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Abstract: Low-dimensional (LD) transition metal dichalcogenides (TMDs) in the form of nanoflakes,
which consist of one or several layers, are the subject of intensive fundamental and applied research.
The tuning of the electronic properties of the LD-TMDs are commonly related with applied strains
and strain gradients, which can strongly affect their polar properties via piezoelectric and flexoelectric
couplings. Using the density functional theory and phenomenological Landau approach, we studied
the bended 2H-MoS2 monolayer and analyzed its flexoelectric and piezoelectric properties. The
dependences of the dipole moment, strain, and strain gradient on the coordinate along the layer were
calculated. From these dependences, the components of the flexoelectric and piezoelectric tensors
have been determined and analyzed. Our results revealed that the contribution of the flexoelectric
effect dominates over the piezoelectric effect in both in-plane and out-of-plane directions of the
monolayer. In accordance with our calculations, a realistic strain gradient of about 1 nm−1 can induce
an order of magnitude higher than the flexoelectric response in comparison with the piezoelectric
reaction. The value of the dilatational flexoelectric coefficient is almost two times smaller than
the shear component. It appeared that the components of effective flexoelectric and piezoelectric
couplings can be described by parabolic dependences of the corrugation. Obtained results are useful
for applications of LD-TMDs in strain engineering and flexible electronics.

Keywords: transition metal dichalcogenides; density functional theory; flexoelectricity; piezoelectric properties

1. Introduction

Layered transition metal dichalcogenides (TMDs) in the form of bulk materials
are typically non-polar centrosymmetric semiconductors with a relatively wide band
gap (~1.1–2 eV) and specific shape of the Fermi surface [1,2]. On transition from the bulk
to the nanoscale, additional long-range orderings and physical properties, such as piezo-
electric, or ferroelectric [3–5], semiconductive, semi-metallic or metallic [6–8] were found
in different structural phases (polymorphs) of TMD monolayers [9]. In particular, the polar
and semiconducting properties of the low-dimensional (LD) TMDs with a chemical formula
MX2 (M—metal Mo, V, W; X—chalcogen S, Se, Te) [10,11] and Janus-compounds with a
chemical formula MXY (X, Y—chalcogens) [12,13] vary from non-polar to ferroelectric state,
and from direct-band semiconductor to metallic conductivity.

The strain and strain gradient impact on LD-TMD polar and electronic properties
can be principally important for the properties control, and therefore LD semiconduc-
tor materials, such as graphene, MX2 and MXY monolayers, are ideal candidates for the
strain engineering [14] and recently introduced “straintronics” [15]. Their strain-induced
conductive domain walls can act as mobile charged channels, similarly to the “domain
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wall nanoelectronics” in multiferroic thin films [16–18] and graphene-on-ferroelectric
nanostructures [19,20]. There are remarkable possibilities for tuning the structural, po-
lar and electronic properties of LD-TMDs by application of either homogeneous elastic
strains [21,22] or inhomogeneous curvature-induced strain gradients [23,24]. In particular,
Duerloo et al. [6] predicted a strain-induced phase transition from a semiconducting 2H to
a metallic 1T’ phase in various MX2. Subsequently, Song et al. [25] observed a room tem-
perature semiconductor−metal transition in thin MoTe2 films induced by a homogeneous
tensile strain of 0.2%.

A number of first-principle studies explored surface-induced piezoelectricity [26,27]
and ferroelectric polarization [5,28] in various MX2 and MXY. Subsequently, the possible
mechanism of the ferroelectric state appearance in LD-TMDs was described by the Landau–
Ginzburg–Devonshire (LGD) continuous approach [29]. Since only in-plane ferroelectricity
can exist in a geometrically flat pure centrosymmetric MX2 layer, LGD analysis suggests
that the switchable out-of-plane ferroelectric polarization emerges due to the rare-earth
doping and predicts that the domain walls in LD-TDMs should become conductive above
a certain strain threshold.

The physical origin of the bending-induced changes of LD-TMDs electronic and
polar properties can be similar to the ones in a bended graphene [30,31] and boron ni-
tride [32]; moreover, the flexoelectric effect plays an important role [33,34]. It was predicted
theoretically that the bending can induce an out-of-plane electric dipole moment of car-
bon nanoshells [35]. As anticipated, the bending-induced dipole moment is curvature-
dependent, and strong curvatures can lead to a relatively high polarization of LD-TMDs,
induced by a flexoelectric effect [36,37]. The bending-induced out-of-plane dipole moment
with density p ∼ (0.01− 0.4) C/nm and flexoelectric polarization P ∼ (0.1− 2)µC/cm2

were calculated from the first principles for MoS2 [5], WS2 [35], and WTe2 [38,39] single-
layers. The flexoelectricity is determined by the lattice deformation in dielectrics and
wide gap ferroelectrics. In contrast to this, centrosymmetric narrow gap semiconduc-
tors and semimetals, such as MX2, contain a significant contribution from the deformed
electronic density [32,40,41], and thus the electronic contribution to their flexoelectric
response can dominate over the lattice-mediated ionic contribution, especially under
photoexcitation [42,43].

The tunable out-of-plane piezoelectricity and enhanced conductivity, both induced
by flexoelectricity, were observed by Kang et al. [23] in semiconducting 2H-MoTe2 flakes
by creating surface corrugation. The experimental results were corroborated by their ab
initio calculations [23], analytical calculations performed within LGD approach [44], and
finite element modeling [45]. Specifically, the LGD approach explores the flexoelectric
origin of the polarization induced by a spontaneous bending and by inversion symmetry
breaking due to the interactions with substrate. Finite element modeling allows calculating
the elastic and electric fields, flexoelectric polarization, and its correlation with free charge
density for a TMD nanoflake placed on a rough substrate with a sinusoidal profile of the
corrugation [45].

Despite the progress, the complete information about the piezoelectric and flexoelectric
coupling tensors in LD-TMDs is lacking, and the influence of the tensor symmetry and
numerical values of its components on polar and electronic phenomena in LD-TMDs has not
been studied. Since the couplings are important for LD objects, their knowledge is required
to control and predict the physical properties of LD-TMDs for their novel applications in
nanoelectronics and advanced memories. Using the density functional theory (DFT) and
phenomenological Landau approach, in this work, we consider the curved monolayer of
2H-MoS2 in order to calculate the nonzero components of its flexoelectric and piezoelectric
coupling tensors and to analyze their possible dependence on the layer corrugation and
surface-induced symmetry lowering.
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2. Theoretical Formalism

The static electric polarization of a LD-TMD, Pi(
→
x ), has the form:

Pi(
→
x ) ∼= fijkl

∂ukl
∂xj

+
es

ijk

t
ujk − ε0χij

∂ϕ

∂xj
. (1)

Here, fijkl is the static flexoelectric tensor [46] determined by the microscopic prop-

erties of the material [47,48], uij(
→
x ) is the elastic strain tensor, es

ijk is the tensor of the
surface-induced piezoelectric effect [49,50], and t is the thickness of a nanoflake. The
last term in Equation (1) is proportional to the gradient of electric potential ϕ(

→
x ), ε0 is

a universal dielectric constant, and χij is a real part of the TMD dielectric susceptibility.
Einstein summation over repeated indexes is used hereinafter.

2.1. Ab Initio Calculations of the Flat and Corrugated MoS2 Nanolayer

We performed the calculations of the atomic position in the MoS2 nanolayer for the
case of a flat layer and for 1–10% corrugated layers with a 1% step in corrugation within the
DFT [51] in the generalized gradient approximation, implemented in the Quantum Espresso
code [52]. We used ultrasoft Perdew-Burke-Ernzerhof pseudopotentials [53], which include
14 valence electrons for molybdenum and six valence electrons for sulfur. An integration
of the Brillouin zone was performed using 1 × 14 × 1 k-points mesh centered on Γ in
the Brillouin zone, generated by Monkhorst-Pack scheme [54], and Methfessel-Paxton
smearing [55] with a parameter of 0.005 Ry. We applied 50 Ry cutoff for smooth part of
the wave function and 350 Ry for the augmented charge density to ensure a sufficient
convergence of the results.

The MoS2 monolayer was modeled by a supercell approach with 25 Å of vacuum
layer added to avoid a coulomb interaction between the periodic images. Initial (flat) layer
was built with experimental value of the lattice constant of 3.161 Å and contained 48 atoms
(Figure 1). For the corrugated layers, we reduced the lattice constant of the supercell in
x-direction and modulated the atomic z (out-of-plane) coordinates by suitable sinusoidal
distribution to match an integer value of corrugation. After that, all the systems were
relaxed through all the internal coordinates until the Hellmann-Feynman forces became less
than 10−4 atomic units, and at this point, all the necessary quantities (atomic coordinates
and wave functions) were extracted. The difference between the initial corrugation and
that obtained for the corresponding relaxed system does not exceed few percentages of
their values. Therefore, the calculations revealed that the bending in the z-direction is
sinusoidal along the x-axis (Figure 2).
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Figure 2. Side view of the MoS2 monolayer (a) without bending and (b) with 10% bending.

In addition to the position of the atoms, the Bader charges [56] were computed.
The distribution of the charges appeared to be uniform in a flat system and equal to
QMo = 1.083e for molybdenum atoms and is QS = −0.5415 e for sulfur atoms, where
e = 1.60217662 ·10−19C is the elementary charge. For strongly curved layers with a bending
of 8–10%, a harmonic dependence of the charges on the x coordinate was observed (as
shown in Figure 3). However, the difference between the maximal and minimal charges
appeared to be small (see the scale in Figure 3) and close to the magnitude of expected
numerical error. The effect of such a distribution on the electrophysical parameters of the
layer is neglected hereinafter. This means that we neglect the terms proportional to the
deformation potential in Equation (1), as the first approximation, and extract the terms
proportional to the net flexoelectric coefficient, fijkl , from the DFT results. The charge
variations can be found as the second approximation, which becomes important for large
curvatures only [32].
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Figure 3. Charge distribution near sulfur (S) atoms along the chain for a 10% corrugation.

To the best of our knowledge, Figure 3 calculated for MoS2 has only qualitative ana-
logue in the literature. Namely, the redistribution of Bader charges caused by the bending of
phosphorene [33] and graphene [34] nanoribbons was calculated, and it appeared that the
symmetries of Bader charges are broken under the applied strain gradient. This symmetry
breaking is almost absent for the studied MoS2 (compare Figure 3 in this work with Figure 2
from [33] and Figure 4 from [34]), but evidently present for the phosphorene and graphene
nanoribbons. The possible reason is the small discrepancy in the net Bader charges of
sulfur in a bended MoS2 monolayer, which are smaller than the charge discrepancy in
phosphorene [33] and graphene [34].
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2.2. Determination of the Flexoelectric Coefficients from Ab Initio Calculations

The components of the piezoelectric and flexoelectric tensors for the 2H-MoS2 that
belong to the point symmetry group 6/mmm can be determined from the equations:

dz(x) = ezzxuzx(x) + ezxxuxx(x) + fzxzxuzx,x(x) + fzxxxuxx,x(x), (2)

dx(x) = exzxuzx(x) + exxxuxx(x) + fxxxzuxz,x(x) + fxxxxuxx,x(x), (3)

where di is projection of the elementary dipole moment on the axis i; uij and uij,k are strain
tensor and strain gradient, respectively; eijk and fijkl are the components of the piezoelectric
and flexoelectric tensors in Cartesian coordinates.

All nonzero components of di, uij and uij,k were calculated in Mathematica
12.2 ®Wolfram Research notebook [57] based on the DFT results. In particular, the ef-

fective elementary dipole moment
→
d of each dipole (see Figure 4) was calculated from the

following equation:
→
d i =

→
r Moi · |QMo| −

6

∑
k=1

→
r Sik ·

∣∣∣∣QS

3

∣∣∣∣, (4)

where
→
r Moi = {xMo, yMo, zMo}i and

→
r Sik = {xS, yS, zS}ik is a radius vector of the Mo and

S atoms, respectively.
Further dependences were plotted on the x coordinate of the mass center of the dipole,

and its radius vector was determined by the equation:

→
r
(j,i)

=
1

mMo + 6 mS

→r (j,i)
Mo mMo +

6

∑
k=1

→
r
(j,i)
Sk

mS

, (5)

where “j” is the percentage of corrugation, “i” is the dipole number, mMo = 95.9 g
mol and

mS = 32 g
mol are atomic masses of molybdenum and sulfur, respectively. The points

in Figures 5b and 6b show the dependence of x-axis and y-axis projection of the dipole
moment on x-coordinate of the dipole mass center.
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Table 1. Fitting parameters.

Corrugation 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

k, 1/nm 1.44 1.441 1.443 1.446 1.449 1.453 1.457 1.463 1.468 1.475

dxs, 10−3 e·nm 0.006 0.028 0.059 0.107 0.191 0.301 0.432 0.553 0.678 0.826

dxc, 10−3 e·nm 0.0001 −0.006 −0.004 −0.059 −0.062 −0.048 −0.039 −0.078 −0.142 −0.166

c, 10−3 e·nm −0.997 −0.979 −0.979 −0.982 −0.978 −1.018 −1.058 −1.043 −1.002 −1.017

dzs, 10−3 e·nm 0.066 0.122 0.174 0.325 0.341 0.382 0.448 0.530 0.596 0.67

dzc, 10−3 e·nm 0.481 0.959 1.441 1.906 2.389 2.867 3.334 3.797 4.258 4.707

V0, 10−3 a.u. −0.238 −0.97 −2.193 −3.905 −6.1 −8.775 −11.93 −15.55 −19.62 −24.16

W0, 10−3 nm 0.02 0.0258 0.0449 1.296 2.06 2.883 3.852 5.019 6.356 7.791

U0, 10−3 nm 20.71 41.35 61.94 82.76 103.3 123.7 144 164.1 184.2 204Symmetry 2021, 13, x FOR PEER REVIEW 6 of 15 
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Figure 5. The dependences on the x coordinate of (a) the elementary displacement Uz; (b) the elementary dipole moment dz;
(c) the strain tensor component uzx calculated according to Equation (9a) and (d) the strain gradient component uzx,x

calculated according to Equation (10a). The points in the plots (a,b) are discrete values calculated from Equations (4)–(6),
solid curves are the approximations of these values according to Equations (7a) and (8a). All dependences correspond to the
effective elementary dipole mass center. The parameters are given in Table 1.
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Using the radius vector, the elementary displacement of the mass centers is calculated
from the equation:

→
U

(j,i)
=
→
r
(0,i)
−→r

(j,i)
, (6)

where
→
r
(0,i)

is the radius vector of i-th dipole of the undeformed layer,
→
r
(j,i)

is the radius
vector of i-th dipole of the layer with corrugation j%. The dependences of the x-axis and

y-axis projections of the displacement vector
→
U

(j)
on x coordinate of the mass center (5) are

shown in Figures 5a and 6a, respectively.
Solid curves in Figure 5a,b and Figure 6a,b are harmonic (sinusoidal and co-sinusoidal)

functions, which were selected in the form:

dz = dzc cos (kx) + dzs sin (kx), (7a)

dx = dxs sin (2kx) + dxc cos (2kx) + c. (7b)

Here, the coefficients dzc, dzs, dxs, dxc and c are fitting parameters. Theirs numerical
values are selected to reach the best fit of the points in Figures 5b and 6b.

The dependence of the displacement projections on x-axis was approximated by
the functions:

Uz(x) ≈ U0 cos (kx), (8a)
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Ux(x) ≈ V0x + W0 cos (2kx). (8b)

Here, the coefficients U0, V0, and W0 are fitting parameters. Theirs numerical values
are selected to reach the best fit of the points in Figures 5a and 6a.

The displacement causes the strain tensor ujk = 1
2

(
∂Uk
∂j +

∂Uj
∂k

)
, whose components

(shown in Figures 5c and 6c) are given by the following equations:

uzx(x) = uxz(x) =
1
2

∂Uz

∂x
= −U0

2
k sin(kx), (9a)

uxx(x) =
∂Ux

∂x
= V0 + 2W0k cos (2kx). (9b)

Their nonzero derivatives (shown in Figures 5d and 6d) are equal to:

uzx,x(x) = uxz,x(x) = −U0

2
k2 cos(kx), (10a)

uxx,x(x) =
∂uxx

∂x
= −4W0k2 sin(2kx). (10b)

The values dzs, dzc, dxs, dxc, c, U0, V0, W0 and k in Equations (6)–(8) are constants,
which are different for each layer. The values of these coefficients are given in Table 1, and
the dependences given by Equations (9) and (10) are shown in Figure 5c,d and Figure 6c,d.

Analyzing the dependences shown in Figure 5a, we can conclude that the projection
of the atomic displacements on the z-axis at the top and bottom of corrugation profile are
maximal and minimal and equal to each other by the absolute value. This is due to the
created curvature of the MoS2 layer. Moreover, the bending is caused not only by a shift of
unit cells relative to the initial state, but also by their deformation. Thus, the S atoms, which
are inside the bend line, shift closer to each other under the action of mechanical forces, and
accordingly they are closer to Mo atoms. Therefore, the S atoms outside the bend repulse
and, as a result, move away from Mo atoms. Since the opposite electric charges are moving
away from each other, the dipole moment in this direction also increases, which can be
seen from Figure 5b.

The linear component of the projection of the offset on the x-axis (shown in Figure 6a)
is explained by the conservation of the total length of the unit cell, and the projection of the
length decreases in the x-direction. The presence of a harmonic component is explained
by the fact that atoms located exactly on the top and bottom of the corrugation profile are
exposed to electrostatic forces only in the z-direction and remain in place in the x-direction
(excluding the linear shift). In addition, those atoms that are in places, where there is a
change in the bend of corrugation, do not have a shift in either in the y-direction or in the x-
direction (excluding the linear shift). All other atoms change their position under the action
of electrostatic and elastic forces in order to achieve equilibrium. Based on the amplitude
of the dipole moment (shown in Figure 6b), we can conclude that the deformation of the
unit cell in x-direction is negligible, and the presence of the dipole moment in the absence
of deformation is explained by the fact that the calculated dipole moment has the third
order symmetry axis and, accordingly, is not symmetric in the x-direction in the Cartesian
coordinate frame.

Substituting the functions from Equations (7)–(10) to Equations (2) and (3), we obtain:

dzc cos (kx) + dzs sin (kx) = −e331
U0
2 k sin(kx) + e311[V0 + 2W0k cos (2kx)]−

− f3131
U0
2 k2 cos(kx)− f31114W0k2 sin (2kx),

(11a)

dxs sin (2kx) + dxc cos (2kx) + c = −e131
U0
2 k sin (kx) + e111[V0 + 2W0k cos (2kx)]−

− f1113
U0
2 k2 cos (kx)− f11114W0k2 sin (2kx),

(11b)
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The components of flexoelectric and piezoelectric tensors can be obtained from the
above expressions in the following form:

f3131 = − 2dzc

U0k2 , e331 = −2dzs

U0k
, e311 = 0, f3111 = 0. (12a)

f1111 = − dxs

4W0k2 , e111 =
dxc

2W0k
, e131 =0, f1113 = 0. (12b)

The values of f3131, f1111, e111 and e331, calculated according to Equation (12), consid-
ering the values of Table 1, are given in Table 2.

Table 2. The components of flexoelectric and piezoelectric coefficients.

Curvature, % f3131, e/nm2 e331, e/nm f1111, e/nm2 e111, e/nm

1 −0.0224 −0.00443 −0.0338 0.00163

2 −0.0223 −0.00409 −0.131 −0.0766

3 −0.0223 −0.00389 −0.156 −0.0292

4 −0.022 −0.00544 −0.00983 −0.0159

5 −0.022 −0.00456 −0.011 −0.0103

6 −0.022 −0.00425 −0.0124 −0.00573

7 −0.0218 −0.00427 −0.0132 −0.00352

8 −0.0216 −0.00442 −0.0129 −0.00529

9 −0.0214 −0.00441 −0.0124 −0.00759

10 −0.0212 −0.00445 −0.0122 −0.00721

Dependences of the flexoelectric and piezoelectric tensors components on the corruga-
tion of the MoS2 monolayer, which are determined from the DFT calculations, are shown
in Figure 7. Let us underline the dominant contributions of the flexoelectric effect over

the piezoelectric effect in both x and z directions, namely | fijkl |
|eijkl |

∼= (5− 30) 1
nm . This means

that a realistic strain gradient of about 1
nm can induce an order of magnitude higher flexo-

electric response in comparison with a piezoelectric reaction. In addition, the dilatational
flexoelectric coefficient | f1111| is almost two times smaller than the shear component | f1313|
for all corrugations of more than 1%; moreover, both values, f1111 and f1313, are negative
(Figure 7a). The inequality |e331| > |e111| is valid for all corrugations of more than 1%
except for 7% (see Figure 7b). All components of the flexoelectric and piezoelectric tensors
can be described by an empirical parabolic dependence, Aµ2 + Bµ + C of the corrugation
“µ” (see Figure A1 in Appendix A). Components f3131 and e331 weakly depend on corru-
gation magnitude and slightly and linearly change with corrugation around a constant
value. Components f1111 and e111 have an extremum at the corrugation 7% and reach high
absolute values at small corrugations µ < 4%. These unreasonably high values originated
from the fitting error of the dipole moment projection dx(x) (see Figure A2 in Appendix A);
thus, these points should be disregarded.

To the best of our knowledge, experimental results, which can reliably determine the
flexoelectric and piezoelectric properties of a monolayer 2H-MoS2, are lacking. Kang et.al. [23]
studied MoTe2 nanoflakes on a corrugated gold substrate and have shown that the effective
piezoelectric response linearly depends on the tip bias (Figure 3 in ref. [23]). They also analyzed
different contributions to the dependence of the effective piezoresponse on the flake thickness
and concluded that the flexoelectric contribution dominates (Figure 4 in ref. [23]). These results
are in a complete qualitative agreement with our calculations for a monolayer MoS2.
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In addition, there are few DFT calculations of the piezoelectric coefficients in a flat
centrosymmetric MX2. In particular, es

31 was estimated as several −2.4 pC/m for a recon-
structed SL-MoS2 in the 1T’ phase [5]. The value is much smaller than in-plane components,
es

1jk~(300–500) pC/m, estimated for H-MoS2 and MoSTe (see Table 1 in Ref. [28]). The val-
ues of es

331, calculated in this work, are around −0.7 pC/m, which is several times smaller
than−2.4 pC/m [5]. The values of es

111, calculated in this work, vary from−1 to −12 pC/m
for different corrugations, which is one to two orders smaller than the values listed in
Table 1 from Ref. [28]. The discrepancy can be related with different symmetry (monolayer
2H-MoS2 via H-MoS2) and, more likely, with different configurations of the layer (flat
configuration via bended layer). The components of the flexoelectric (in mC/m2) and
piezoelectric (in mC/m2) coefficients, recalculated from Table 2, are listed in Table A1 in
the end of Appendix A.

3. Conclusions

Using the phenomenological Landau approach combined with DFT ab initio calcu-
lations, we consider the atomic displacements and charge state of the curved 2H-MoS2
monolayer and determine the effective components of its flexoelectric and piezoelectric cou-
pling tensors, fijkl and eijk, as a function of the layer corrugation varying from 0% to 10%.

It appears that the components of effective flexoelectric and piezoelectric couplings can
be described by parabolic dependences of the corrugation. In particular, the components
f3131 and e331 weakly depend on the corrugation magnitude and slightly change with the
corrugation around an almost constant value. The components f1111 and e111 have an
extremum at the corrugation 7% and reach unreasonably high absolute values at small
corrugations < 4%, which are related with the fitting error of the dipole moment projection.

Our calculations reveal the dominant contributions of the flexoelectric effect over the
piezoelectric effect in both in-plane and out-of-plane directions of the monolayer. This
means that a realistic strain gradient of about 1 nm−1 can induce an order of magnitude
higher flexoelectric response in comparison with a piezoelectric reaction. The dilatational
flexoelectric coefficient f1111 is almost two times smaller than the shear component f1313,
while |e331| > |e111| for the most of corrugations.

Obtained quantitative results can be useful for elaboration of nanoscale flexible elec-
tronic devices based on the bended MX2 layers. In particular, the bended monolayers are
promising candidates for the ultra-small diodes and bipolar transistor on MX2, for which
the principal schemes are presented in Ref. [45]. Here, the bending profile of the layers
controls the sharpness of p–n junctions between the regions with n-type (electron) and
p-type (hole) conductivity.
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