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Abstract: Censoring mechanisms are widely used in various life tests, such as medicine, engineering,
biology, etc., as they save (overall) test time and cost. In this context, we consider the problem of
estimating the unknown xgamma parameter and some survival characteristics, such as reliability
and failure rate functions in the presence of adaptive type-II progressive hybrid censored data.
For this purpose, the maximum likelihood and Bayesian inferential approaches are used. Using
the observed Fisher information under s-normal approximation, different asymptotic confidence
intervals for any function of the unknown parameter were constructed. Using the gamma flexible
prior, Bayes estimators against the squared-error loss were developed. Two procedures of Bayesian
approximations—Lindley’s approximation and Metropolis–Hastings algorithm—were used to carry
out the Bayes estimates and to construct the associated credible intervals. An extensive simulation
study was implemented to compare the performance of the different methods. To validate the
proposed methodologies of inference—two practical studies using datasets that form engineering
and chemical fields are discussed.

Keywords: adaptive progressively hybrid censoring; Bayes estimator; maximum likelihood estimator;
Metropolis–Hasting algorithm; reliability characteristics; xgamma distribution

1. Introduction

The gamma distribution is one of the most popular models used for analyzing constant
and non-constant failure rate data. It includes the exponential, Erlang, and chi-square
distributions as special cases. In recent years, using exponential and/or gamma as the
parent distribution (among others), several new models have been developed to provide
richness that makes them accurate and suitable to fit complex datasets. New statistical
models, created based on a finite mixture of probability distributions, played a vital role
in modeling the real-life phenomenon. Further, finite mixture densities have been widely
used to model various data, for example, see [1,2]. However, gamma distribution does not
exhibit a bathtub or upside-down bathtub shaped hazard rate function and, thus, it cannot
be used to model the complex lifetime of a system.

For this reason, Reference [3] proposed a new one-parameter xgamma distribution,
denoted by XGD(δ), as a special finite mixture of exponential and gamma distributions.
They derived various mathematical, structural, and survival properties, with inference to
the XGD. Moreover, they showed that the XGD was useful in modeling the dataset with a
monotone failure rate, and that it had applicability in analyzing lifetime data.
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Suppose that the lifetime random variable X of an experimental unit(s) follows
XGD(δ), then, the probability density function (PDF) f (·) and cumulative distribution
function (CDF) F(·) of X, are given, respectively, by

f (x; δ) =
δ2

(1 + δ)

(
1 +

1
2

(
δx2
))

e−δx, x > 0, δ > 0, (1)

and

F(x; δ) = 1−
(

1 + δ(1 + x) + 1
2 (δx)2

1 + δ

)
e−δx, x > 0, δ > 0, (2)

where δ is the scale parameter. The reliability characteristics of any lifetime model are
the main features for evaluating the capacity of any electronic system that a reliability
practitioner frequently uses. Therefore, some survival parameters of the XGD are also
investigated as unknown parameters; reliability function (RF) R(·) and failure rate function
(FRF) h(·) at mission time t are given, respectively, by

R(t; δ) =

(
1 + δ(1 + t) + 1

2 (δt)2

1 + δ

)
e−δt, t > 0, δ > 0, (3)

and

h(t; δ) =

(
1 + 1

2
(
δt2)

1 + δ(1 + t) + 1
2 (δt)2

)
δ2, t > 0, δ > 0, (4)

Moreover, Reference [3] indicates that the XGD belongs to the exponential family of
distributions and it has more flexibility than the exponential distribution. Reference [4]
studied the estimation procedures of the XGD parameter and some related important
survival characteristics under type-II progressively censoring (PCS-T2). Furthermore,
they showed that the xgamma random variates are stochastically larger than that of the
exponential and Lindley distributions. Reference [5] discussed the estimating problem of
the parameter and reliability characteristics of XGD under hybrid type-II censored data.
Recently, Reference [6] derived both classical and Bayes estimates of some parameters of
life for XGD under complete sampling.

The adaptive type-II progressive hybrid censoring scheme (APHCS-T2), introduced
by [7], saves the total time test and increases the efficiency of statistical inference. It can be
described in the context of a life testing experiment as follows: suppose that n identical
units are placed on the test at time zero; m(1 6 m < n) is the pre-fixed number of failures
and the experimental time is allowed to run over time T, which is an ideal total test. In this
case, the progressive censoring Ri, i = 1, 2, . . . , m, is provided, but the values of some of
Ri may change accordingly during the experiment. If X(m) < T, the experiment proceeds
with Ri

′s and stops at X(m). In this situation, APHCS-T2 degenerates into usual PCS-T2
and the experiment stops at the time of observe m-th failure. Otherwise, if X(m) does not
occur before time T, i.e., X(d) < T < X(d+1), where (d + 1) < m and X(d) is the d-th failure,
occur before time T, then no items will be withdrawn from the experiment by setting
Ri = 0 for i = d + 1, . . . , m− 1, and the experiment stops at the time of the m-th failure
occurring, and all remaining surviving items are removed, i.e., Rm = n−m−∑d

i=1 Ri. The
main advantage of APHCS-T2 is it enables us to get the effective number of failures m and
assures that the total test time will not be too far away from the pre-specified time T.

If n units put on a life test are from a continuous population with CDF F(x) and PDF
f (x), and m effective number of failures have been observed, hence, the joint PDF for the
ordered failure times of APHCS-T2 out of the experiment x(i), i = 1, 2, . . . , m, where θ is
parameter vector, is given by

L( θ|d) = Cd
m
Π

i=1
f
(

x(i); θ
) d

Π
i=1

[
1− F

(
x(i); θ

)]Ri
[
1− F

(
x(m); θ

)]R∗m
, (5)
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where Cd =
m
Π

i=1

[
n− i + 1−∑

max{i−1,d}
j=1 Rj

]
and R∗m = n−m−∑d

i=1 Ri.

Several works based on APHCS-T2 have investigated the problem of estimating the
unknown parameters of different lifetime models, e.g., see [8–22].

To the best of our knowledge, we have not come across any work related to the
estimation of distribution parameters and/or reliability characteristics of the XGD under
adaptive progressive censoring. Thus, by demonstrating that the XGD may be used
as a survival model utilizing APHCS-T2, the purpose of this study is to close this gap.
Thus, our objectives in this study are: first, to drive both point and interval estimators
of the unknown parameter and survival characteristics, the XGD using both maximum
likelihood and Bayesian approaches in the present data collected under the APHCS-T2
life test. Using gamma density prior under the squared-error loss (SEL) function, the
Bayes estimators (BEs) for the unknown parameter and the survival characteristics are
obtained. When the informative prior density is taken into account, an approach used
to determine the hyperparameter values is proposed. Second, the proposed estimators
cannot be obtained in explicit expressions, we apply some numerical procedures to evaluate
them, such as the Newton–Raphson (N–R) iterative method, Lindley’s approximation, and
Metropolis–Hastings (M–H) algorithm. Presently, Bayesian statistics that are developed
based on Markov chain Monte Carlo (MCMC) techniques are widely used in many fields.
Using normal approximation of the MLE (NA) and of the log-transformed MLE (NL),
approximate confidence intervals (ACIs) for the unknown parameters, and any function of
them, are constructed. Moreover, using MCMC simulated samples, two-sided BCI/HPD
credible intervals are also constructed. Extensive numerical comparisons have been made
to compare the performance of the classical and Bayesian estimates. The point estimates
have been compared in terms of their estimated root mean squared errors (RMSEs) and
relative absolute biases (RABs). Further, the interval estimates have been compared in
terms of their average confidence widths (ACWs). Lastly, two datasets from industrial and
chemical fields are analyzed to illustrate our proposed estimators.

The rest of the paper is organized as follows: maximum likelihood and Bayesian
inferential procedures of the unknown parameter and the reliability characteristics are
provided in Sections 2 and 3, respectively. In Section 4, asymptotic and credible intervals
are constructed. Monte Carlo simulation results are presented in Section 5. Two practical
examples using real datasets are analyzed and investigated in Section 6. Finally, some
concluding remarks are provided in Section 7.

2. Likelihood Inference

Suppose X(1) < · · · < X(d) < T < X(d+1) < · · · < X(m), where (1 6 d < m < n), is an
APHCS-T2 sample drawn from an xgamma population whose PDF (1) and CDF (2), with
their respective removal patterns are R1, . . . , Rd, 0, . . . , 0, n−m−∑d

i=1 Ri. Henceforward,
we will use Xi instead of Xi:m:n. Substituting (1) and (2) into (5), the likelihood function (5)
can be written up to proportional as

L( δ|x) ∝
δ2me−δψ

(1 + δ)Q

m
Π

i=1

(
1 +

1
2

(
δx2

i

))

×
d
Π

i=1

(
1 + δ(1 + xi) +

1
2
(δxi)

2
)Ri

(
1 + δ(1 + xm) +

1
2
(δxm)

2
)R∗m

,

(6)

where ψ(x) = xmR∗m + ∑m
i=1 xi + ∑d

i=1 xiRi and Q = m + R∗m + ∑d
i=1 Ri.

The corresponding log-likelihood function, `(·) ∝ log L(·), of (6) becomes

`( δ|x) ∝ (2m) log(δ)− δψ(x)−Q log(1 + δ) + ∑m
i=1 log

(
1 +

(
δx2

i

)
/2
)

+ ∑d
i=1 Ri log(ξ(xi; δ)) + R∗m log(ξ(xm; δ)),

(7)

where ξ(xi; δ) = 1 + δ(1 + xi) +
1
2 (δxi)

2 and ξ(xm; δ) = 1 + δ(1 + xm) +
1
2 (δxm)

2.
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From (7), the MLE δ̂ of δ can be obtained by solving of the following likelihood
equation(

2m− δ̂ψ(x)
)

δ̂
− Q(

1 + δ̂
) + ∑m

i=1
x2

i /2(
1 +

(
δ̂x2

i
)
/2
) + ∑d

i=1
Ri ξ̂ ′

(
xi; δ̂

)
ξ̂
(

xi; δ̂
) +

R∗m ξ̂ ′
(

xm; δ̂
)

ξ̂
(
xm; δ̂

) = 0, (8)

where ξ ′(·) is the first-derivative with respect to δ such as ξ ′(xi; δ) = 1 + xi(1 + δxi) and
ξ ′(xm; δ) = 1 + xm(1 + δxm).

It is clear that, from (8), a closed-form solution of δ̂ does not exist and cannot be
obtained analytically. Thus, one may use any suitable numerical procedure, such as the
N–R iterative method to obtain the desired MLE δ̂ for any given values of n, m, T and
(xi, Ri), i = 1, 2, . . . , m. Once the estimate of δ̂ is obtained, then the associated MLEs of
the parameters of life, R(·) and h(·) (for t > 0), can be easily derived via replacing δ by δ̂,
respectively, as

R̂(t; δ̂) =

(
1 + δ̂(1 + t) + 1

2
(
δ̂t
)2

1 + δ̂

)
e−δ̂t, t > 0,

and

ĥ(t; δ̂) =

(
1 + 1

2
(
δ̂t2)

1 + δ̂(1 + t) + 1
2
(
δ̂t
)2

)
δ̂2, t > 0.

3. Bayes Procedure

In this section, the Bayes estimators of the unknown parameters δ, R(·) and h(·) are
developed under the SEL function, lS(·), which is defined as

lS(η, η̃) = (η̃ − η)2. (9)

Using (9), the Bayes estimator η̃(δ) (say) of the unknown parameter or any function
of δ, η(δ) (say), is given by the posterior mean of η(δ). However, any other loss function
can be easily incorporated. It is known that the family of gamma distributions is flexible
enough to cover a large variety of prior beliefs of the experimenter, see [23]. Therefore, we
assume that the unknown parameter δ is stochastically independently distributed with
conjugate gamma prior, as

π(δ) ∝ δa−1 exp(−bδ), a, b, δ > 0. (10)

Combining (10) with (6) and substituting in the continuous Bayes’ theorem, the
posterior PDF of δ becomes

π( δ|x) ∝
δ2m+a−1 exp(−δ(b + ψ))

(1 + δ)Q

m
Π

i=1

(
1 +

1
2

(
δx2

i

)) d
Π

i=1
(ξ(xi; δ))Ri (ξ(xm; δ))R∗m , (11)

where C is the normalizing constant of (11) and is given by C =
∫ ∞

0 π( δ|x)dδ.
Hence, using (11), the Bayes estimate of any parameter of life η(δ) = (δ, R(t), h(t))

(say) against the SEL function is given by

η̃(δ) = Eδ[η(δ)|x] =
∫ ∞

0 η(δ) · π( δ|x)dδ∫ ∞
0 π( δ|x)dδ

· (12)

It is clear that the posterior PDF (11) is not easily tractable due to its implicit math-
ematical expression, so the BEs (12) cannot be developed in a closed-form. To overcome
this problem, two approximation techniques, namely: Lindley and MCMC procedures, are
used.
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3.1. Lindley’s Approximation

Reference [24] suggested procedure is to approximate the desired Bayes estimator by
reducing the posterior ratio to finite values. According to this procedure, the approximated
value η̂(δ) of η(δ) as in (12) for any function of δ for a sufficiently large sample size n is
given by

η̂(δ) = η(δ) +
1
2
(η2(δ) + 2η1(δ)ρ)σ

2 +
1
2

η1(δ)L3σ4, (13)

where ηi(δ) = ∂iη(δ)/∂δi , i = 1, 2; σ2 = (−L2)
−1; σ4 = (−L2)

−2; Li = ∂i`(·)/∂δi , i =
2, 3; and ρ = ∂ log π(·)/∂δ. All terms of (13) are evaluated at δ = δ̂.

Now, to approximate the Bayes estimators using (13), the following quantities must
be obtained as

L2 = −2mδ−2 + Q(1 + δ)−2 −∑m
i=1

(
x4

i /4
)(

1 +
(

δx2
i /2
) )−2

+ ∑d
i=1 Riξi

−2
[

ξiξ
′′
i ξ
′
i
2
]
+ R∗mξ−2

m

[
ξmξ

′′
m − ξ

′2
m

]
,

(14)

L3 = 4mδ−3 − 2Q(1 + δ)−3 + ∑m
i=1

(
x4

i /2
)(

1 +
(

δx2
i /2
) )−3

+ ∑d
i=1 Riξ

−4
i

[
ξ2

i

(
ξiξ

′′′
i − ξ

′
iξ
′′
i

)
− 2ξiξ

′
i

(
ξiξ

′′
i − ξ

′
i
2
)]

+ R∗mξ−4
m

[
ξ2

m

(
ξmξ

′′′
m − ξ

′
mξ
′′
m

)
− 2ξmξ

′
m

(
ξmξ

′′
m − ξ

′
m

2
)]

,

and
ρ = ((a− 1)/δ )− b,

where ξ
′′
(·) and ξ

′′′
(·) are the second- and third-derivatives, with respect to δ as ξ

′′
i =

ξ
′′
(xi; δ) = x2

i , ξ
′′
m = ξ

′′
(xm; δ) = x2

m, ξ
′′′
i = ξ

′′′
(xi; δ) = 0 and ξ

′′′
m = ξ

′′′
(xm; δ) = 0. The

approximate BEs η̂(δ) of η(δ), using the Lindley’s approximation method, can be easily
obtained. Unfortunately, in literature, we have not yet come up with a method that can be
used to construct the associate credible intervals of the unknown parameters η(δ) using
Lindley’s procedure. In view of this, we propose to use the M–H algorithm in order to
generate MCMC samples from the posterior distribution and then to compute the Bayes
estimators and also to construct the associated credible intervals.

3.2. M–H Algorithm

The M–H algorithm, a useful one of MCMC techniques, is used for generating random
samples from the posterior distribution by an independent proposal distribution. However,
from a practical point of view, this method provides a chain form of the Bayesian estimate,
which is easy to apply in practice. One may refer to [25] and [26] for more applications re-
lated to this algorithm. To implement the M–H algorithm procedure, conduct the following
steps for the sample generation process:

Step 1: Start with an initial guess δ(0) = δ̂.
Step 2: Set j = 1.
Step 3: Generate δ(j) from π(δ(j−1)|x) with the normal proposal density distribution as

(a) Obtain a candidate value δ∗ from N(δ(j−1), Var(δ)).
(b) Obtain a sample point u from uniform distribution U(0, 1).

(c) Obtain =
(

δ(j−1), δ∗
)
= min

{
π( δ∗ |x)

π( δ(j−1)|x) , 1
}

.

(d) Set δ(j) = δ∗ if u ≤ =(·), otherwise set δ(j) = δ(j−1).

Step 4: Set j = j + 1.
Step 5: Repeat steps 2–4 for a large N times to obtain δ(j), j = 1, 2, . . . , N.
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Step 6: Using the outputs of Step 5, compute the parameters of life of XGD(δ), such
as R(t) and h(t), for a distinct time t > 0 as

R(j)(t) =

1 + δ(j)(1 + t) + 1
2

(
δ(j)t

)2

1 + δ(j)

e−δ(j)t,

and

h(j)(t) =

 1 + 1
2

(
δ(j)t2

)
1 + δ(j)(1 + t) + 1

2
(
δ(j)t

)2

δ(j)2
,

respectively.
To remove the affection of the initial guess and to guarantee the convergence of

the sampler, the first simulated varieties, N0 (say), usually discarded in the beginning
of the analysis implementation (burn-in period). Hence, the selected MCMC samples
η(j)(δ) = (δ(j), R(j)(t), h(j)(t)) for j = N0 + 1, . . . , N can be used to develop the Bayesian
inferences. However, the Bayes MCMC estimates of a parametric function η(δ) based on
the SEL function are given by

η̃S(δ) =
∑N

j=N0+1 η(j)(δ)

N − N0
·

3.3. Hyper-Parameter Value Selection

The elicitation procedure used to determine the hyperparameter value, when an
informative prior of the density parameter is taken into account, is the main issue in
Bayesian analysis. In the literature, this problem has been discussed by [27,28]. Moreover,
the values of hyperparameters for the unknown parameters under interest are made by
assuming two independent types of information, namely prior mean and prior variance
of the unknown parameter of the model under consideration. In this regard, we propose
the following steps to determine the values of hyperparameters a and b, based on past
samples as

Step 1: Set the parameter value of δ.
Step 2: Set the complete sample size n.
Step 3: Draw a random sample of size n from XGD(δ).
Step 4: Compute the MLE δ̂ of δ.
Step 5: Repeat Steps 2–4 B times to get δ̂J , J = 1, 2, . . . , B.
Step 6: Set the sample mean and sample variance of δ̂J equal to the mean and variance

of the gamma density prior, respectively, as

E(δ̂j) ≡ E(π(δ)) → 1
B ∑B

J=1 δ̂J =
a
b

, (15)

and
Var(δ̂j) ≡ Var(π(δ)) → 1

B− 1∑B
J=1

(
δ̂J − B−1 ∑B

J=1 δ̂J
)2

=
a
b2 , (16)

where B is the number of samples generated from the distribution under consideration.
Step 7: Solve (15) and (16) simultaneously, the estimated hyperparameters ă and b̆ of

a and b can be turn out directly by

ă =

(
1
B ∑B

J=1 δ̂J
)2

1
B−1 ∑B

J=1

(
δ̂J − B−1 ∑B

J=1 δ̂J
)2 and b̆

1
B ∑B

J=1 δ̂J

1
B−1 ∑B

J=1

(
δ̂J − B−1 ∑B

J=1 δ̂J
)2 , (17)

respectively.
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4. Asymptotic and Credible Intervals

In this section, using NA and NL approximations of the MLE, the associated two-sided
ACIs of the unknown parameter δ or any characteristic function, such as R(·) and h(·), are
constructed. In addition, the simulated MCMC varieties of these unknown parameters are
used to construct the associated BCI and HPD credible intervals.

4.1. Asymptotic Confidence Intervals

The asymptotic normal distribution of the MLE is the most common method to obtain
the confidence bounds. In our problem, the exact distribution of δ̂ cannot be obtained
easily due to the MLE δ̂ as (8) has a nonlinear expression. Therefore, the observed Fisher
information, I(·), is used to develop the 100(1 − ε)% ACI of δ by taking the negative
expectation of the second-derivative (or Hessian matrix) of (7) as I(δ̂) = −L2, where L2 is
given in (14). Consequently, the approximate variance of the MLE δ̂ is given by

V̂ar(δ̂) = I−1(δ̂). (18)

However, as referred to in Section 1, the XGD(δ) belongs to one-parameter exponential

family of distributions. Therefore, the sampling distribution of (δ− δ̂)/
√

V̂ar(δ̂) can be
easily approximated by a standard normal distribution, N(0, 1), see [29]. Then, using the
concept of large sample theory based on the NA of the MLE δ̂, the 100(1− ε)% two-sided
ACI of δ is given by

δ̂∓ zε/2

√
V̂ar(δ̂),

where zε/2 is the percentile of the standard normal distribution with right-tail probability
(ε/2)-th . Since the characteristic parameters, such as R(·) and h(·), denoted by ϕ(δ)(say),
are continuous functions of δ, then using the approximate variance of the unknown param-
eter δ, the corresponding variance estimate of any function of δ can be approximated by

V̂ar(ϕ̂(δ̂)) = (∂ϕ(δ)/∂δ)2I−1(δ)
∣∣∣
δ=δ̂

,

where I−1(·) is given by (18), see [30]. Similarly, based on the NA of the MLEs ϕ̂(δ̂), the
100(1− ε)% two-sided ACIs for ϕ̂(δ) can be obtained by

ϕ̂(δ̂)∓ zε/2

√
V̂ar(ϕ̂(δ̂)),

where zε/2 is the percentile of the standard normal distribution with upper probability
(ε/2)-th.

In some situations, the lower bound of standard ACI using normal approximation
may take a negative value for a life distribution parameter. To overcome this drawback,
one may replace the zero value instead of the negative value or using the NL in order to
construct ACIs for the unknown parameters that take positive values, see [31]. Recently,
the NL of the MLE was used by several authors, for example, see [32–34]. Hence, using the
concept of the large sample, the 100(1− ε)% two-sided ACI based on the NL for the MLE
of any function of η(δ) is given by

η(δ̂)× exp

∓ zε/2

√
V̂ar(η(δ̂))

η(δ̂)

,

where η(δ̂) = (δ̂, R̂(t), ĥ(t)) and zε/2 is the percentile of the standard normal distribution
with upper probability (ε/2)-th.
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4.2. Credible Intervals

The interval based on posterior distribution is known as the Bayesian confidence inter-
val and is called a credible interval. To construct the two-sided BCIs, the unknown model
parameter δ and the survival characteristics R(t) and h(t), order the simulated MCMC
variates of η(j)(δ) = (δ(j), R(j)(t), h(j)(t)) for j = N0 + 1, . . . , N as (δ(N0+1), . . . , δ(N)),
(R(N0+1)(t), . . . , R(N)(t)) and (h(N0+1)(t), . . . , h(N)(t)). Hence, the 100(1− ε)% two-sided
BCI for any function of η(δ) is given by[

η(N−N0)(ε/2 ), η(N−N0)(1−(ε/2 ))

]
,

where η(x)(y) is an objective estimate located at the ordered point xy in the MCMC simulated
variates after burn-in.

According to the method proposed by [35], using the ordered MCMC variates of
η(j)(δ) for j = N0 + 1, . . . , N, the 100(1− ε)% HPD credible interval for any function of δ
as η(δ) can be constructed as [

η(j∗), η(j∗+(1−ε)(N−N0))

]
,

where j∗ is chosen such that

η(j∗+[(1−ε)(N−N0)])
− η(j∗) = min

1≤j≤ε(N−N0)

(
η(j+[(1−ε)(N−N0)])

− η(j)

)
, j∗ = N0 + 1, . . . , N.

Here, [x] denotes the largest integer less than or equal to x.

5. Monte Carlo Simulation

To examine the behavior of considered estimators of the model parameter, as well
as associated reliability and hazard rate functions of XGD based on APHCS-T2, various
Monte Carlo simulations are conducted by considering two different true values of the
xgamma parameter as δ(= 1, 3). Using the algorithm described in [7], a large number, 1000
of APHCS-T2 samples based on different combinations of n (number of total test units)
and m (effective sample size) are generated from XGD(δ).

For each setting, the MLEs and Bayes MCMC estimates of the unknown parameter
δ and the reliability characteristics R(t) and h(t) are computed. Approximate Bayes
computations are developed using both Lindley and M–H algorithm methods. Now, to
generate APHCS-T2 samples from the XGD model, conduct the following steps:

Step 1: generate an ordinary PCS-T2 sample (Xi, Ri), i = 1, 2, . . . , m, by using the
algorithm described by [36] as

(a) Generate W independent observations of size m as W1, W2, . . . , Wm.

(b) For given values of n, m, T and Ri, i = 1, 2, . . . , m, set Vi = W

(
i+∑m

j=m−i+1 Rj

)−1

i , for
i = 1, 2, . . . , m.

(c) Set Ui = 1− VmVm−1 · · ·Vm−i+1 for i = 1, 2, . . . , m. Hence, Ui, i = 1, 2, . . . , m is a
PCS-T2 sample of size m from U(0, 1) distribution.

(d) Invert (2) for a given value of δ, i.e., Xi = F−1(ui; δ), i = 1, 2, . . . , m, the PCS-T2
sample from XGD(δ) is carried out.

Step 2: Determine d-th failure, where Xd < T < Xd+1, and discard the remaining
sample Xd+2, . . . , Xm.

Step 3: Generate the first m − d − 1 order statistics from a truncated distribution
f (x)

[1−F(xd+1)]
with sample size n− d−∑d

j=1 Rj − 1 as Xd+2, . . . , Xm.
This numerical comparison is performed based on different combinations of (n, m, T),

such as: n(= 30, 80) for each pre-determined time T(= 1, 3). The test is terminated when
the number of failed subjects achieves or exceeds a certain value m, where the percentage
of failure information (m/n) is taken as 50 and 80%.
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To assign values for the hyperparameters of the conjugate gamma prior (10), we
propose using the procedure of past sample data described in Section 3.3. In view of this,
we generated 1000 complete samples of a large size 50 (say) from the xgamma lifetime
model as past samples when the plausible values of an unknown parameter δ were taken
as 1 and 3. Consequently, the values of the hyperparameters a and b, which are plugged-in
to the computation of the desired Bayes estimates, are taken as (a, b) = (98.295, 97.046) and
(a, b) = (77.136, 25.384) for XGD(1) and XGD(3), respectively. If one does not have any
prior information on the unknown parameter of interest, the posterior PDF (11) becomes
proportional to the likelihood function (6). In this case, it is better to use the MLEs instead
of the BEs, as the later are computationally more expensive.

Regarding the reliability characteristic functions of XGD, we also obtained the MLEs
and BEs for R(t) and h(t) for a distinct time t = 0.1. Hence, for each true parameter
value of δ, the actual value of them are taken as (R(0.1), h(0.1)) = (0.9523, 0.4774) and
(R(0.1), h(0.1)) = (0.8047, 2.1024) for δ = 1 and 3, respectively. To develop the Bayesian
computations, we generated 12,000 MCMC samples and then the first 2000 iterations were
discarded from the generated sequence as burn-in to remove the affection of the selection
of the initial value. Hence, the average BEs of the unknown parameters δ, R(t) and h(t)
are computed based on the SEL function using 10,000 MCMC samples. The initial value of
δ, for running the MCMC sampler algorithm, was taken to be its MLE. Moreover, for each
n and m, different censoring schemes (CSs), R, to remove survival units during the lifetime
experiment, are used as

CS-1 : R1 = n−m, Ri = 0 for i 6= 1,

CS-2 :

{
R m

2
= n−m, Ri = 0 for i 6= m/2, if m is even,

R (m+1)
2

= n−m, Ri = 0 for i 6= (m + 1)/2, if m is odd,

CS-3 : Rm = n−m, Ri = 0 for i 6= m.

For each test, the average point estimates with their RMSEs and RABs as well as the
ACWs of the interval estimates are given, respectively, by

η̂r =
1
G ∑G

i=1 η̂
(i)
r , r = 1, 2, 3,

RMSE(η̂r) =

√
1
G ∑G

i=1

(
η̂
(i)
r − ηr

)2
, r = 1, 2, 3,

RAB(η̂r) =
1
G ∑G

i=1
1
ηr

∣∣∣η̂(i)
r − ηr

∣∣∣, r = 1, 2, 3,

and
ACW(η̂r) =

1
G ∑G

i=1

(
η̂
(i)
rU − η̂

(i)
rL

)
, r = 1, 2, 3,

where G is the number of replicates, η̂ is the MLE or BE of the parametric function η,
(η̂rL , η̂rU ) denote the 100(1− ε)% CI bounds, where η1 = δ, η2 = R(t) and η3 = h(t).

The average MLEs and BEs (Lindley’s and MCMC methods) of δ, R(t) and h(t)
with their RMSEs and RABs are calculated and reported in Tables 1–3. In each table, the
associated average estimate, RMSE and RAB, of any unknown parameter based on each
test, are tabulated in the first, second, and third rows, respectively. Further, the ACWs
of 95% asymptotic and credible intervals of δ, R(t) and h(t) are computed and listed in
Tables 4 and 5.

All numerical computations are performed using R statistical programming language
software version 4.0.4 by mainly three useful recommended packages; namely (i) ’CODA’
package, proposed by [37], used to carry out the Bayesian inference; (ii) ’maxLik’ package,
proposed by [38], used to obtain the MLEs via the N–R iterative procedure; and (iii)
’GoFKernel’ package, proposed by [39], used to invert the xgamma distribution (2). These
packages were recently recommended by [22,40–43].
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From Tables 1–3, it can be seen that the proposed estimators of the unknown parameter
and the reliability characteristics of XGD are very good, in terms of their RMSEs, RABs,
and ACWs. As n (or m) increases, the RMSEs, RABs, and ACWs of both point and interval
estimates decrease as expected. Thus, to get better estimation results, one may tend
to increase the effective sample size. It is also observed that, as the failure percentage
m/n increases, the point estimates become even better. Since the Bayes estimates of
any parametric function include gamma prior information than the classical estimates,
consequently, they perform better than the other competing estimates in terms of their
RMSEs and RABs. Hence, the MCMC method using the M–H algorithm is better than
Lindley’s approximation method, with respect to their RMSEs and RABs.

Regarding the xgamma parameter δ, RF R(t), FRF h(t), when δ increases with fixed
T, the RMSEs and RABs associated with MLEs and BEs increase; moreover, they have
similar behavior when T increases with fixed δ. When T increases with fixed δ, the RMSEs
and RABs associated with MLE and Lindley estimates decrease, while those associated
with the MCMC estimates increase. When T increases with fixed δ, the RMSEs and RABs
associated with MCMC estimates increase, while those associated with MLEs and Lindley
estimates decrease. From Tables 4–6, in respect to the interval estimates, the ACWs of
asymptotic and credible intervals narrow down when n and m increases, as expected. In
addition, as m/n increases, the 95% ACWs of all of the proposed estimates narrow down.
As δ (or T) increases, the ACWs of both asymptotic and credible intervals for δ, R(t), h(t)
tend to increase. It can also be seen that the ACWs of asymptotic (NA/NL) intervals, as
well as credible (BCI/HPD) intervals, are quite close to each other. Further, due to the
gamma prior information, it is observed that the credible intervals perform better than the
asymptotic intervals, with respect to the shortest ACWs, as expected.

Moreover, comparing schemes 1 and 3, it is clear that the RMSEs and RABs of all
estimates for the unknown parameter δ, R(t) and h(t) are greater, based on scheme 3 than
scheme 1. This is because the expected durations of the experiments using scheme 1, where
the remaining n − m units are withdrawn in the first stage, are greater than scheme 3,
where the remaining n−m units are withdrawn from the life test at the time of observed
m-th failure. Finally, we recommend the Bayesian (point and interval) estimates of the
unknown parameter and the reliability characteristics of the xgamma lifetime model using
the M–H algorithm sampler.

Table 1. The average estimates of δ with their RMSEs and RABs.

n m CS δ = 1 δ = 3

T → 1 3 1 3

MLE Lindley MCMC MLE Lindley MCMC MLE Lindley MCMC MLE Lindley MCMC

30 15 1 0.9753 0.9839 1.0147 0.9964 0.9677 1.0172 3.0033 3.0193 3.1981 3.1166 3.1251 3.2309
0.1140 0.0660 0.0165 0.1449 0.0976 0.0186 0.5009 0.4644 0.2021 0.5638 0.5265 0.2530
0.0897 0.0354 0.0147 0.1099 0.0385 0.0172 0.1262 0.1179 0.0660 0.1449 0.1370 0.0770

2 0.9445 0.9794 0.9840 0.9904 0.9679 1.0176 3.0096 3.0211 3.3647 3.0959 3.1020 3.3940
0.1875 0.1280 0.0166 0.1411 0.1219 0.0191 0.5290 0.4866 0.3724 0.5614 0.5191 0.4013
0.1268 0.0714 0.0160 0.1101 0.0475 0.0176 0.1362 0.1265 0.1216 0.1438 0.1346 0.1313

3 0.6355 0.6361 1.0309 1.0351 1.0331 1.0501 3.1295 3.1160 3.4138 3.0951 3.0866 3.4417
0.4644 0.4603 0.0313 0.1779 0.1738 0.0511 0.6080 0.5338 0.4510 0.5714 0.5033 0.4761
0.4364 0.4324 0.0309 0.1322 0.1297 0.0501 0.1543 0.1378 0.1379 0.1450 0.1301 0.1472

24 1 0.9782 0.9880 1.0089 0.9943 0.9807 1.0133 3.0030 2.8839 3.0997 3.0806 3.0916 3.1984
0.0931 0.0314 0.0093 0.1226 0.0475 0.0160 0.4814 0.7567 0.1126 0.5369 0.5058 0.2032
0.0737 0.0192 0.0089 0.0955 0.0260 0.0149 0.1222 0.0978 0.0333 0.1355 0.1288 0.0661

2 0.8240 0.9477 1.0161 0.9950 0.9802 1.0161 3.0043 2.8687 3.2681 3.0762 3.0857 3.2944
0.2517 0.0862 0.0170 0.1256 0.0566 0.0183 0.4947 0.7625 0.3011 0.5309 0.4985 0.3137
0.2101 0.0574 0.0161 0.0980 0.0263 0.0161 0.1209 0.1097 0.0894 0.1351 0.1280 0.0982

3 0.7027 0.9217 1.0213 0.9503 0.9289 1.0331 3.0689 2.7246 3.3644 3.0974 3.0952 3.4000
0.3135 0.1092 0.0231 0.2119 0.1603 0.0371 0.5638 0.9228 0.4022 0.5501 0.4965 0.4545
0.2979 0.0831 0.0213 0.1780 0.0864 0.0331 0.1445 0.1763 0.1215 0.1390 0.1270 0.1333
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Table 1. Cont.

n m CS δ = 1 δ = 3

T → 1 3 1 3

MLE Lindley MCMC MLE Lindley MCMC MLE Lindley MCMC MLE Lindley MCMC

80 40 1 0.9914 0.9937 0.9986 0.9964 0.9946 1.0087 3.0026 2.9831 3.0135 3.0693 2.9733 2.9855
0.0754 0.0385 0.0105 0.0914 0.0452 0.0158 0.3687 0.1172 0.0159 0.4016 0.1099 0.0201
0.0602 0.0301 0.0089 0.0722 0.0365 0.0106 0.0975 0.0203 0.0046 0.1055 0.0233 0.0050

2 0.9868 0.9909 1.0072 1.0001 0.9952 1.0180 3.0008 2.9884 2.9856 3.0413 2.9626 2.9849
0.1070 0.0617 0.0145 0.0976 0.0376 0.0220 0.3539 0.1070 0.0179 0.4066 0.1570 0.0233
0.0666 0.0284 0.0118 0.0760 0.0288 0.0184 0.0927 0.0206 0.0049 0.1048 0.0263 0.0068

3 0.4705 0.4717 0.9684 1.0165 0.9928 0.9700 3.0810 2.9468 3.0213 3.0586 2.9476 3.0256
0.5441 0.5430 0.0327 0.1096 0.0461 0.0309 0.4027 0.2276 0.0260 0.4148 0.2436 0.0291
0.5336 0.5324 0.0316 0.0857 0.0261 0.0300 0.1046 0.0427 0.0073 0.1076 0.0431 0.0085

64 1 0.9931 0.9955 1.0052 1.0004 0.9993 1.0028 2.9886 3.0044 2.9949 3.0337 3.0129 2.0121
0.0593 0.0411 0.0055 0.0767 0.0511 0.0068 0.2706 0.1100 0.0058 0.3191 0.1206 0.0180
0.0477 0.0329 0.0052 0.0606 0.0411 0.0060 0.0721 0.0299 0.0017 0.0845 0.0333 0.0044

2 0.7442 0.8121 0.9950 0.9925 0.9944 1.0168 2.9920 3.0043 2.9954 3.0455 3.0153 2.9887
0.3096 0.2299 0.0078 0.0757 0.0484 0.0170 0.2813 0.1012 0.0062 0.3221 0.1080 0.0219
0.2713 0.1983 0.0061 0.0601 0.0389 0.0168 0.0737 0.0276 0.0017 0.0823 0.0294 0.0065

3 0.6507 0.7446 1.0206 0.8817 0.9175 1.0165 3.0087 2.9966 2.9920 3.0264 3.0093 2.9759
0.3574 0.2647 0.0216 0.2123 0.1360 0.0177 0.3439 0.1246 0.0098 0.3104 0.0709 0.0286
0.3493 0.2554 0.0206 0.1798 0.1059 0.0165 0.0847 0.0236 0.0029 0.0821 0.0190 0.0082

Table 2. The average estimates of R(t) with their RMSEs and RABs.

n m CS δ = 1 δ = 3

T → 1 3 1 3

MLE Lindley MCMC MLE Lindley MCMC MLE Lindley MCMC MLE Lindley MCMC

30 15 1 0.9539 0.9560 0.9513 0.9524 0.9480 0.9512 0.8050 0.8074 0.7905 0.7970 0.7989 0.7881
0.0078 0.0344 0.0011 0.0102 0.0444 0.0013 0.0355 0.0377 0.0145 0.0398 0.0416 0.0181
0.0065 0.0283 0.0011 0.0080 0.0318 0.0013 0.0337 0.0363 0.0177 0.0386 0.0406 0.0206

2 0.9558 0.9628 0.9534 0.9528 0.9500 0.9511 0.8046 0.8068 0.7786 0.7985 0.8004 0.7766
0.0121 0.0558 0.0012 0.0098 0.0479 0.0013 0.0375 0.0400 0.0266 0.0397 0.0418 0.0287
0.0089 0.0428 0.0012 0.0080 0.0348 0.0013 0.0365 0.0393 0.0324 0.0383 0.0406 0.0350

3 0.9748 0.9748 0.9502 0.9497 0.9491 0.9489 0.7962 0.7972 0.7752 0.7986 0.7997 0.7733
0.0293 0.0299 0.0022 0.0125 0.0132 0.0036 0.0427 0.0463 0.0321 0.0403 0.0437 0.0339
0.0291 0.0297 0.0023 0.0097 0.0101 0.0037 0.0410 0.0447 0.0366 0.0386 0.0422 0.0391

24 1 0.9538 0.9557 0.9517 0.9526 0.9508 0.9514 0.8050 0.8108 0.7975 0.7995 0.8014 0.7904
0.0064 0.0202 0.0006 0.0085 0.0306 0.0011 0.0341 0.0931 0.0081 0.0379 0.0395 0.0146
0.0053 0.0167 0.0006 0.0069 0.0229 0.0010 0.0327 0.0913 0.0090 0.0361 0.0380 0.0177

2 0.9638 0.9870 0.9512 0.9526 0.9506 0.9512 0.8049 0.8110 0.8060 0.7998 0.8016 0.7836
0.0165 0.0501 0.0012 0.0087 0.0333 0.0013 0.0350 0.0987 0.0215 0.0375 0.0393 0.0224
0.0146 0.0455 0.0011 0.0071 0.0250 0.0012 0.0324 0.0931 0.0239 0.0361 0.0379 0.0262

3 0.9718 0.9995 0.9509 0.9553 0.9535 0.9500 0.8004 0.7964 0.7787 0.7983 0.7997 0.7762
0.0204 0.0615 0.0016 0.0143 0.0653 0.0025 0.0402 0.1240 0.0287 0.0388 0.0416 0.0323
0.0204 0.0634 0.0015 0.0127 0.0552 0.0024 0.0387 0.1229 0.0323 0.0371 0.0400 0.0354

80 40 1 0.9529 0.9534 0.9524 0.9525 0.9523 0.9517 0.8048 0.8083 0.8037 0.8001 0.7980 0.8058
0.0052 0.0121 0.0007 0.0063 0.0150 0.0011 0.0264 0.0538 0.0011 0.0287 0.0571 0.0015
0.0044 0.0101 0.0006 0.0052 0.0120 0.0008 0.0262 0.0541 0.0012 0.0283 0.0564 0.0014

2 0.9531 0.9539 0.9518 0.9523 0.9516 0.9511 0.8049 0.8090 0.8058 0.8021 0.8023 0.8058
0.0069 0.0161 0.0010 0.0068 0.0192 0.0015 0.0254 0.0546 0.0013 0.0290 0.0612 0.0017
0.0047 0.0121 0.0009 0.0055 0.0146 0.0013 0.0249 0.0542 0.0013 0.0281 0.0596 0.0018

3 0.9849 0.9851 0.9545 0.9511 0.9474 0.9544 0.7992 0.7964 0.8032 0.8008 0.8004 0.8029
0.0334 0.0335 0.0023 0.0077 0.0332 0.0021 0.0287 0.0685 0.0019 0.0296 0.0706 0.0021
0.0345 0.0347 0.0023 0.0063 0.0263 0.0022 0.0280 0.0677 0.0020 0.0288 0.0698 0.0023

64 1 0.9528 0.9532 0.9520 0.9523 0.9521 0.9521 0.8057 0.8087 0.8051 0.8025 0.8032 0.8038
0.0041 0.0074 0.0004 0.0053 0.0100 0.0005 0.0195 0.0328 0.0004 0.0229 0.0381 0.0013
0.0035 0.0063 0.0004 0.0044 0.0081 0.0004 0.0194 0.0328 0.0005 0.0227 0.0378 0.0012

2 0.9689 0.9815 0.9527 0.9528 0.9532 0.9512 0.8054 0.8085 0.8050 0.8016 0.8018 0.8055
0.0201 0.0350 0.0005 0.0052 0.0102 0.0012 0.0202 0.0347 0.0005 0.0230 0.0390 0.0016
0.0186 0.0328 0.0004 0.0044 0.0084 0.0012 0.0199 0.0343 0.0005 0.0221 0.0375 0.0017

3 0.9750 0.9925 0.9509 0.9601 0.9669 0.9512 0.8043 0.8066 0.8053 0.8030 0.8046 0.8065
0.0231 0.0405 0.0015 0.0141 0.0289 0.0012 0.0249 0.0452 0.0007 0.0223 0.0416 0.0021
0.0238 0.0421 0.0014 0.0126 0.0268 0.0012 0.0228 0.0423 0.0008 0.0221 0.0415 0.0022
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Table 3. The average estimates of h(t) with their RMSEs and RABs.

n m CS δ = 1 δ = 3

T → 1 3 1 3

MLE Lindley MCMC MLE Lindley MCMC MLE Lindley MCMC MLE Lindley MCMC

30 15 1 0.4615 0.4602 0.4878 0.4771 0.4496 0.4896 2.1082 2.0949 2.2743 2.6070 2.1836 2.3029
0.0792 0.0549 0.0117 0.1042 0.0856 0.0132 0.4357 0.3871 0.1754 0.4914 0.4344 0.2199
0.1311 0.0585 0.0218 0.1630 0.0676 0.0254 0.1559 0.1422 0.0818 0.1795 0.1624 0.0954

2 0.4431 0.4514 0.4662 0.4728 0.4493 0.4899 2.1141 2.0946 2.4196 2.1891 2.1618 2.4452
0.1225 0.1051 0.0117 0.1002 0.1047 0.0135 0.4600 0.4043 0.3239 0.4889 0.4274 0.3492
0.1797 0.1147 0.0235 0.1625 0.0820 0.0262 0.1684 0.1521 0.1509 0.1779 0.1593 0.1631

3 0.2517 0.2494 0.4993 0.5054 0.5028 0.5130 2.2186 2.1638 2.4628 2.1885 2.1397 2.4872
0.2956 0.2948 0.0222 0.1281 0.1232 0.0363 0.5305 0.4323 0.3930 0.4978 0.4088 0.4150
0.5854 0.5845 0.0459 0.1973 0.1911 0.0745 0.1912 0.1610 0.1714 0.1795 0.1523 0.1830

24 1 0.4631 0.4682 0.4837 0.4750 0.4614 0.4868 2.1078 1.9400 2.1889 2.1755 2.1591 2.2746
0.0650 0.0228 0.0066 0.0874 0.0401 0.0113 0.4187 0.8872 0.0977 0.4679 0.4213 0.1764
0.1080 0.0285 0.0131 0.1413 0.0419 0.0221 0.1509 0.1560 0.0412 0.1678 0.1544 0.0819

2 0.3617 0.4375 0.4888 0.4756 0.4606 0.4888 2.1090 1.9216 2.3354 2.1717 2.1528 2.3584
0.1664 0.0637 0.0120 0.0894 0.0490 0.0130 0.4304 0.8728 0.2619 0.4622 0.4145 0.2728
0.2938 0.0904 0.0239 0.1449 0.0437 0.0238 0.1494 0.1729 0.1108 0.1672 0.1530 0.1217

3 0.2809 0.4184 0.4925 0.4477 0.4175 0.5010 2.1661 1.7589 2.4195 2.1902 2.1535 2.4509
0.2061 0.0802 0.0163 0.1458 0.1350 0.0263 0.4885 1.0373 0.3503 0.4793 0.4074 0.3963
0.4126 0.1303 0.0315 0.2578 0.1477 0.0493 0.1785 0.2740 0.1508 0.1722 0.1503 0.1657

80 40 1 0.4720 0.4729 0.4765 0.4758 0.4733 0.4836 2.1064 2.0650 2.1141 2.1643 2.0479 2.0899
0.0530 0.0262 0.0074 0.0648 0.0306 0.0112 0.3197 0.1461 0.0137 0.3489 0.1424 0.0174
0.0887 0.0428 0.0131 0.1067 0.0517 0.0157 0.1205 0.0295 0.0057 0.1306 0.0358 0.0062

2 0.4697 0.4709 0.4825 0.4785 0.4732 0.4902 2.1047 2.0689 2.0899 2.1402 2.0374 2.0894
0.0702 0.0412 0.0102 0.0695 0.0267 0.0156 0.3068 0.1399 0.0155 0.3532 0.2045 0.0202
0.0962 0.0396 0.0175 0.1125 0.0407 0.0273 0.1145 0.0330 0.0061 0.1296 0.0435 0.0084

3 0.1500 0.1509 0.4553 0.4904 0.4690 0.4564 2.1745 2.0114 2.1208 2.1552 2.0138 2.1246
0.3353 0.3343 0.0229 0.0784 0.0406 0.0217 0.3501 0.2858 0.0225 0.3604 0.3038 0.0252
0.6922 0.6901 0.0464 0.1274 0.0459 0.0441 0.1295 0.0754 0.0091 0.1330 0.0755 0.0105

64 1 0.4730 0.4744 0.4811 0.4783 0.4770 0.4794 2.0935 2.0969 2.0980 2.1329 2.0997 2.1129
0.0416 0.0284 0.0039 0.0544 0.0353 0.0048 0.2342 0.0812 0.0050 0.2768 0.0870 0.0156
0.0703 0.0477 0.0076 0.0897 0.0597 0.0089 0.0889 0.0305 0.0021 0.1044 0.0330 0.0055

2 0.3100 0.3512 0.4739 0.4728 0.4735 0.4893 2.0965 2.0958 2.0984 2.1431 2.1000 2.0926
0.2024 0.1540 0.0055 0.0535 0.0334 0.0120 0.2437 0.0727 0.0054 0.2797 0.0793 0.0190
0.3739 0.2794 0.0091 0.0887 0.0563 0.0249 0.0910 0.0273 0.0021 0.1017 0.0286 0.0080

3 0.2484 0.3058 0.4920 0.3997 0.4208 0.4891 2.1116 2.0829 2.0955 2.1265 2.0936 2.0816
0.2335 0.1773 0.0153 0.1424 0.0922 0.0125 0.2964 0.1034 0.0085 0.2690 0.0516 0.0247
0.4797 0.3595 0.0305 0.2555 0.1503 0.0245 0.1044 0.0230 0.0035 0.1015 0.0173 0.0101

Table 4. The ACWs for 95% asymptotic/credible interval estimates of δ.

δ n m CS T = 1 T = 3

Asymptotic Credible Asymptotic Credible

NA NL BCI HPD NA NL BCI HPD

1 30 15 1 0.6766 0.6902 0.0217 0.0216 0.6195 0.6295 0.0258 0.0257
2 0.6509 0.6639 0.0160 0.0159 0.6142 0.6241 0.0263 0.0262
3 0.3852 0.3913 0.0175 0.0173 0.6351 0.6451 0.0447 0.0412

24 1 0.5370 0.5438 0.0110 0.0102 0.5487 0.5557 0.0325 0.0320
2 0.4373 0.4425 0.0213 0.0208 0.5487 0.5557 0.0298 0.0292
3 0.3591 0.3630 0.0301 0.0300 0.5092 0.5154 0.0496 0.0495

80 40 1 0.4223 0.4255 0.0335 0.0334 0.4255 0.4287 0.0410 0.0409
2 0.4195 0.4227 0.0404 0.0403 0.4270 0.4302 0.0379 0.0378
3 0.1639 0.1647 0.0294 0.0288 0.4304 0.4336 0.0290 0.0287

64 1 0.3347 0.3363 0.0071 0.0069 0.3379 0.3395 0.0183 0.0182
2 0.2387 0.2398 0.0196 0.0195 0.3346 0.3362 0.0105 0.0104
3 0.2026 0.2034 0.0246 0.0234 0.2857 0.2869 0.0213 0.0209

3 30 15 1 2.0570 2.0975 0.1762 0.1622 2.1447 2.1873 0.3919 0.3898
2 2.0681 2.1091 0.3463 0.3252 2.1351 2.1778 0.3704 0.3189
3 2.1779 2.2222 0.5372 0.5349 2.1510 2.1946 0.5848 0.5841

27 1 1.9236 1.9567 0.1816 0.1811 1.9797 2.0140 0.1584 0.1563
2 1.9284 1.9618 0.4485 0.4388 1.9804 2.0149 0.3712 0.3696
3 1.9806 2.0152 0.4933 0.4929 2.0052 2.0405 0.6495 0.6493

80 40 1 1.4883 1.5036 0.0277 0.0276 1.5259 1.5417 0.0468 0.0465
2 1.4920 1.5074 0.0336 0.0327 1.5148 1.5306 0.0577 0.0574
3 1.5536 1.5701 0.0464 0.0451 1.5409 1.5573 0.0458 0.0457

64 1 1.1699 1.1773 0.0111 0.0110 1.1900 1.1976 0.0507 0.0497
2 1.1739 1.1814 0.0149 0.0148 1.1978 1.2056 0.0774 0.0725
3 1.1851 1.1928 0.0223 0.0222 1.1944 1.2022 0.0528 0.0576
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Table 5. The ACWs for 95% asymptotic/credible interval estimates of R(t).

δ n m CS T = 1 T = 3

Asymptotic Credible Asymptotic Credible

NA NL BCI HPD NA NL BCI HPD

1 30 15 1 0.0001 0.1223 0.0015 0.0015 0.0001 0.1110 0.0018 0.0017
2 0.0001 0.1173 0.0011 0.0010 0.0001 0.1102 0.0018 0.0018
3 0.0001 0.0677 0.0012 0.0012 0.0002 0.1123 0.0031 0.0029

24 1 0.0001 0.0972 0.0008 0.0007 0.0001 0.0986 0.0023 0.0022
2 0.0001 0.0780 0.0015 0.0014 0.0001 0.0986 0.0021 0.0020
3 0.0001 0.0669 0.0021 0.0020 0.0001 0.0910 0.0035 0.0034

80 40 1 0.0001 0.0763 0.0023 0.0022 0.0001 0.0767 0.0029 0.0028
2 0.0001 0.0757 0.0028 0.0027 0.0001 0.0768 0.0026 0.0026
3 0.0001 0.0287 0.0020 0.0019 0.0001 0.0771 0.0020 0.0019

64 1 0.0001 0.0605 0.0005 0.0004 0.0001 0.0609 0.0013 0.0012
2 0.0001 0.0439 0.0014 0.0013 0.0001 0.0604 0.0007 0.0007
3 0.0001 0.0377 0.0017 0.0016 0.0001 0.0519 0.0015 0.0014

3 30 15 1 0.0002 0.1667 0.0126 0.0116 0.0002 0.1649 0.0279 0.0278
2 0.0002 0.1668 0.0246 0.0231 0.0002 0.1656 0.0262 0.0225
3 0.0002 0.1660 0.0380 0.0378 0.0002 0.1668 0.0412 0.0411

24 1 0.0001 0.1561 0.0131 0.0130 0.0002 0.1548 0.0113 0.0112
2 0.0002 0.1563 0.0319 0.0313 0.0002 0.1552 0.0263 0.0262
3 0.0002 0.1548 0.0349 0.0348 0.0002 0.1555 0.0457 0.0457

80 40 1 0.0001 0.1215 0.0020 0.0019 0.0001 0.1208 0.0034 0.0034
2 0.0001 0.1220 0.0024 0.0023 0.0001 0.1214 0.0042 0.0041
3 0.0001 0.1224 0.0034 0.0032 0.0001 0.1225 0.0033 0.0033

64 1 0.0001 0.0965 0.0008 0.0008 0.0001 0.0961 0.0037 0.0036
2 0.0001 0.0967 0.0011 0.0010 0.0001 0.0962 0.0056 0.0052
3 0.0001 0.0964 0.0016 0.0016 0.0001 0.0967 0.0042 0.0041

Table 6. The ACWs for 95% asymptotic/credible interval estimates of h(t).

δ n m CS T = 1 T = 3

Asymptotic Credible Asymptotic Credible

NA NL BCI HPD NA NL BCI HPD

1 30 15 1 0.4885 0.5117 0.0154 0.0153 0.4515 0.4684 0.0183 0.0182
2 0.4676 0.4896 0.0112 0.0111 0.4464 0.4631 0.0187 0.0186
3 0.2451 0.2550 0.0125 0.0123 0.4693 0.4864 0.0319 0.0295

24 1 0.3879 0.3993 0.0077 0.0072 0.3990 0.4108 0.0230 0.0226
2 0.2292 0.3078 0.0151 0.0148 0.3991 0.4110 0.0212 0.0207
3 0.2287 0.2351 0.0213 0.0213 0.3667 0.3771 0.0353 0.0352

80 40 1 0.3063 0.3117 0.0236 0.0235 0.3092 0.3148 0.0291 0.0290
2 0.3043 0.3097 0.0286 0.0285 0.3108 0.3163 0.0269 0.0268
3 0.0873 0.0873 0.0206 0.0201 0.3152 0.3206 0.0203 0.0201

64 1 0.2428 0.2455 0.0050 0.0048 0.2459 0.2486 0.0129 0.0129
2 0.1570 0.1587 0.0138 0.0137 0.2428 0.2455 0.0075 0.0074
3 0.1246 0.1259 0.0174 0.0166 0.2000 0.2021 0.0151 0.0148

3 30 15 1 1.9797 2.0533 0.1531 0.1410 2.0806 2.1586 0.3413 0.3394
2 1.9920 2.0666 0.3021 0.2838 2.0687 2.1466 0.3235 0.2789
3 2.1161 2.1974 0.4693 0.4672 2.0844 2.1642 0.5116 0.5110

24 1 1.8506 1.9107 0.1575 0.1571 1.9155 1.9781 0.1377 0.1360
2 1.8558 1.9164 0.3909 0.3822 1.9155 1.9783 0.3240 0.3225
3 1.9163 1.9795 0.4307 0.4304 1.9427 2.0071 0.5681 0.5679

80 40 1 1.4297 1.4573 0.0239 0.0239 1.4726 1.5012 0.0405 0.0402
2 1.4328 1.4606 0.0291 0.0283 1.4595 1.4879 0.0499 0.0497
3 1.5004 1.5304 0.0402 0.0389 1.4864 1.5160 0.0397 0.0396

64 1 1.1216 1.1351 0.0096 0.0095 1.1448 1.1586 0.0438 0.0431
2 1.1258 1.1394 0.0128 0.0128 1.1533 1.1672 0.0670 0.0627
3 1.1386 1.1525 0.0193 0.0192 1.1484 1.1625 0.0504 0.0498

6. Real-Life Applications

To show the adaptability and flexibility of the proposed methodologies to real phe-
nomena, in this section, we provide two real datasets derived from the engineering and
chemical fields.

6.1. Engineering Data Analysis

In this subsection, we discuss how the proposed methodology can be applied to a
real-life phenomena by analyzing one real dataset given by [29]. This dataset shows that the
cycle to failure numbers for 25 (100-cm) specimens of yarn tested at a particular strain level
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are: 15, 20, 38, 42, 61, 76, 86, 98, 121, 146, 149, 157, 175, 176, 180, 180, 198, 220, 224, 251, 264,
282, 321, 325, and 653. Before proceeding, we first fit the XGD to the complete yarn dataset
along five popular lifetime models as competitors, namely: exponential ED(δ), gamma
GD(α, δ), Weibull WD(α, δ), generalized-exponential GED(α, δ) and Nadarajah–Haghighi
NHD(α, δ), proposed by [44], distributions. Kolmogorov–Smirnov (K–S) distance with
the associated p-value is used to check the validity of the proposed models. Further,
several goodness-of-fit measures were also, namely: negative log-likelihood criterion
(NLC) −`(·), Akaike’s information criterion (AIC), AIC = −2`+ 2τ, consistent Akaike
information criterion (CAIC), CAIC = −2` + (2nτ/n− τ − 1), Bayesian information
criterion (BIC), BIC = −2`+ τ log(n), and Hannan–Quinn information criterion (HQIC),
HQIC = −2`+ 2τ log(log(n)), where n and τ are the sample size and the dimension of
the model parameter, respectively.

The maximum likelihood estimation method is used to estimate the unknown pa-
rameters of the considered distribution and to evaluate all terms of the model selection
criteria. In general, the best distribution that provides the better fit corresponds to the
lowest value of NLC, AIC, CAIC, BIC, HQIC, and K–S statistic values and highest p-values.
The values of MLEs of the model parameters and corresponding goodness-of-fit measures
are computed and reported in Table 7. It shows that the XGD fits the life cycle of the yarn
dataset quite satisfactorily. Moreover, the XGD is the best choice among other competing
models because it has the smallest K–S value with the highest p-value.

Table 7. Summary fit for the life cycle of the yarn dataset.

Model MLE NLC AIC CAIC BIC HQIC K–S

α̂ δ̂ Statistic p-Value

XGD - 0.0166 154.16 310.32 310.49 309.72 308.61 0.1188 0.8722
GD 1.7990 0.0101 152.44 308.88 309.42 311.31 309.55 0.1388 0.7209

GED 1.8863 0.0081 152.49 308.98 309.53 311.42 309.66 0.1437 0.6806
WD 1.1283 0.0028 153.41 310.83 311.37 313.27 311.50 0.1790 0.3997

NHD 1.6494 0.0029 153.56 311.11 311.66 313.55 311.79 0.1834 0.3697
ED - 0.0056 154.59 311.18 311.35 312.40 311.52 0.1990 0.2753

According to BIC, HQIC, and K–S (p-value), it can be seen that the XGD is the better
choice, followed by gamma, generalized-exponential, exponential, Weibull, and Nadarajah–
Haghighi distributions, respectively. Similarly, according to NLC, AIC, and CAIC, it is
noted that the gamma distribution is slightly better than the other distributions. In addition,
another advantage of using XGD, instead of the two-parameter competing distributions
for modeling lifetime data, is that XGD only has one parameter. Consequently, from a
computational point of view, inferential procedures become more convenient. For more
illustration, we have provided two plots computed at the estimated model parameter(s) of
each considered distribution. Plot (a) represents the empirical CDF plot and the fitted CDFs;
Plot (b) represents the histogram of the yarn dataset and the fitted PDFs, see Figure 1. Now,
we discuss the proposed estimates in the presence of the complete yarn dataset. Using
different choices of m, T, and R, three APHCS-T2 samples are generated and presented
in Table 8. In short, the censoring scheme R = (3, 0, 0, 3) is referred as R = (3, 0∗2, 3).
Because we lack prior information about the xgamma parameter, the approximate BEs are
developed using Lindley and MCMC approximation methods under gamma improper, i.e.,
a = b = 0.
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Figure 1. Plots of estimated PDFs and CDFs of XGD and its competing models under yarn dataset.

Using the M–H algorithm described in Section 3.2, 20,000 MCMC samples were
generated and the first 5000 iterations of the simulated variates were discarded as burn-
in. Using Table 8, the MLEs and BEs with their standard errors (SEs) of the unknown
parameters δ, R(t) and h(t) (at given mission time t = 50) are calculated and reported in
Table 9. To run the MCMC sampler algorithm, the initial values of the unknown parameters
were taken to be their MLEs. Moreover, two-sided 95% asymptotic and credible intervals
with their lengths are computed, listed in Table 9. Recall that, in the literature, we have
not come across a way to obtain the variance (or construct the associated interval) for the
Lindley estimate. It shows that the point estimates of the unknown parameters obtained by
MLEs and BEs are quite close to each other. Further, the interval estimates of δ, R(t) and
h(t) obtained by 95% asymptotic/credible intervals are also similar.

Table 8. Three different APHCS-T2 samples generated from the yarn dataset.

Sample m T(d) R R∗m Censored Data

1 8 80(6) R = (17, 0∗7) 0 15, 224, 251, 264, 282, 321, 325, 653
2 11 140(9) R = (7, 0∗9, 7) 7 15, 121, 146, 149, 157, 175, 176, 180, 180, 198, 220
3 15 200(17) R = (0∗14, 10) 10 15, 20, 38, 42, 61, 76, 86, 98, 121, 146, 149, 157, 175, 176, 180

Trace plot, or time-series diagram, is a simple way to judge how quickly the MCMC
converges at each iteration with the iteration (x-axis) and the sampled values (y-axis).
Hence, the trace plots of the simulated 15,000 samples of δ, R(t) and h(t) based on the
complete yarn dataset are given in Figure 2. In each trace plot, the sample mean is
displayed with a horizontal solid line (—), further, lower, and upper bounds of 95% BCIs
and HPD credible intervals are displayed with dotted (· · · ) and dashed (- - -) horizontal
lines, respectively. It indicates that the MCMC procedure converges well; it also shows
that discarding the first 5000 samples as burn-in is an appropriate size to erase the effect of
the initial values. Moreover, it shows that the bounds of 95% BCI/HPD credible intervals
are very close to each other. In addition, the histograms for the MCMC outputs of size
15,000 of δ, R(t) and h(t), using the Gaussian kernel, are plotted in Figure 3. Similarly,
in each histogram plot, the sample mean is displayed with a vertical solid line (|). It is
evident from the estimates that the generated sequences of δ are fairly symmetric, while
the generated sequences of R(t) and h(t) are close to negative and positively skewed,
respectively. Furthermore, some properties of MCMC samples such as: mean, median,
mode, SE, standard deviation (SD), and skewness (Sk.) of each unknown parameter are
computed and displayed in Table 10. It indicates that the central tendency measures are
quite close to each other. Thus, the proposed estimates support our findings and showed
that the XGD has superior performance.
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Table 9. The point estimates (SEs) and 95% interval estimates (lengths) under the yarn dataset.

Sample Parameter MLE Lindley MCMC Asymptotic Credible

NA BCI
NL HPD

1 δ 0.0100(2.07× 10−3) 0.0101 0.0099(6.29× 10−7) (0.0059,0.0141)[0.0081] (0.0098,0.0102)[0.0004]
(0.0067,0.0150)[0.0083] (0.0098,0.0102)[0.0004]

R(50) 0.9818(8.39× 10−3) 0.9818 0.9819(2.78× 10−6) (0.9654,0.9983)[0.0329] (0.9810,0.9827)[0.0017]
(0.9655,0.9984)[0.0329] (0.9810,0.9827)[0.0017]

h(50) 0.0008(2.66× 10−4) 0.0009 0.0008(1.27× 10−7) (0.0003,0.0013)[0.0010] (0.0008,0.0009)[0.0001]
(0.0004,0.0016)[0.0012] (0.0008,0.0009)[0.0001]

2 δ 0.0104(1.59× 10−3) 0.0104 0.0103(6.32× 10−7) (0.0073,0.0136[0.0063]) (0.0102,0.0106)[0.0004]
(0.0077,0.0141)[0.0064] (0.0102,0.0106)[0.0004]

R(50) 0.9799(6.86× 10−3) 0.9799 0.9800(2.95× 10−6) (0.9664,0.9934)[0.0270] (0.9791,0.9810)[0.0019]
(0.9665,0.9935)[0.0270] (0.9792,0.9810)[0.0018]

h(50) 0.0009(2.16× 10−4) 0.0012 0.0009(1.35× 10−7) (0.0005,0.0013)[0.0008] (0.0008,0.0010)[0.0002]
(0.0006,0.0015)[0.0009] (0.0008,0.0009)[0.0001]

3 δ 0.0136(1.77× 10−3) 0.0136 0.0135(9.10× 10−6) (0.0101,0.0170)[0.0069] (0.0108,0.0164)[0.0056]
(0.0105,0.0175)[0.0070] (0.0107,0.0163)[0.0056]

R(50) 0.9623(1.08× 10−2) 0.9623 0.9621(5.99× 10−5) (0.9412,0.9834)[0.0422] (0.9414,0.9781)[0.0367]
(0.9414,0.9836)[0.0422] (0.9432,0.9793)[0.0361]

h(50) 0.0017(3.18× 10−4) 0.0024 0.0017(2.72× 10−6) (0.0011,0.0023)[0.0012] (0.0010,0.0026)[0.0016]
(0.0012,0.0025)[0.0013] (0.0009,0.0025)[0.0016]

Table 10. Some posterior characteristics of MCMC outputs under the yarn dataset.

Parameter Mean Median Mode SE SD Sk.

δ 0.01579 0.01577 0.01432 7.02× 10−6 8.60× 10−4 0.08059
R(50) 0.94612 0.94653 0.95718 5.49× 10−5 6.73× 10−3 −0.26343
h(50) 0.00245 0.00243 0.00195 2.48× 10−6 3.04× 10−4 0.25825
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Figure 2. Trace plots of MCMC draws of δ, R(t) and h(t) under yarn dataset.
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Figure 3. Histograms of δ, R(t) and h(t) from the yarn dataset.

6.2. Chemical Data Analysis

This application provides an analysis of vinyl chloride, which is a known human
carcinogen; exposure to this compound should be avoided as much as possible and its
levels should be kept as low as technically feasible. However, according to [45], this dataset
represents 34 data points (in mg/L) for vinyl chloride obtained from clean up-gradient
monitoring wells, as: 0.1, 0.1, 0.2, 0.2, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.6, 0.8, 0.9, 0.9, 1.0, 1.1,
1.2, 1.2, 1.3, 1.8, 2.0, 2.0, 2.3, 2.4, 2.5, 2.7, 2.9, 3.2, 4.0, 5.1, 5.3, 6.8, 8.0. First, we need to check
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if the XGD is a suitable model to fit the vinyl chloride data or not. Thus, the K–S statistic,
along with the associated p-value, is obtained. Using complete vinyl chloride data, the MLE
(along its SE) of δ is 1.0313(0.1235); the K–S (along its p-value) is 0.138(0.533). This result
indicates that the p-value is quite high compared to the significance level 5%, so we cannot
reject the null hypothesis that the given data are coming from the XGD lifetime model. To
get the proposed estimates, using m = 17 with different choices of T and R, three artificial
APHCS-T2 samples are generated from the vinyl chloride dataset and are presented in
Table 11. Using each generated sample, the MLEs and BEs with their SEs of δ, R(t) and h(t)
(at distinct time t = 0.5) are calculated and reported in Table 12. Moreover, 95% two-sided
asymptotic/credible interval estimates with their lengths are also computed and listed in
Table 12. Here, we assume that prior information about the xgamma parameter δ is not
available; the Bayes MCMC estimates with associated credible intervals are developed by
run the chain of the MCMC sampler for 30,000 iterations, discarding the first 5000 values
as a burn-in period. From, Table 12, it is seen that the Bayes MCMC estimates computed
using Lindley and MCMC methods are very close to the corresponding MLEs. A similar
pattern is observed with the interval (asymptotic/credible) estimates.

Table 11. Three different APHCS-T2 samples generated from the vinyl chloride dataset.

Sample T(d) R R∗m Censored Data

1 0.7(12) R = (1∗17) 5 0.1, 0.2, 0.4, 0.4, 0.5, 0.6, 0.8, 0.9, 1.1, 1.2,
1.8, 2.0, 2.4, 2.5, 2.7, 2.9, 3.2

2 1.0(15) R = (9, 0∗15, 8) 8 0.1, 0.6, 0.6, 0.8, 0.9, 0.9, 1.0, 1.1, 1.2, 1.2,
1.3, 1.8, 2.0, 2.0, 2.3, 2.4, 2.5

3 1.5(20) R = (0∗8, 17, 0∗8) 0 0.1, 0.1, 0.2, 0.2, 0.4, 0.4, 0.4, 0.5, 0.5, 2.7,
2.9, 3.2, 4.0, 5.1, 5.3, 6.8, 8.0

Table 12. The point estimates (SEs) and 95% interval estimates (lengths) under a vinyl chloride dataset.

Sample Parameter MLE Lindley MCMC Asymptotic Credible

NA BCI
NL HPD

1 δ 0.8099(1.29× 10−1) 0.8071 0.8167(2.32× 10−4) (0.5573,1.0626)[0.5052] (0.7423,0.8762)[0.1340]
(0.5929,1.1064)[0.5135] (0.7392,0.8724)[0.1332]

R(0.5) 0.8464(7.23× 10−5) 0.8462 0.8447(6.10× 10−5) (0.8463,0.8466)[0.0003] (0.8289,0.8642)[0.0353]
(0.8463,0.8466)[0.0003] (0.8299,0.8650)[0.0351]

h(0.5) 0.3145(7.93× 10−2) 0.3129 0.3186(1.34× 10−4) (0.1592,0.4699)[0.3107] (0.2759,0.3534)[0.0775]
(0.1919,0.5154)[0.3235] (0.2741,0.3511)[0.0770]

2 δ 0.8990(1.45× 10−1) 0.8968 0.8909(1.18× 10−5) (0.6143,1.1837)[0.5694] (0.8874,0.8943)[0.0067]
(0.6550,1.2340)[0.5790] (0.8876,0.8944)[0.0068]

R(0.5) 0.8229(1.30× 10−3) 0.8228 0.8250(3.14× 10−6) (0.8203,0.8254)[0.0051] (0.8241,0.8260)[0.0019]
(0.8203,0.8254)[0.0051] (0.8241,0.8259)[0.0018]

h(0.5) 0.3671(9.30× 10−2) 0.3655 0.3622(7.07× 10−6) (0.1847,0.5494)[0.3647] (0.3601,0.3642)[0.0041]
(0.2233,0.6032)[0.3799] (0.3602,0.3643)[0.0041]

3 δ 0.7403(1.19× 10−1) 0.7366 0.7400(1.60× 10−5) (0.5059,0.9748)[0.4689] (0.7342,0.7442)[0.0099]
(0.5394,1.0162)[0.4768] (0.7347,0.7445)[0.0098]

R(0.5) 0.8647(9.96× 10−4) 0.8645 0.8648(4.18× 10−6) (0.8627,0.8667)[0.0039] (0.8637,0.8663)[0.0026]
(0.8627,0.8667)[0.0039] (0.8636,0.8662)[0.0026]

h(0.5) 0.2748(7.09× 10−2) 0.2728 0.2746(9.00× 10−6) (0.1358,0.4137)[0.2779] (0.2714,0.2770)[0.0056]
(0.1657,0.4557)[0.2900] (0.2716,0.2771)[0.0055]

For graphical representation, using the complete vinyl chloride dataset, the trace and
histogram plots of δ, R(t) and h(t) based on 25,000 MCMC simulated variates are plotted
in Figures 4 and 5, respectively. Figure 4 shows the convergence of MCMC outputs for
each unknown parameter. It is also clear that, from Figure 5, the generated posteriors of all
unknown parameters are fairly symmetric. Furthermore, some vital statistics of MCMC
outputs are calculated and reported in Table 13. Finally, we conclude that the proposed
methodologies, using both yarn and vinyl chloride datasets, provide a good demonstration
of the unknown xgamma parameter and related reliability characteristics.



Symmetry 2021, 13, 2112 18 of 20

Table 13. Some vital statistics of MCMC outputs under the vinyl chloride dataset.

Parameter Mean Median Mode SE SD Sk.

δ 1.03029 1.03028 1.02851 6.31× 10−6 9.97× 10−4 0.03429
R(0.5) 0.78803 0.78804 0.78851 1.67× 10−6 2.64× 10−4 −0.03414
h(0.5) 0.44741 0.44740 0.44629 3.94× 10−6 6.23× 10−4 0.03508
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Figure 4. Trace plots of MCMC draws of δ, R(t) and h(t) under chloride dataset.
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Figure 5. Histograms of δ, R(t) and h(t) from vinyl chloride dataset.

7. Concluding Remarks

In this paper, we have shown that the one-parameter xgamma distribution is a useful
survival model for modeling reliability data. Moreover, we discussed the problem of
estimating the unknown parameter and some reliability characteristics of the proposed
xgamma model based on the adaptive type-II progressive hybrid censored samples. The
maximum likelihood estimates with associated asymptotic confidence intervals of the
unknown quantities were obtained numerically by the ’maxLik’ package. The Lindley
and Metropolis–Hastings approximation methods were used to approximate the Bayes
estimates and to construct the associated credible intervals. In Bayesian computations, an
algorithm used to determine the values of hyperparameters based on past samples was
proposed.

To compare the behavior of the different estimates, a simulation study was conducted
under various scenarios. The simulation results indicate that the Bayesian estimates
perform better than the classical estimates in terms of minimum value of the root mean
squared-error, relative absolute bias, and average confidence width. To demonstrate the
applicability of the proposed methodologies in a real situation, two datasets related to
engineering and chemical experiments were analyzed. Although we mainly considered
adaptive type-II progressively hybrid censoring from the xgamma model, in future work,
the same methods could be extended to other distributions and/or censoring plans. Finally,
we hope that the results and methodology discussed in this paper will be beneficial to
reliability practitioners.
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