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1. Introduction

The modifed Korteweg-de Vries (mKdV) equation appears in the study of acoustic
waves in an anharmonic lattice [1] and the Alfven wave in a cold collision-free plasma [2].
Its relation with the Korteweg-de Vries (KdV) equation is discussed [3], and its N-soliton
solutions is presented by the inverse scattering transform [4]. The Lax pair in the associated
matrix spectral problems comes from sl(2, R) [5]. There is also a system of mKdV equations
associated with so(3, R) [6], which is not well studied.

Recently, two kinds of nonlocal integrable mKdV equations associated with sl(2, R)
have been explored, which are Liouville integrable, i.e., possess infinitely many symmetries
and conservation laws [7,8]. The resulting model equations can relate function values at
point (x, t) to its function values at a mirror-reflection point (−x,−t). This is one of the
complex types, since it involves the Hermitian transpose, and the other is of real type, since
it only uses the matrix transpose. Such studies have opened new avenues for studying
mKdV type integrable equations [9,10].

It is known that, based on matrix loop Lie algebras, integrable equations can be gener-
ated from matrix spectral problems [11] and their reduced problems [12]. Lax pairs [13]
pay a crucial role in the formulation of integrable equations and their solutions to Cauchy
problems [11]. The trace identity [14] and the variational identity [15] can be used to es-
tablish Hamiltonian structures, which exhibit the Liouville integrability of the underlying
model equations. Among the well-known integrable equations associated with simple Lie
algebras are the KdV equation, the Ablowitz–Kaup–Newell–Segur system of nonlinear
Schrödinger (NLS) equations, and the derivative NLS equation [11,16]. More generally,
there are integrable couplings associated with non-semisimple Lie algebras, which bring
various types of hereditary recursion operators in block matrix form.

In our construction, we will use the special orthogonal Lie algebra g = so(3,R),
presented by all 3× 3 trace-free, skew-symmetric real matrices, with a basis:
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e1 =


0 0 −1

0 0 0

1 0 0

, e2 =


0 0 0

0 0 −1

0 1 0

, e3 =


0 −1 0

1 0 0

0 0 0

, (1)

whose structure equations read

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2. (2)

Obviously, the derived algebra [g, g] = [so(3,R), so(3,R)] is g = so(3,R) itself. The algebra
is one of the only two three-dimensional real Lie algebras with this property. The other
one is the special linear algebra sl(2,R), which is used as a starting point for the study of
integrable equations [5]. It is interesting to note that the two complex Lie algebras, sl(2,C)
and so(3,C), are isomorphic to each other. The corresponding matrix loop algebra that we
will use is

g̃ = s̃o(3,R) = {M ∈ so(3,R) | entries of M - Laurent series in λ}, (3)

where λ is a spectral parameter. This matrix loop algebra has also been recently used to
construct integrable equations [6,17].

In this paper, we would first like to revisit a hierarchy of integrable equations as-
sociated with so(3,R) [6]. We will then construct two pairs of nonlocal PT-symmetric
integrable reductions for the adopted spectral matrix, to generate two reduced hierarchies
of scalar integrable equations asscoated with so(3,R). Two typical such reduced nonlocal
PT-symmetric integrable equations are the complex reverse-spacetime mKdV equation

pt = −pxxx +
3
2

p2 px +
3
2

px(p∗(−x,−t))2,

where p∗ denotes the complex conjugate of p, and the real reverse-spacetime mKdV equation

pt = −pxxx +
3
2

p2 px +
3
2

px(p(−x,−t))2,

which are all associated with so(3,R).

2. The Integrable Hierarchy Revisited
2.1. Integrable Hierarchy

We would like to revisit an integrable hierarchy associated with the matrix loop
algebra s̃o(3,R) [6]. Let i be the unit imaginary number. We start from a slightly different
spatial matrix spectral problem

− iφx = Uφ or φx = iUφ, (4)

with

U = U(u, λ) = λe1 + pe2 + qe3 =

0 −q −λ

q 0 −p
λ p 0

, (5)

where λ is a spectral parameter, u = (p, q)T is a potential and φ = (φ1, φ2, φ3)
T is a column

eigenfunction. We have adopted the spectral matrix iU, involving a constant factor i. This
will bring us convenience in finding integrable nonlocal reductions.

As usual, we solve the stationary zero curvature equation

Wx = i[U, W] (6)
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for W = W(u, λ) ∈ s̃o(3,R). This equivalently requires

ax = i(pc− qb), bx = i(−λc + qa), cx = i(λb− pa), (7)

as long as W is determined as follows:

W = ae1 + be2 + ce3 =

0 −c −a
c 0 −b
a b 0

 = ∑
m≥0

W0,mλ−m, (8)

with

W0,m = ame1 + bme2 + cme3 =

 0 −cm −am

cm 0 −bm

am bm 0

, m ≥ 0. (9)

Upon taking the initial values

a0 = −1, b0 = c0 = 0, (10)

the system (7) gives

bm+1 = −icm,x + pam, cm+1 = ibm,x + qam, am+1,x = i(pcm+1 − qbm+1), m ≥ 0, (11)

and defines the sequence of {am, bm, cm|m ≥ 1} uniquely, when taking all constants of
integration as zero:

am|u=0 = 0, m ≥ 1. (12)

which implies
bm|u=0 = cm|u=0 = 0, m ≥ 1. (13)

The first few sets are as follows:

b1 = −p, c1 = −q, a1 = 0;

b2 = iqx, c2 = −ipx, a2 = 1
2 (p2 + q2);

b3 = −pxx +
1
2 p3 + 1

2 pq2,

c3 = −qxx +
1
2 p2q + 1

2 q3,

a3 = i(pxq− pqx);

b4 = i(qxxx − 3
2 p2qx − 3

2 q2qx),

c4 = i(−pxxx +
3
2 p2 px +

3
2 pxq2),

a4 = ppxx + qqxx − 1
2 p2

x − 1
2 q2

x − 3
8 (p2 + q2)2.

Let us then take

V[m] = V[m](u, λ) = (λmW)+ =
m

∑
l=0

W0,lλ
m−l , m ≥ 0, (14)

to introduce the temporal matrix spectral problems:

− iφt = V[m]φ or φt = iV[m]φ, m ≥ 0. (15)

It is now direct to see that the compatibility conditions of (4) and (15), i.e., the zero curva-
ture equations

Ut −V[m]
x + i[U, V[m]] = 0, m ≥ 0, (16)
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generate a hierarchy of integrable equations:

ut = Km = i

[
−cm+1

bm+1

]
= Φm

[
iq

−ip

]
, m ≥ 0, (17)

where the operator Φ can be determined by the recursion relation (11):

Φ = i

[
q∂−1 p −∂ + q∂−1q

∂− p∂−1 p −p∂−1q

]
, ∂ =

∂

∂x
. (18)

2.2. Hamiltonian Structure and the Liouville Intergrability

We use the trace identity [14] for our spectral matrix iU:

δ

δu

∫
tr(W

∂U
∂λ

) dx = λ−γ λ

∂λ
λγ tr(W

∂U
∂u

), (19)

where the constant γ is given by

γ = −λ

2
d

dλ
ln |〈W, W〉|, (20)

to construct Hamiltonian structures, which will exhibit the Liouville integrability of the
hierarchy (17). We readily see that the corresponding trace identity (19) reads

δ

δu

∫
a dx = λ−γ ∂

∂λ
λγ

[
b

c

]
.

Simply applying this, we obtain the following Hamiltonian structures for the hierarchy (17):

ut = Km = i

[
−cm+1

bm+1

]
= J

δHm

δu
, m ≥ 0, (21)

with the Hamiltonian operator and the Hamiltonian functionals

J =

[
0 −1

1 0

]
, Hm =

∫ (
− iam+2

m + 1
)

dx, m ≥ 0. (22)

These tell that there exist infinitely many conservation laws for each system in the hierar-
chy (17), which can often be generated through symbolic computation by computer algebra
systems (see, e.g., [18]).

To exhibit its Liouville integrability, let us show that the operator Φ given by (18) is a
common hereditary recursion operator for the hierarchy (17).

First, a straightforward calculation can verify that the operator Φ is hereditary (see [19]
for definition), that is to say, it satisfies

Φ′(u)[ΦK]S−ΦΦ′(u)[K]S = Φ′(u)[ΦS]K−ΦΦ′(u)[S]K, (23)

and Φ is a recursion operator for ut0 = K0:

LK0 Φ = 0, K0 = i

[
q

−p

]
, (24)
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where (LKΦ)S = Φ[K, S]− [K, ΦS], in which K and S are arbitrary vector fields and [·, ·] is
the Lie bracket of vector fields. Another direct result is that the pair of operators, J and

M = ΦJ = i

[
−∂ + q∂−1q −q∂−1 p

−p∂−1q −∂ + p∂−1 p

]
, (25)

constitutes a Hamiltonian pair (see [20] for details). The hereditary property (23) equiva-
lently requires

LΦKΦ = ΦLKΦ, (26)

where K is an arbitrary vector field. Thus, we have

LKm Φ = LΦKm−1 Φ = ΦLKm−1 Φ = 0, m ≥ 1, (27)

where the Km’s are given by (17). This implies that the operator Φ defined by (18) is a
common hereditary recursion operator for the hierarchy (17) (see also [21] for symbolic
computation).

Now, the hierarchy (17) is bi-Hamiltonian (see, e.g., [20,22,23] for details):

ut = Km = J
δHm

δu
= M

δHm−1

δu
, m ≥ 1, (28)

where J, M andHm are defined by (22) and (25). In this way, every member in the hierar-
chy is Liouville integrable, i.e., it possesses infinitely many commuting symmetries and
conservation laws. Particularly, we have the Abelian symmetry algebra:

[Kk, Kl ] = K′k(u)[Kl ]− K′l(u)[Kk] = 0, k, l ≥ 0, (29)

and the Abelian algebras of conserved functionals:

{Hk,Hl}J =
∫ ( δHk

δu
)T J

δHl
δu

dx = 0, k, l ≥ 0, (30)

and
{Hk,Hl}M =

∫ ( δHk
δu
)T M

δHl
δu

dx = 0, k, l ≥ 0. (31)

The third-order nonlinear integrable system in the hierarchy (17) is a system of mKdV
equations associated with so(3,R):

pt = −pxxx +
3
2

p2 px +
3
2

pxq2, qt = −qxxx +
3
2

p2qx +
3
2

q2qx. (32)

Based on (28), it possesses the following bi-Hamiltonian structure

ut = K3 = J
δH3

δu
= M

δH2

δu
, (33)

where the Hamiltonian pair {J, M} is defined by (22) and (25), and the Hamiltonian
functionals,H2 andH3, are given by

H2 = − i
3

∫
[ppxx + qqxx −

1
2

p2
x −

1
2

q2
x −

3
8
(p2 + q2)2] dx, (34)

H3 =
1
4

∫
(pxxxq− pqxxx − pxxqx + pxqxx

− 3
2

p2 pxq +
3
2

pq2qx +
3
2

p3qx −
3
2

pxq3) dx. (35)

The Hamiltonian formulation is extremely important in carrying out the Whitham
modulation [24].
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We point out that there is the transformation

p̃(x, t) =
1
2
(−p + iq)(ix, it), q̃(x, t) =

1
2
(−p− iq)(ix, it), (36)

between the system (32) of mKdV equations associated with so(3) and the system of
mKdV equations

p̃t = p̃xxx + 6p̃q̃ p̃x, q̃t = q̃xxx + 6p̃q̃q̃x, (37)

which is associated with sl(2), but there is no nontrivial transformation if we consider only
real potentials p, q, p̃, q̃. This reflects the fact that the two complex Lie algebras, sl(2,C) and
so(3,C), are isomorphic, but not so are the two real Lie algebras, sl(2,R) and so(3,R).

3. Integrable Nonlocal Reductions
3.1. Complex Reverse-Spacetime Reductions

Let us first consider a pair of specific complex reverse-spacetime reductions for the
spectral matrix:

U†(−x,−t,−λ∗) = −CU(x, t, λ)C−1, C =


0 0 δ

0 1 0

δ 0 0

, δ = ±1, (38)

where † and ∗ stand for the Hermitian transpose and the complex conjugate, respectively.
They generate the potential reductions

p∗(−x,−t) = −δq(x, t), δ = ±1. (39)

Once assigning these potential reductions, we have the reduction property for W:

W†(−x,−t,−λ∗) = CW(x, t, λ)C−1, (40)

since two matrices on both sides of the above equation solve the stationary zero curvature
Equation (6) with the same initial values. This engenders that

a∗(−x,−t,−λ∗) = a(x, t, λ), b∗(−x,−t,−λ∗) = δc(x, t, λ), (41)

namely,

a∗m(−x,−t) = (−1)mam(x, t), b∗m(−x,−t) = (−1)mδcm(x, t), m ≥ 1. (42)

Therefore, we obtain

(V[m])†(−x,−t,−λ∗) = (−1)mCV[m](x, t, λ)C−1, m ≥ 1, (43)

and then

((Ut −V[2l+1]
x + i[U, V[2l+1]])(−x,−t,−λ∗))†

=C(Ut −V[2l+1]
x + i[U, V[2l+1]])(x, t, λ)C−1, l ≥ 1. (44)

This implies that the potential reductions given by (39) are compatible with the (2l + 1)-th
zero curvature equation of the integrable hierarchy (17). In this way, one obtains two
reduced scalar integrable hierarchies associated with so(3,R):

pt = K2l+1,1|q(x,t)=−δp∗(−x,−t), l ≥ 1, (45)
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where Km = (Km,1, Km,2)
T , m ≥ 1, are defined by (17). The infinitely many symmetries

and conservation laws for the integrable hierarchy (17) will be reduced to infinitely many
ones for the above integrable hierarchies in (45), under (39).

With δ = 1, the third-order nonlinear reduced scalar integrable equation is a nonlocal
complex reverse-spacetime PT-symmetric mKdV equation associated with so(3,R):

pt = −pxxx +
3
2

p2 px +
3
2

px(p∗(−x,−t))2 (46)

where p∗ denotes the complex conjugate of p. Observe that the two components of
Km, m ≥ 1, have even and odd properties with respect to p and q. In fact, K2l,1, l ≥ 1, are
odd with respect to q and even with respect to p, and K2l+1,1, l ≥ 1, are even with respect
to q and odd with respect to p. Similarly, we see that K2l,2, l ≥ 1, are odd with respect to
p and even with respect to q, and K2l+1,2, l ≥ 1, are even with respect to p and odd with
respect to q. Therefore, the third-order reduced scalar integrable equation with δ = −1
in (45) is exactly the same as the complex nonlocal reverse-space mKdV Equation (46).

3.2. Real Reverse-Spacetime Reductions

Secondly, let us consider a pair of specific real reverse-spacetime reductions for the
spectral matrix:

UT(−x,−t, λ) = CU(x, t, λ)C−1, C =


0 0 δ

0 1 0

δ 0 0

, δ = ±1, (47)

where T means taking the matrix transpose. They engender the potential reductions

p(−x,−t) = δq(x, t), δ = ±1. (48)

As before, under these potential reductions, W satisfies the following reduction property:

WT(−x,−t, λ) = CW(x, t, λ)C−1, (49)

because two matrices on both sides of the equation solve the stationary zero curvature
Equation (6) with the same initial values. Thus, one has

a(−x,−t, λ) = a(x, t, λ), b(−x,−t, λ) = δc(x, t, λ), (50)

namely,
am(−x,−t) = am(x, t), bm(−x,−t) = δcm(x, t), m ≥ 1. (51)

Then, we arrive at

(V[m])T(−x,−t, λ) = CV[m](x, t, λ)C−1, m ≥ 1, (52)

and therefore, we obtain

((Ut −V[m]
x + i[U, V[m]])(−x,−t, λ))T

=− C(Ut −V[m]
x + i[U, V[m]])(x, t, λ)C−1, m ≥ 1. (53)

This guarantees that the potential reductions in (48) are compatible with the zero curvature
equations of the integrable hierarchy (17).

In this way, one obtains two reduced scalar integrable hierarchies associated with
so(3,R):

pt = Km,1|q(x,t)=δp(−x,−t), m ≥ 1, (54)
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where Km = (Km,1, Km,2)
T , m ≥ 1, are defined by (17). Moreover, the infinitely many

symmetries and conservation laws for the integrable hierarchy (17) are reduced to infinitely
many ones for the above integrable hierarchies in (54), under (48).

With δ = 1, the third-order nonlinear reduced scalar integrable equation is a nonlocal
real reverse-spacetime PT-symmetric mKdV equation associated with so(3,R):

pt = −pxxx +
3
2

p2 px +
3
2

px(p(−x,−t))2. (55)

Even and odd properties with respect to p and q in the two components of Km, m ≥ 1, tell
that the third-order nonlinear reduced scalar integrable equation with δ = −1 in (54) is
exactly the same as the nonlocal real reverse-spacetime mKdV Equation (55).

4. Concluding Remarks

We have revisited a hierarchy of integrable equations based on zero curvature equa-
tions associated with so(3,R) and presented two pairs of integrable nonlocal PT-symmetric
reductions for the hierarchy. Two typical examples among the reduced scalar integrable
equations are a nonlocal complex reverse-spacetime modified Korteweg-de Vries (mKdV)
equation and a nonlocal real reverse-spacetime mKdV equation, associated with the special
orthogonal Lie algebra so(3,R). Every pair of nonlocal reductions leads to the same nonlocal
integrable equations. This is a new phenomenon for integrable equations associated with
so(3,R), different from the one for integrable equations associated with sl(2,R).

Associated with the special orthogonal Lie algebras, there are many interesting ques-
tions for integrable equations, both local and nonlocal. Firstly, what kind of general
integrable equations could exist? Some interesting structures of local integrable equations
associated with so(4,R) and nonlocal integrable equations associated with so(3,R) have
been explored (see, e.g., [25,26]). Secondly, do there exist N-soliton solutions in such cases
(see, e.g., [27] for (1 + 1)-dimensional models and [28–31] for (2 + 1)-dimensional models)?
Thirdly, how can we formulate Riemann-Hilbert problems, based on associated matrix
spectral problems? The above spectral matrix iU in our formulation with zero potential
has three eigenvalues, and this feature brings difficulty in solving related problems. We do
not know how to establish Riemann-Hilbert problems for integrable systems associated
wth so(3,R). The existing examples of Riemann-Hilbert problems in the literature belong to
the class of spectral matrices which possess two eigenvalues when the potential is taken
as zero.

It is known that integrable couplings are constructed from zero curvature equations
associated with non-semisimple Lie algebras, and their Hamiltonian structures could be
established through the variational identity [32]. Bi-integrable couplings and tri-integrable
couplings are such examples, and they exhibit insightful thoughts about generic mathe-
matical structures for multi-component integrable equations. Multi-integrable couplings
produce abundant examples of recursion operators in block matrix form, indeed. There
are rich algebraic and geometric structures related to integrable couplings. However, non-
semisimple matrix Lie algebras may not possess any non-degenerate and ad-invariant
bilinear forms required in the variational identities, and this causes serious problems in
furnishing integrable couplings with Hamiltonian structures. For instance, we do not
even know whether there exists any Hamiltonian structure for an interesting perturbation
type coupling:

ut = K(u), vt = K′(u)[v], wt = K′(u)[w].

Specifically in the KdV case, we have the question whether there is any Hamiltonian
structure for the following integrable coupling:

ut = 6uux + uxxx, vt = 6(uv)x + vxxx, wt = 6(uw)x + wxxx.

We may need to develop a generalized variational identity to explore Hamiltonian struc-
tures for integrable couplings in this kind of case.
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