies (ICT), Industry 4.0 becomes
the popular topic in manufacturing, information science, and industrial management [1,2].
The major technologies that are applied to realize Industry 4.0 include Internet of Things to
collect data [3–5], cloud in storing and preparing data [6–8], and artificial intelligence [9,10]
and data analysis [11,12] for extracting the knowledge from data. So, the producing
managers could use the derived knowledge to enhance manufacturing efficiency.

Assembly is the last step of manufacturing, and it is also the last process of controlling
the production quality [13]. After receiving some components and the installation guidance,
the assemblers pick up the specific components and assemble the selected components
together to the products or modules. The real size of each component would be different
with that of the design size, so the tolerance is allowed in manufacturing [14]. However,
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the tolerance determines the size of the products, and that is the product quality. We
use the bearing shown in Figure 1 as the example to explain the product quality. The
bearing should be installed in the bottom bracket of a bike, as shown in Figure 1a, and
the composition diagram is illustrated in Figure 1b. Each bearing consists of one outer
race, some balls, one retainer, and one inner race. Since the balls and retainer should be
pre-installed, we treat the balls and retainer are assembled as one module. So, the assembler
would pick up one outer race, one retainer, and one inner race to assemble a bearing. The
bearings have two surfaces to touch bottom bracket of a bike and the crank axles. The
bottom bracket touches the outer race, while the crank axles touch the inner race. The
quality of bearings is determined by the sizes of outer race and inner race, and they are
assembled with the retainer module. The selection of the components determines the final
sizes of the products. Therefore, the assembly process would be the last step in controlling
the product quality.

(a) (b)

Figure 1. The example of the bearing for bike. (a) The bearing that is installed in the bike. (b) The
composition diagram of a bearing.

If the assemblers arbitrarily pick up the components and assemble them together,
the products may be out of the specification. Thus, the defect products require rework
to fix the defect, and the products with poor quality will be abandoned. Inappropriate
assembly process will increase the manufacturing cost. To increase the product quality and
decrease the manufacturing cost, analyzing the dimensional chain to guarantee the size
of each product [15,16] and computing the installation guidance to assemble appropriate
components together [16,17] are feasible solutions. The dimensional chain is analyzed be-
fore manufacturing process and the installation guidance is calculated after manufacturing.
Therefore, calculating the installation guidance is more appropriate than analyzing the
dimensional chain from the perspective of the implementation.

From the above example, the product quality is determined by the components
selected by assemblers. Quality control officers have to measure the component sizes one
by one in the traditional manufacturing, and this manner requires huge cost. The ICT
based services help measurers to collect the component sizes automatically [18,19], and
the cost is reduced. Therefore, collecting all sizes of components becomes available and
requires less cost than in traditional manufacturing.

Tsung et al. formulated the calculation of installation guidance as the dimensional
chain assembly (DCA) problem, and proposed the assembly guidance optimizer (AGO)
to calculate the installation guidance [17]. The DCA problem proposed by Tsung et al.
considers the product that consists of 11 parts with one-dimensional chain. However, in the
real-world instance, most products consist of some dimensional chains, but this property
is not considered in the DCA. Considering that the bearing as shown in Figure 1, there
are two dimensional chains, and they cross on the part retainer. Replacing the retainer to
another one would results in different quality of both dimensional chains. Therefore, we
modify the DCA problem to the dimensional chain assembly, with multiple dimensional
chains problem named by DCAMDC for involving the concept of multiple dimensional
chains in this article. The major difference between single dimensional chain and multiple
dimensional chains is to consider the inseparability of dimensional chains. Multiple
dimensional chains may cross on one part, so replacing the part results in the different
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quality of all corresponding dimensional chains. Therefore, the inseparability of multiple
dimensional chains should be taken into account when evaluating the solution quality.

There is exactly one-dimensional chain in the DCA problem, so the solution quality is
defined by the size of the dimensional chain. We extend this idea from the DCA problem to
the DCAMDC problem, but it fails. The solution quality comes from multiple dimensional
chains in the DCAMDC problem, so we have to normalize the sizes of all dimensional
chains to the solution quality. According to the min-max theorem [20,21], minimizing the
worst quality increases the solution quality for the whole solution. Thus, we consider the
worse quality from all dimensional chains as the solution quality, so the inseparability
could be satisfied.

Except for the inseparability of multiple dimensional chains, the solution feasibility is
another critical issue. All product sizes are specified in the product design phase, and the
designer would list the size information for components and sizes in the specification. The
feasibility indicates that the quality of each dimensional chain should fit the requirements
listed in the specification. To achieve the solution feasibility, we extend the AGO algo-
rithm proposed by Tsung et al. [17] to the Assembly Guidance Optimizer with Multiple
Dimensional Chains denoted by AGOMDC to solve the DCAMDC problem. The AGOMDC
algorithm is the application of the simulated annealing (SA) [22,23]. We proposed a new
solution format, the local search algorithm, and the equation of calculating the maximum
iteration to realize the solution with the approximation ratio 0.8.

In the simulation, we receive a batch of component sizes for assembling bearings
from the assembly line, and the mission is to calculate the assembly guidance that the
inseparability and the feasibility are satisfied. To increase the diversity of the dataset, we
analyze the received size data to design the case generator, and we can generate synthetic
data to cover more instance properties. From the first simulation results, the solution
derived from the proposed AGOMDC reaches both the inseparability and the feasibility.
Moreover, AGOMDC consume 562.6 milliseconds to derive the solution, so the running
time is acceptable. The first simulation indicates that computing the feasible solutions by
the proposed AGOMDC is not difficult, and we organize the second simulation to analyze
the algorithm configuration for ensuring the solutions with 80% quality. Therefore, the
assembly manager could rapidly determine the algorithm configuration based on the
problem properties, and the product quality is also guaranteed. From the simulation
results, the configurations with product quality 80% are that the temperature descent rate
is 0.9, the initial temperature is larger than 1000, and the iteration recommended function
is derived based on the problem scale.

The major contributions of this article include: (1) formulating the DCAMDC as the
optimization problem for complex product assembly, (2) applying the SA to compute
the installation guidance, and (3) proposing the algorithm configuration for the assembly
manager for adjusting the proposed algorithm to compute the installation guidance with
the guarantee of 80% product quality.

In the following article, some related works are discussed in Section 2. The DCAMDC
problem is defined in Section 3, and the example of assembling bearings would be given to
explain the DCAMDC problem. In Section 4, the main algorithm of AGOMDC is present,
and the details of the solution format and the solution quality are stated simultaneously.
The simulation results and the application of AGOMDC algorithm is discussed in Section 5,
and the conclusion is in Section 6.

2. Related Works

The tolerance calculation helps to increase the product quality. Increasing purchasing
provides high motivation in statistical tolerance calculations in Europe [24,25]. Moreover,
in Europe, feature factories target at the term “Zero Defect Manufacturing” and set it as the
milestone in 2020 roadmap [26]. We all know the importance of the tolerance calculation,
but however, only a few companies apply the tolerance calculation in manufacturing in
German from the analysis of Walter et al. [27]. In the past decade, collect all sizes of
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each component is difficult, but it is realized easier currently due to the publication of
the ICT applications, such as Internet of Things [28] and cloud computing [29]. So, more
companies would like to consider the tolerance calculation, since the difficulty of data
collection is eased.

In the assembly line, the assemblers receive an installation guidance, and they follow
the instructions listed in the installation guidance to pick up the specify components
and assemble the selected components together. The goal of the assembly problem is
to determine the installation guidance to specify the components in a product such that
the product quality fits the requirements of the specification. There are two manners to
determine the installation guidance, and they are discussed as follows.

• The dimension chain analysis in the product design phase [15,16]: the properties of
components are designed, including the ideal component size, the tolerance, and the
size of touch surface. Then, the dimensional chain analysis is applied to estimate
the product size. If the product size is unacceptable, the designer should modify the
components until the product size is acceptable.

• The installation guidance analysis [17]: the installation guidance analysis analyzes the
component sizes and determines the installation guidance to specific the components
in each product. The major difference between the above manners is the analysis
timing.

Above approaches could provide installation guidance, but the dimensional chain
analysis takes place in the design phase, while the installation guidance analysis is exe-
cuted after the manufacturing processes. The dimensional chain analysis provides precise
prediction in product quality only if the quality of manufacturing processes is guaranteed.
The installation guidance analysis considers real size information, and thus, the installa-
tion guidance analysis provides the installation guidance based on the real sizes of the
components. Therefore, this article considers the installation guidance analysis.

The installation guidance analysis could be formulated as the optimization problem,
and some heuristic algorithms could be applied to determine the installation guidance.
Kim et al. used taboo search and SA to determine the swap of the assembly process to
minimize mean tardiness [30]. Ge et al. proposed the homogeneous Markov chain of
reassembly process for the assembly process of remanufactured crankshaft [31], and the
term “reassembly” has been applied to enhance the product quality. Rausch et al. focused
on easing the assembly rework to enhance the assembly efficiency, and the authors applied
Monte Carlo simulation to identify potential misalignments [32]. Homri et al. consider
the parts’ form defects to the over-constrained assemblies [33]. Morse et al. mentioned
that the variability should be allowed and controlled to maintain the product function [34].
Tsung et al. consider the SA to compute the installation guidance to maximize the quality
for all products [17].

The DCAMDC problem differs from the DCA problem that is proposed by
Tsung et al. [17] in terms of the number of dimensional chains. The DCA problem consists
of a one-dimensional chain, and the DCAMDC problem has multiple dimensional chains. In
the DCAMDC problem, the multi-objective decision analysis [35–37] should be considered
to transform multiple objectives to single objective. There are some techniques of deriving
the single objective, and we consider the score normalization in the DCAMDC problem.
For the perspective of the feasibility, the size of each dimensional chain should be satisfied
with the specification. Therefore, the importance of each dimensional chain is equal, and
the score normalization is feasible in the DCAMDC problem.

3. The Dimensional Chain Assembly with Multiple Dimensional Chains Problem

Before formulating the problem, some preliminaries are necessary, including the target
of assembly, the installation guidance, the dimensional chains, and the symbolic system.
Thus, the preliminaries are given in Section 3.1, the problem definition is in Section 3.2, and
an example is provided to explain the problem and the goal in Section 3.3.
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3.1. Preliminary

• Background of Assembly: Suppose the target product consists of |P| parts. As the
example shown in Figure 1 demonstrates, the bearings have three parts, i.e., |P| = 3,
and they are outer race, retainer module, and inner race. The assembler picks up |P|
components where one per part and assembles |P| selected components together to
produce one product. In Figure 1, the assembler picks up three components—one
outer race, one retainer module, and one inner race and then assembles them together.
Given |P| parts and that each part has |T| components, the number of components
that are delivered to the entrance of the assemble line is |T| × |P|. So, the assembler
selects |P| components to produce one product and repeats |T| times to finish |T|
products in total.

• Component Sizes: The label comj,y indicates y-th component of j-th part, where
0 ≤ y < |T| and 0 ≤ j < |P|. The component comj,y has several component sizes, and
sj,y,z is applied to represent the z-th component size of comj,y. For example, the outer
race in Figure 1b has two component sizes, and they are the outside diameter and
inside diameter.

• Multiple dimensional chains: The major difference between DCA proposed by
Tsung et al. [17] and DCAMDC is the number of dimensional chains in a product. In
the DCA, the product has exactly one-dimensional chain, e.g., crankshafts, but there
are several dimensional chains in a product for DCAMDC, e.g., bearings. Suppose each
product consists of |C| dimensional chains in DCAMDC; it means that each product
has |C| product sizes. Thus, |C| = 2 in Figure 1b. Chain number one consists of outer
race and retainer module, while chain number two consists of retainer module and
inner race. Moreover, one part may belong to several chains. The retainer module
shown in Figure 1 belongs to both dimensional chains.

• Product tolerance: Since each product has |C| dimensional chains in DCAMDC, there
are |C| product sizes in each product. According to the assembly position in the
dimensional chain k, each component comj,y has three statuses: (1) comj,y contains
other components, (2) comj,y is in other components, and (3) comj,y does not belong to
the dimensional chain k. For the chain number one in Figure 1b, the retainer module is
in the outer race, and the inner race is not in the chain number one. After assembling
a product, |C| product sizes are derived, and the label psi

k represents the product size
for k-th chain in i-th product. Thus, the tolerance for the dimensional chain is the gap
between psi

k and the ideal product size.
• Product specification: The product specification includes three values—the lower

bound of tolerance, the central value, and the upper bound of tolerance for each
dimensional chain. The central value is the ideal product size, while the product
specification specifies the ranges of the acceptable products for the dimensional chain.
Since the cutting process may result in the tolerance, the product designer provides
the CAD size for each part with a specific range. Here, we assume that the sizes of all
components are satisfied with the range requirement. The out-of-range components
could be fixed by the rework, so the assumption is rational.

• The installation guidance: The installation guidance specifies the components of each
product, so the assemblers could follow the guidance to assemble products. Since
each product consists of |P| components, a two-dimensional structure (|T| by |P|) is
used to represent the installation guidance for assembling |T| products, as illustrated
in Figure 2. The element gers in the installation guidance represents the component
index for r-th product with s-th part, so each row indicates the components of the
product. The details of the installation guidance will be provided when introducing
the proposed solution in Section 4.2.
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Figure 2. The structure of the installation guidance.

3.2. Definition of DCAMDC

An instance of DCAMDC consists of |T| × |P| components and |C| dimensional chains,
and |T| products will be generated eventually. The y-th component in j-th part comj,y has
several component sizes, and z-th component size is sj,y,z. Each product has |C| product
sizes, and each product size psi

k matches to the corresponding dimensional chain. To
calculate psi

k, the decision variable xj,y,z as shown in Equation (1) is applied to formulate
the relationship between components in each dimensional chain. Consider that two
components comj,y and comj′ ,y where j 6= j′ with component sizes sj,y,z and sj′ ,y,z for the
same dimensional chain, respectively. If comj′ ,y contains comj,y which means comj,y is in
comj′ ,y, the size of the assemble surface between comj,y and comj′ ,y is (sj′ ,y,z − sj,y,z) that is
identical to (sj′ ,y,z × 1) + (sj,y,z ×−1). The decision variables of comj,y and comj′ ,y are 1 and
−1, respectively.

xj,y,z =


−1 if comj,y is assembled in other part

0 if comj,y does not infolve in dimensional chain
1 if comj,y contains other components.

(1)

Therefore, the product size psi
k for chain k could be derived in Equation (2). The idea

of calculation is to sum up the product of component sizes and the corresponding decision
variables for all possible permutations.

psi
k = ∑

∀j
∑
∀y

∑
∀z

sj,y,z × xj,y,z. (2)

Given an instance of DCAMDC and the product specification with the lower bound
lbk, the central value cvk, and the upper bound ubk for chain k, where lbk ≤ 0, cvk ∈ R,
and 0 ≤ ubk, the goal of DCAMDC is to calculate the installation guidance, so that each
psi

k is within the lower bound of tolerance and the upper bound of tolerance from the
specification for all dimensional chains. A feasible solution of DCAMDC should be satisfied
with the inseparability and acceptability:

• Inseparability: The multi-dimensional chains mean that the product consists of several
dimensional chains, and some dimensional chains may cross on one part. Thus, the
part that is crossed by some dimensional chains cannot be separated as evaluating the
solution quality.

• Acceptability: The acceptability means that the tolerance of each dimensional chain
must be satisfied with the specification. From the product specification, the range
of acceptable tolerance is illustrated in Figure 3. The red line indicates the feasible
tolerance range that the product sizes should fall into. The optimal solution indicates
that psi

k is identical to cvk for each i.
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Figure 3. The relationship between the central value and the feasible ranges.

Computing the solution with inseparability and acceptability is the goal of solving
DCAMDC. However, this is insufficient for the perspective of implementation, because
the assembly managers have no idea to extend the solution to other DCAMDC problems.
Therefore, the other objective of this article is to provide the approach to compute the
solution with 80% quality.

3.3. A Case Study of Bearing Assembly

Given the bearing assembly line, the composition diagram is shown in Figure 4.
Suppose that the balls are preinstalled in the retainer, and the balls and the retainer could
be treated as the retainer module. The assembly process includes three parts, i.e., |P| = 3,
the outer race, the retainer module, and the inner race with labels j = 1, 2, 3, respectively.
Each part has two sizes in this example where the outside size is marked as number
one, while inside size is number two. Therefore, the outer race has outside diameter
s1,y,1 and inside diameter s1,y,2; the retainer module has outside diameter s2,y,1 and inside
diameter s2,y,2; the inner race has outside diameter s3,y,1 and inside diameter s3,y,2 for y-th
componment. The outer race and retainer module are involved in the chain number one
while chain number two has the retainer module and inner race. Equation (3) is derived
by expanding Equation (2). Since only component sizes s1,y,2 and s2,y,1 are in dimensional
chain number one, e.g., k = 1, the values of x1,y,2 and x2,y,1 are non zero. Thus, the product
sizes of i-th product is calculated by Equations (4) and (5) for chain number two.

Figure 4. The assembly information of bearing.

psi
k =s1,y,1 × x1,y,1 + s1,y,2 × x1,y,2 + s2,y,1 × x2,y,1 + s2,y,2 × x2,y,2+

s3,y,1 × x3,y,1 + s3,y,2 × x3,y,2
(3)

psi
1 = s1,y,2 × x1,y,2 + s2,y,1 × x2,y,1 (4)

psi
2 = s2,y,2 × x2,y,2 + s3,y,1 × x3,y,1 (5)

Considering that the assembly line receives 12 components that four for part number
one, four for part number 2, and four for part number 3, as shown in Table 1, the label wpjx
indicates the x-th workpiece for j-th part. The objective is to assemble four bearings with
the specification listed in Table 2. In other words, the sizes of the acceptable bearing should
be within 0.15 and 0.4 for chain number one, and 0.1 and 0.43 for chain number two.
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Table 1. The size information for each component.

Workpiece wpj1 wpj2 wpj3 wpj4

(s1,y,1, s1,y,2) (12.5, 10.08) (12.5, 10.2) (12.5, 10.14) (12.5, 10.1)
(s2,y,1, s2,y,2) (9.97, 7.17) (9.86, 7.2) (9.9, 7.18) (9.9, 7.15)
(s3,y,1, s3,y,2) (7, 5) (6.8, 5) (6.87, 5) (6.9, 5)

Table 2. The specification of target bearings of the example listed in Table 1.

Chain Number One Chain Number Two

lbk −0.05 −0.15
cvk 0.2 0.25
ubk 0.2 0.18

Suppose that the installation guidance with four bearings is (wp11, wp21, wp31), (wp12,
wp22, wp32), (wp13, wp23, wp33), and (wp14, wp24, wp34). The guidance indicates that the
first product consists of three components, and they are wp11, wp21, and wp31 from part 1,
2, and 3 respectively. The gaps between psi

k and cvk are (0.11, 0.17), (0.34, 0.4), (0.24, 0.31),
and (0.2, 0.25) for (chain number one, chain number two), respectively. For convenience,
we use ∆i

k to represent the gap that is the tolerance between psi
k and cvk. The first bearing

is unacceptable because the sizes are 0.11 and 0.17 for chain number one and chain number
two, but however the acceptable specification should be within (0.15, 0.4) and (0.1, 0.43).
The size of chain number two of the first bearing is smaller than the lower bound of the
specification, so the first bearing is unacceptable. Eventually, the solution is infeasible.

4. Assembly Guidance Optimizer with Multiple Dimensional Chains

The DCAMDC is a permutation problem. For the perspective of permutation, the goal
is to find out a permutation that the installation guidance is satisfied with the inseparability
and acceptability, as shown in Section 3.2. The exhaustive search [38] could obtain the
optimal solution with minimum psi

k, but the time complexity is increased by the number
of products, i.e., |T|, and the assembly complexity, i.e., |P|. Computing the optimal would
pay more computation cost, so the near-optimal solutions are more appropriate than the
optimal solution.

Several heuristic algorithms are proposed to compute the near optimal solution in
large-scale search space; for example, genetic algorithm (GA) [39], Tabu search [40], ant
colony optimization [41], SA [42,43], and flower pollination algorithm [44]. The heuristic
algorithms could be classified into single solution-based (SS) approach, e.g., Tabu search
and SA, and multi-solution-based (MS) approach, e.g., GA, ant colony optimization, and
flower pollination algorithm. The major difference is that the MS approaches estimate
several solutions in an iteration and only one solution is processed in the SS solution. In an
iteration, MS approaches require a longer processing time than that of SS approaches, and
MS approaches provide wider search than SS approaches. Theoretically, the MS approaches
output the solutions with better quality than SS approaches, because of the search width.
The MS approaches provide higher solution quality than that of the SS approaches, but the
quality of output solution is not so stable as that of the SS approaches. The MS approaches
parallelly search solutions but reaching better solution is based on the search probability.
Thus, the SS approaches deeply search from single solution, so the solutions obtained by
the SS approaches are more stable than that of the MS approaches. The candidates of SS
approaches are SA and Tabu search algorithm. Both of SA and Tabu search finds neighbors
from the solutions iteratively. Tabu search considers the Tabu list to prevent previously
visited solutions, while SA allows the evaluation of visited solutions. Tabu list is helpful
in the convergence in the small-scale problem but the probability of visiting previous
solutions is low. Tabu search requires the computation resource to maintain Tabu list, but
extra computation resource is unnecessary for SA. Therefore, SA is more appropriate than
Tabu search algorithm for solving large optimization problems.
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4.1. Proposed Algorithm

We extend the algorithm AGO proposed by Tsung et al. [17] to design the Assembly
Guidance Optimizer with Multiple Dimensional Chains (AGOMDC) to compute the instal-
lation guidance for DCAMDC. The proposed AGOMDC is shown in Algorithm 1. Given
the DCAMDC problem instance D and the algorithm configuration (T, r, iter, v), the goal of
AGOMDC is to calculate the feasible solution that the installation guidance is satisfied with
the constraints of then inseparability and the acceptability.

Algorithm 1: The algorithm of the proposed AGOMDC for the DCAMDC problem.
input : DCAMDC instance D and the algorithm configuration (T, r, iter, v) where

T is the initial temperature, r is the temperature descent rate, iter is the
maximum iteration, and v is the variation degree.

output :The assembly guidance sol
1 sol ← solGenerator() ;
2 while not meet the stop condition do
3 solnb ← nbFinder(sol, v);
4 if ∆E > 0 then
5 sol ← solnb;

6 else if diverse(solnb) = True then
7 sol ← solnb;

8 T ← T × r;

9 return sol ;

In line 1, the initial solution sol is generated by the function solGenerator(). The
manager could use various approaches to implement solGenerator() based on the problem
consideration. We apply the random generator in solGenerator() to maximize the solution
diversity. The goal of the installation guidance is to assemble |T| products, so the product
index of y-th component comj,y in part j-th part is determined randomly.

In line 2, the stop condition is used to control the solution quality and the algorithm
running time, and the candidates of the stop conditions are maximum CPU time, the
maximum number of iterations, the number of iteration that the solution quality is not
improved, etc. Longer computation time theoretically results in better solution quality,
but the marginal utility will be decreased for long running time. The setting of the stop
condition will be discussed in the simulation, and we will provide the recommended
configurations for managers.

In line 3, a local search algorithm is implemented in nbFinder(sol, v), and the algorithm
of nbFinder(sol, v) is shown in Algorithm 2. Randomly changing the components of
the same part from two products to generate a new neighborhood is the major idea of
nbFinder(sol, v). Therefore, in line 2 and 3, the indexes of two products and the target
part are selected, and the corresponding components are exchanged in the neighborhood
solnb. The variation degree v is the input parameter. Larger setting of v indicates more
components are swapped in nbFinder(sol, v), and it means that solnb is much different
from sol.
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Algorithm 2: The local search algorithm of nbFinder(sol, v).
input : sol the solution for DCAMDC, the variation degree v.
output :The neighborhood solnb for sol

1 for z = 0 to v do
2 pick up two target product indexes ixt

1 and ixt
2 from (1, |T|) without

replacement;
3 pick up one target part index ixp from (1, |P|) ;
4 solnb ← swap(comixp ,ixt

1
, comixp ,ixt

2
) ;

5 return solnb ;

After generating the neighborhood, we have sol and solnb, and the mission in each
iteration is to determine the solution that will survive in the next iteration. The survival
solution is determined in the area from line 4 to line 7. We use the label ∆E = q(sol)−
q(solnb) to represent the gap of the solution quality between sol and solnb, where q(sol)
returns the solution quality of sol, and the details of q(sol) will be described in Section 4.3.
The quality of sol is better than solnb when ∆E > 0, and sol will survive in the next
iteration, as shown in Line 5. Otherwise, we use the function diverse(solnb) to determine
the survival of solnb. The function diverse(solnb) considers the acceptance threshold as
shown in Equation (6), to accept solnb or not.

th = exp(−∆E/T) (6)

If th is larger than the random number from (0, 1), solnb is accepted, and rejected
otherwise. The solnb with worse quality is accepted in the early stage, and the probability
of accepting solnb becomes smaller as decreasing the temperatures. Therefore, we can use
diverse(solnb) to increase the solution diversity to discover more candidate solutions.

4.2. Solution Format

Assembling |T| × |P| components to |T| products is the goal of DCAMDC, and there
are |C| dimensional chains in each product. We use two data structure to represent the
information of a solution, and they are the installation guidance and the sizes of all
dimensional chains as illustrated in Figures 2 and 5. According to Equation (2), we use
a |T| by |P| two-dimensional array, that is named by guidance element set GE = {gers},
where 1 ≤ r ≤ |T| and 1 ≤ s ≤ |P|, to represent the installation guidance, as shown in
Figure 2. Each row in GE represents the components of a product, and each element gers
saves the component index for part s. So, the assembler picks up the specific components
of the installation guidance to assemble the product. The second data structure is the
chain size, and a |T| by |C| two-dimensional array, that is named by chain size element
set CSE = {csevw}, where 1 ≤ v ≤ |T| and 1 ≤ w ≤ |C|, is apply to save the chain size
information. We pick up some components of a row from GE, calculate all chain sizes by
using Equation (2), and save the chain sizes to the corresponding row in CSE.
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Figure 5. The structure of the chain sizes.

4.3. Solution Quality

The solution is feasible only if the installation guidance is satisfied with the constraints
of inseparability and the acceptability, as defined in Section 3.2. We use ∆i

k for each product
i to evaluate the product quality. The ideal product takes place when the value of ∆i

k is
minimized, e.g., psi

k = cvk, and minimizing ∆i
k is the goal otherwise. However, there are

two dimensional chains in the bearing assembly problem, so that we have two values to
evaluate the quality of the given feasible solution. The arithmetic mean is the straightforward
approach of normalizing several values to one. Unfortunately, the ranges between lbk and
ubk of all dimensional chains may be different. For example, the range of chain number one
is 0.05 + 0.2 = 0.25 and 0.15 + 0.18 = 0.33 for chain number two in Table 2. Considering
that the (psi

1, psi
2) are (0.39, 0.25) and (0.2, 0.43) for the bearing i and i + 1, the values of ∆i

k
are (0.19, 0) and (0, 0.18), respectively, and the arithmetic mean values are 0.095 and 0.09.
For the perspective of the arithmetic mean, the product i + 1 is better than the product i
because of 0.095 > 0.09. However, ∆i

1 does not meet ub1, but ∆i+1
2 meets ub2, so product i

is better than the product i + 1 for the perspective of minimizing ∆i
k. We have no ideas of

ways to distinguish which one is better by the arithmetic mean. Thus, the arithmetic mean
is inappropriate in measuring the solution quality in DCAMDC.

To determine the solution quality, we have to consider following two issues in the
DCAMDC problem:

1. Asymmetry tolerance ati
k: the lbk and ubk may be different.

2. Multiple dimensional chains: each product i has some ∆i
k.

We have to normalize the above scores to one value to represent the solution quality
of the give product. The asymmetry tolerance ati

k is defined in Equation (7). Each ∆i
k is

normalized by the tolerance range, i.e., lbk or ubk, so the tolerance could be estimated in
the same criteria.

ati
k =

{
(psi

k − cvk)/lbk i f psi
k < cvk,

(psi
k − cvk)/ubk otherwise.

(7)

The relationship between the product size psi
k, cvk, lbk, and upk is illustrated in

Figure 6. We use three products to explain the calculation of the solution quality, where
ps1

k = 0.06, ps2
k = 0.2, and ps3

k = 0.39. The product 2 is optimal because of ∆2
k = 0. The

quality of product 1 is at1
k = (0.06− 0.2)/− 0.15 = −0.14/− 0.15 = 0.93 for k-th part,

and the quality of product 3 for the part k is at3
k = (0.39− 0.2)/0.2 = 0.19/0.2 = 0.95.

The distance from ps1
k to cvk + lbk and ps3

k to cvk + ubk is the same, but at3
k > at1

k because
of ubk > lbk. So, ati

k can correctly describe the solution quality. Moreover, the product is
feasible only when atk ≤ 1 for k-th part and infeasible otherwise.
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Figure 6. The relationship between the product sizes and the product specification.

The other consideration of multiple dimensional chains indicates that each product
has |P| values of ati

k. We consider the maximum ati
k to represent the quality of the product

i as defined in Equation (8). The worst ati
k could be treated as the quality bottleneck, and

the product quality is improved when the worst ati
k is decreased. Therefore, applying

Equation (8) to be the solution quality is reasonable.

qi = max
∀k

ati
k (8)

Thus, the solution quality q(sol) is derived as shown in Equation (9) by the same
concept of Equation (8).

q(sol) = max
∀i

qi (9)

4.4. Tracing AGOMDC

In this section, the example listed in Table 1 is applied to trace the proposed AGOMDC
in finding the solution of DCAMDC. The major mission is to demonstrate the processes of
AGOMDC in solving the problem. Therefore, the solutions and the algorithm status in each
iteration are saved, and the solution might not be optimized.

In the beginning, AGOMDC receives the composition diagram illustrated in Figure 1,
the size information shown in Figure 4, and the product specification listed in Table 2, and
the algorithm configuration. Initial temperature 50, temperature descent rate 0.98, and the
maximum round 10 are considered. To focus on introducing the process of AGOMDC, the
entire information of solutions and algorithm status is listed in Appendix A.

From Table A1, the initial solution does not fit the acceptability because q(sol) = 1.8.
In the first ten iterations, the neighbors with higher quality are accepted in iteration three,
four, and nine, and the solutions with lower quality are accepted in iteration number eight.
In other iterations, the neighbors with the same quality are accepted, since the random
value is larger than the value of th that is defined in Equation (6). The details in terms of
solutions and algorithm status are listed in Tables A1 and A2, respectively. However, in
iteration seven, the neighbor has the same quality with that of the current solution, but the
neighbor is rejected. The value of th is one which means that accepting the neighbor in
high probability, but the random value is one. Therefore, the neighbor is rejected, and the
current solution survives in the next iteration.

The results show the process of the proposed AGOPDC, and the information in terms
of accepting neighbors is displayed in Table A2. In the early stage, AGOMDC accepts the
neighbors with lower quality in high probability. As decreasing the temperatures, the value
of th becomes lower and lower. The solution quality would be improved by considering
more iterations.

5. Simulation

The real-world bearing assembly process is considered, and the CAD size and the
assembly specification are illustrated in Figure 7, and they are calculated by the dimen-
sional chain analysis during the product design phase. The real-world size data of 43× 3



Symmetry 2021, 13, 1780 13 of 24

components, i.e., 43 bearings will be produced, are collected and the simulation instance
generator is developed based on the collected size data. The simulated size data generated
by the simulation instance generator is helpful in increasing the diversity of the simulation.
The specification of the simulation platform is CPU i7-7700, RAM 16 GB, SSD 128 G, and
using Visual Studio C++ to implement AGOMDC. In the following simulations, we focus
on analyzing the solution quality generated by the proposed AGOMDC and provide the
optimized algorithm configuration for the manager of the assembly line in the company.

Figure 7. The bearing assembly case that is used to evaluate the performance of the proposed
AGOMDC.

5.1. Feasibility Analysis

The algorithm configuration (T, r, iter) = (5000, 0.98, 10, 000) is considered in this
simulation to evaluate the effectiveness in resolving DCAMDC. The setting is identical
to the suggestion proposed in [17]. Moreover, v = 1 is applied to AGOMDC to carefully
trace the variance of neighborhood solutions. Each instance runs ten times, and the values
are averaged for the final score. AGOMDC consumes 562.6 ms to derive the solution
with quality 0.51384 on average. The variation of the solution quality is illustrated in
Figure 8. The processes of AGOMDC include three phases: the exploration stage in the
first 1000 iterations, the convergence stage from iteration 1000 to 4800, and the stable stage
after iteration 4800. In the exploration stage, AGOMDC tries its best to reach all kinds of
solutions that also include the solutions with worse quality. In the convergence stage,
the solution quality is improved slowly by accepting better solutions in high probability.
Accepting a lower quality solution is possible, but the possibility is not high. Eventually,
the solution quality is not improved, obviously because the temperature is low. The
possibility of accepting the worse solution is based on the temperature and the quality
of the neighborhood solution. Higher temperatures and higher solution quality result in
higher possibility of accepting neighborhood solutions. The curve illustrated in Figure 8
demonstrates the relationship between the probability of accepting lower quality solution
and the algorithm configurations. Therefore, the proposed AGOMDC resolves DCAMDC
and the running time is rational for the implementation consideration.
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Figure 8. The improvement history of the solution quality for the configuration (5000, 0.98, 10, 000)
and v = 1.

In the first 1000 iterations, the solution quality dramatically changes and becomes
stable in the following iterations. The final solution quality is 0.51384 on average. The
nbFinder(sol) in AGOMDC exchanges the components of two products for the same part.
AGOMDC follows Equation (2) to calculate the solution quality, so the inseparability is
realized. The final solution quality is 0.51384 that is smaller than 1, so the acceptability is
matched. Eventually, the solution derived by AGOMDC is feasible.

Moreover, the solution quality is larger than 1 during the first 1000 iterations, and it
implies that the solution derived by AGOMDC is infeasible. In the early stage, the value of
T is hight, so the value of th is closed to 1 according to Equation (6). So, AGOMDC accepts
the neighbors with worse solution quality in high probability. When T is decreased, the
probability of accepting the solutions with worse quality is also decreased. In the early
stage, AGOMDC seeks the solutions widely, and the search strategy changes to seek the
elite solution after some iterations. If AGOMDC only accepts better solutions, the initial
solution determines the quality of the output solution. Therefore, the solution quality
that the algorithm only accepts elite solutions may be worse than the acceptance strategy
applied in AGOMDC.

5.2. Configuration Optimization

In this simulation, we use the cases that we received from the company to design the
simulation case generator. The product specification as shown in Figure 7 is the input of
the case generator, and then the case generator outputs the component sizes. So, we can
evaluate the performance of AGOMDC by variant problem instances to study the optimized
configuration. We investigate two issues that are the number of products and the product
precision and provide the algorithm configuration for the manager of the assembly line.
We consider the following three steps to find out the suggested configuration: (1) find out
the optimal setting of the temperature descent rate r by considering the adequate settings;
(2) using the derived r to analyze the setting of the maximum iteration; (3) calculating the
initial temperature T, and the details are as shown below.

• The setting of the temperature descent rate r. To calculate the optimal setting of r, we
evaluate the performance of various settings of v with the other extreme settings, and
they are T = 5000, iter = 10, 000, and the number of products is 250. The results of the
solution quality and the running time are illustrated in Figures 9 and 10, respectively.
The setting of r = 0.9 provides higher solution quality than that of others, while the
corresponding running time is 3350 (ms). The time required by AGOMDC to calculate
the solution is acceptable. Therefore, we consider r = 0.9 in the following simulations.
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Figure 9. The solution quality variation for different temperature descent rate.

Figure 10. The running time variation for different temperature descent rate.

• The setting of the maximum iteration. Considering r = 0.9 is derived from the
above simulations, we evaluate the performance of the proposed AGOMDC under the
settings of maximum iterations from 500 to 5000 with the gap 500. The simulation
results of the solution quality and the running time are illustrated in Figures 11 and
12, respectively. The solutions in 50 and 100 products are acceptable after 1000 rounds,
and the case with 150 products requires 3000 rounds. However, we should provide
more iterations to calculate acceptable solutions in the cases with 200 and 250 products.
The running time illustrated in Figure 12 is still acceptable in all instances, so we design
the simulation with longer algorithm execution time to calculate the feasible solutions.

Figure 11. The solution quality variation captured from the instances with different maximum
iterations and r = 0.9 in different problem scales.
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Figure 12. The running time variation captured from the instances with different maximum iterations
and r = 0.9 in different problem scales.

It is difficult to find out the relationship between the problem scale and the minimum
iterations for reaching the feasible solutions when two variables are considered: the initial
temperature and the maximum iteration. Thus, we consider three levels of the initial
temperatures: low level T = 300, medium level T = 1300, and high level T = 2300
to evaluate performance under various settings of the maximum iteration. Moreover,
minimizing ati

k is the objective in DCAMDC, but the products with the quality ati
k ≤ 1 are

feasible. From the perspective of the implementation, ati
k = 0 is optimal, but q(sol) = 0.8

is acceptable. The products with ati
k = 0.9 are also feasible, but if the products will be

assembled with other parts, 20% tolerance is more appropriate than that of 10%. Therefore,
the goal of this simulation is to capture the performance of various maximum iterations
under three levels of the initial temperatures when the solution quality converges to
q(sol) ≤ 0.8.

The simulation results are illustrated in Figure 13 for the solution quality and
Figures A1–A3 for the running time. We observed that three curves are overlapping
in each sub-graph. The curve variance is slight in different levels of the initial temperatures,
so various initial temperatures do not affect the convergence too much. Moreover, the
solution quality meets the objective q(sol) ≤ 0.8 in all instances eventually. We list the
thresholds of the initial temperatures when reaching q(sol) ≤ 0.8, and the results are shown
in Table 3. The maximum threshold in each problem scale is marked in bold style. The
increment of the temperature threshold is proportional to the problem scale linearly for
the problems with more than 100 products, so we can use the linear regression analysis to
find out the increment function. The instances with 50 products and 100 products require
the same maximum iterations, so we consider the number of products from 100 to 250.
Using the data in Table 3, we apply the linear regression analysis [45,46] to derive the
recommended maximum iteration, as shown in Equation (9), where z is the number of
products. Therefore, we can use Equation (10) to recommend the appropriate settings of
the maximum iteration f (z) ot derive expected solution quality 0.8.

f (z) = 200z− 16, 000 (10)

Table 3. The settings of maximum iterations that result in the solution quality q(sol) ≤ 0.8. The
maximum threshold in each problem scale is marked in bold style.

Low Level Medium Level High Level

50 4000 4000 4000
100 4000 4000 4000
150 13,000 10,000 13,000
200 22,000 22,000 19,000
250 31,000 34,000 34,000
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(a) (b)

(c) (d)

(e)

Figure 13. The convergence of the solution quality in different problem scales under the initial temperatures are low,
medium, and high levels. (a) The convergence of the solution quality in 50 products. (b) The convergence of the solution
quality in 100 products. (c) The convergence of the solution quality in 150 products. (d) The convergence of the solution
quality in 200 products. (e) The convergence of the solution quality in 250 products.

• The setting of the initial temperature. We consider r = 0.9 and the maximum iterations
determined by Equation (10) to find out the optimal settings of initial temperatures
from 1000 to 40,000 with gap 3000. The results are illustrated in Figure 14. Since the
running time is acceptable that is evaluated in the above simulations, we skip the
discussion of the running time. From Figure 14, we have the following observations:
(1) all results are bounded by q(sol) = 0.8; (2) various initial temperatures do not
affect the solution quality too much; (3) the curves of solution quality are bounded
within 0.7 and 0.8. The solution result means that the initial temperatures slightly
affect the solution quality, but not too much. Therefore, the initial temperatures could
be selected from 1000 to 40,000 arbitrarily, and the solution quality would be better
than 0.8.
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Figure 14. The solution quality variation for different settings of the initial temperatures, where the
maximum iterations are considered in Table 3.

5.3. Discussion

According to the results from the above simulations, the recommended configuration
of deriving the solution quality better than 0.8 is listed as follows:

• The initial temperature: the values should be larger than 1000.
• The temperature descent rate: 0.9 provides high probability in reaching the solutions

with higher quality than others.
• The maximum iteration: using Equation (10) to determines the maximum iteration

f (z) for the number of products z.

We did not find the specific setting of initial temperature in the above simulations. The
initial temperatures determine the decision on accepting the solutions with lower quality.
According to the acceptance threshold defined in Equation (6), the probability of accepting
the worse quality solution in higher temperatures is larger than that in lower temperatures.
Thus, the initial temperatures determine the search breadth, and that also affects the
solution quality indirectly. We organize the simulations to confirm the assumption. We
consider r = 0.9 to observe the solution quality variation in the first 2000 iterations for
assembling 150 products. The results captured from the initial temperatures 100, 500,
and 3000 are illustrated in Figure 15. The degree of the curve variation becomes larger
as the initial temperatures are increased, and the solutions with different properties can
be reached with high probability. Moreover, higher temperatures not only increase the
acceptance probability, but also determine the accepted solution quality. In Figure 15c, the
curve suddenly raised in round 300, and the amount is larger than that in Figure 15a,b.
So higher temperatures would help on effectively probing various properties of solutions
than the lower settings.

Wider search results in higher probability of reaching the solutions with better quality
theoretically. Therefore, the manager could increase the setting of the initial temperatures
to improve the probability in reaching better solutions if the solution does not reach the
expected goal.



Symmetry 2021, 13, 1780 19 of 24

(a) (b)

(c)

Figure 15. Comparing the solution quality for the configurations with initial temperatures 100, 500, and 3000, and r = 0.9
in first 2000 rounds. (a) The solution quality variance in the instance with initial temperature 100. (b) The solution
quality variance in the instance with initial temperature 500. (c) The solution quality variance in the instance with initial
temperature 3000.

6. Conclusions

Most products or modules are assembled by several parts, and the bearing discussed
in this article consists of three parts and two surfaces. The major difficulty is that some
dimensional chains would cross on the same part, so the gaps between different dimen-
sional chains that crossed on the same part should be evaluated without separation. The
proposed AGOMDC considers the inseparability to compute the assembly guidance for
assemblers. From the simulation results, the solutions derived by AGOMDC are satisfied
with the constraints of inseparability and acceptability. For the implementation, the
appropriate algorithm configurations are suggested to find the solutions with acceptable
product quality. Moreover, the running time of calculating the solution is not higher than
2 s for 250 products. Thus, the running time is low enough to be applied to move the
modules from manufacturing lines to assembly lines. Therefore, the proposed approach
provides high possibility of implementation.

Optimizing the algorithm configurations is the major objective of solving the optimiza-
tion problems. However, the optimal solution is not the first concern in manufacturing
because the real-world processes would consider more additional issues, e.g., labor cost
and the rework time. Since the manufacturing cost comes from several issues, minimizing
the cost without decreasing the product quality is the major concern of most companies.
The producing managers prefer to find out the balance between the solution quality and
the manufacturing cost rather than reaching the quality optimality. On the other hand, the
scheduling becomes more important as the automated manufacturing is getting popular.
Once the assembly guidance is prepared, the assembly lines could automatically assem-
ble the products according to the assembly guidance. Therefore, the proposed AGOMDC
provides critical contributions on the integration about automated manufacturing.
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Appendix A. Tracing AGOMDC by the Example of Table 1

Table A1. The solution details in each iteration derived by AGOMDC for the example listed in Table 1.

Iteration i wpjx psi
1 psi

2 ati
1 ati

2 qi q(sol)

1

1 (3, 2, 3) 0.2 0.28 0 0.17 0.17

1.8
2 (0, 0, 0) 0.11 0.17 0.18 0.53 1.8

3 (1, 3, 1) 0.3 0.3 0.5 0.28 0.5

4 (2, 1, 2) 0.28 0.33 0.4 0.44 0.44

2

1 (3, 2, 2) 0.2 0.31 0 0.33 0.33

1.8
2 (0, 0, 0) 0.11 0.17 0.18 0.53 1.8

3 (1, 3, 1) 0.3 0.3 0.5 0.28 0.5

4 (2, 1, 3) 0.28 0.3 0.4 0.28 0.4

3

1 (3, 2, 0) 0.2 0.18 0 0.47 0.47

1.8
2 (0, 0, 2) 0.11 0.3 0.18 0.28 1.8

3 (1, 3, 1) 0.3 0.3 0.5 0.28 0.5

4 (2, 1, 3) 0.28 0.3 0.4 0.28 0.4

4

1 (3, 2, 0) 0.2 0.18 0 0.47 0.47

0.6
2 (2, 0, 2) 0.17 0.3 0.6 0.28 0.6

3 (1, 3, 1) 0.3 0.3 0.5 0.28 0.5

4 (0, 1, 3) 0.22 0.3 0.4 0.28 0.28

5

1 (3, 2, 0) 0.2 0.18 0 0.47 0.47

0.5
2 (1, 0, 2) 0.23 0.3 0.6 0.28 0.28

3 (2, 3, 1) 0.24 0.3 0.5 0.28 0.28

4 (0, 1, 3) 0.22 0.3 0.1 0.28 0.28

6

1 (3, 2, 0) 0.2 0.18 0 0.47 0.47

0.5
2 (1, 0, 2) 0.23 0.3 0.15 0.28 0.28

3 (0, 3, 1) 0.18 0.3 0.4 0.28 0.4

4 (2, 1, 3) 0.28 0.3 0.4 0.28 0.4

7

1 (3, 2, 0) 0.2 0.18 0 0.47 0.47

0.5
2 (1, 0, 2) 0.23 0.3 0.15 0.28 0.28

3 (2, 3, 1) 0.24 0.3 0.2 0.28 0.28

4 (0, 1, 3) 0.22 0.3 0.1 0.28 0.28
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Table A1. Cont.

Iteration i wpjx psi
1 psi

2 ati
1 ati

2 qi q(sol)

8

1 (3, 2, 0) 0.2 0.18 0 0.47 0.47

0.5
2 (1, 0, 2) 0.23 0.3 0.15 0.28 0.28

3 (2, 3, 1) 0.24 0.3 0.2 0.28 0.28

4 (0, 1, 3) 0.22 0.3 0.1 0.28 0.28

9

1 (0, 2, 0) 0.18 0.18 0.4 0.47 0.47

1
2 (1, 0, 2) 0.23 0.3 0.15 0.28 0.28

3 (2, 3, 1) 0.24 0.3 0.2 0.28 0.28

4 (3, 1, 3) 0.15 0.3 0.1 0.28 1

10

1 (1, 2, 0) 0.3 0.18 0.5 0.47 0.5

1.8
2 (0, 0, 2) 0.11 0.3 1.8 0.28 1.8

3 (2, 3, 1) 0.24 0.3 0.2 0.28 0.28

4 (3, 1, 3) 0.15 0.3 1 0.28 1

Table A2. The algorithm status in each iteration for the example listed in Table 1.

Iteration T q(sol) q(solnb) ∆E th Random Value Accept q(solnb)

1 100 1.8 1.8 0 1 0.74 Yes

2 98 1.8 1.8 0 1 0.18 Yes

3 96.04 1.8 0.6 1.2 N/A N/A Yes

4 94.12 0.6 0.5 0.1 N/A N/A Yes

5 92.24 0.5 0.5 0 1 0.4 Yes

6 90.39 0.5 0.5 0 1 0.52 Yes

7 88.58 0.5 0.5 0 1 1 No

8 86.81 0.5 1 −0.5 1.01 0.59 Yes

9 85.08 1 1.8 −0.8 1.01 0.69 Yes

10 83.37 1.8 1.8 0 0.99 0.9 Yes

Appendix B. The Simulation Rsults of Running Time

Figure A1. The comparison of the running time between various maximum iterations and problem
scales under r = 0.9 and T = 300.
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Figure A2. The comparison of the running time between various maximum iterations and problem
scales under r = 0.9 and T = 1300.

Figure A3. The comparison of the running time between various maximum iterations and problem
scales under r = 0.9 and T = 2300.
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