
symmetryS S

Article

Trajectory Tracking Control for Underactuated USV with
Prescribed Performance and Input Quantization

Kunyi Jiang, Lei Mao *, Yumin Su and Yuxin Zheng

����������
�������

Citation: Jiang, K.; Mao, L.; Su, Y.;

Zheng, Y. Trajectory Tracking Control

for Underactuated USV with

Prescribed Performance and Input

Quantization. Symmetry 2021, 13,

2208. https://doi.org/10.3390/

sym13112208

Academic Editor: Alexander

Zaslavski

Received: 5 October 2021

Accepted: 27 October 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University,
Harbin 150001, China; jiang_kunyi@hrbeu.edu.cn (K.J.); suyumin@hrbeu.edu.cn (Y.S.);
zhengyuxin@hrbeu.edu.cn (Y.Z.)
* Correspondence: ml0831@hrbeu.edu.cn; Tel.: +86-17701806828

Abstract: This paper is devoted to the problem of prescribed performance trajectory tracking con-
trol for symmetrical underactuated unmanned surface vessels (USVs) in the presence of model
uncertainties and input quantization. By combining backstepping filter mechanisms and adaptive
algorithms, two robust control architectures are investigated for surge motion and yaw motion. To
guarantee the prespecified performance requirements for position tracking control, the constrained
error dynamics are transformed to unconstrained ones by virtue of a tangent-type nonlinear mapping
function. On the other hand, the inaccurate model can be identified through radial basis neural
networks (RBFNNs), where the minimum learning parameter (MLP) algorithm is employed with a
low computational complexity. Furthermore, quantization errors can be effectively reduced even
when the parameters of the quantizer remain unavailable to designers. Finally, the effectiveness of
the proposed controllers is verified via theoretical analyses and numerical simulations.

Keywords: underactuated USV; prescribed performance control; input quantization; model-free
control; minimum learning parameter

1. Introduction

At present, USVs are expected to play an increasingly important role in both mil-
itary and civilian domains, such as reconnaissance and surveillance, marine surveying
and mapping, marine resources exploration and development, etc. [1–4]. As one of the
most significant components of USVs, trajectory tracking control systems determine the
success of various missions and hence have received tremendous interest from the field
of ocean engineering. However, the controller design for the trajectory tracking of USVs
still poses enormous challenges owing to unexpected marine disturbances and the com-
plex system involved, which features coupling and nonlinearity. On the other hand, the
usage scenarios and mission objectives also mean that there are high requirements for
the performance of the controllers, the prescribed behavioral metrics, and a constrained
communication bandwidth.

For an underactuated vessel, the unique feature is that the control torque provided by
actuators only acts in surge and yaw motions and is less than the three degrees of freedom
(DOF) used in conventional surface vessel dynamics [5]. To fulfill this practical demand in
engineering, numerous control algorithms, including sliding mode control (SMC) [6–9],
backstepping control [10–13], model predictive control [14,15], and observer-based con-
trol [16,17], enable USVs to accomplish trajectory tracking control. In particular, as SMC is
capable of realizing fast responses, is insensitive to interference, and can help to improve
robustness, fruitful results have been obtained in many fields (spacecraft rendezvous [7],
underwater vehicles [8], and surface vessels [9]) from utilizing newly developed sliding
mode methods. In [9], with the aid of a line-of-sight-based integral sliding-mode technique,
high-accuracy paths following USVs are achieved even in the presence of unknown dy-
namics and external disturbances. On the other hand, backstepping strategies always offer
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superior performances in robust control and adaptive control when a system suffers from
uncertain nonlinear dynamics [16]. Though effective, the problem of expansive calcula-
tions has caused considerable trouble in traditional backstepping designs. To address this
obstruction, the dynamic surface control (DSC) scheme is introduced to facilitate the real-
ization of control for the trajectory tracking problem [1] and leader–follower cooperative
formation problem [17] of USVs.

Without a loss of generality, control signals are usually updated through time sampling
and are accompanied by ubiquitous redundant data transmission to many practical systems,
leading to severe onboard resource occupation. Thus, it is reasonable to consider the issue
of realizing trajectory tracking control under the constrained communication bandwidth
of the USV. For this purpose, the quantized control method [18–20] and event-triggered
algorithm [21–23] have been intensively studied in various agent systems integrated with a
set of independent functional modules. In quantization control, the original signal output
from the control module is first converted into the discrete sequence by a quantizer and then
transmitted to the actuator. In this case, a finite amount of information is directly stored in
actuators so that the change in control signals can be executed by transmitting a spot of
the code. Therefore, the burden of communication will be significantly reduced by virtue
of the quantization mechanisms. In the last decade, quantized control in connection with
robust approaches has attracted increasing amounts of attention from researchers and has
been studied in the fields of spacecraft formation [24,25], unmanned aerial vehicles [26,27],
and underwater vehicles [28]. However, to the best of the author’s knowledge, developing
controllers for USVs with quantized transmitted information remains an open problem.

In addition to input quantization, another important issue that deserves further
investigation is the state constraint control of USVs, which has been ignored in numerous
studies [7,8,11,16,17,25–28]. In practical applications, it is realistic and of great significance
to consider that the USV position error should be limited strictly by both sides of the
feasible channel to ensure the navigation safety of the vessel [6]. With this problem in mind,
efforts have been made by researchers to satisfy the output constraint of the system, and
there appears to be a variety of control schemes, such as the barrier Lyapunov function
(BLF) [29–32], nonlinear mapping (NM) control [13,29], and prescribed performance (PP)
control [30–32]. To restrain tracking error variables, the use of logarithmic BLF [33] and tan-
type BLF [34], in conjunction with an adaptive algorithm, was proposed for the trajectory
control of single and multiple underactuated surface vessels, respectively. However, it
must be mentioned that the accompanying problems, such as the complexity and heavy
workload of BLF-based procedures, restrict its application. As a superior method, NM-
based control, which is dedicated to mapping the constrained output onto the real number
set, has been proven to be effective in handling the constraint problem [29]. Different from
the above maneuvers, the PP strategy described in [30] is capable of ensuring that the
tracking errors of underactuated USVs converge to a predesigned region; more extensions
of this method can be found in [31,32].

Inspired by the above observations, this paper mainly concentrates on providing a
solution to the problem of the trajectory tracking control of USVs subject to prescribed
performance, uncertain dynamics, and communication constraints. The control signal is
discretized by a hysteresis logarithmic quantizer (HLQ), which reduces the communication
load significantly. A backstepping-based adaptive algorithm combining DSC and RBFNNs
is proposed for tackling the negative effects of model uncertainties, unavailable distur-
bances, and quantization errors on control performance. The main contributions of the
proposed controller are as follows:

(i) Compared with the quantized control described in [18–20], the HLQ-based adaptive
algorithm is employed in this paper to transform the traditional continuous signal to the
discrete one so that a high superiority is ensured in reducing the communication load
and improving the control accuracy. Moreover, the application of this technique is further
extended to a case where quantizer parameters are unavailable.
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(ii) In contrast to the numerous existing control strategies for USV trajectory track-
ing [11–13], in this paper the state constraint problem of the position tracking error is
taken into consideration. For this purpose, a novel error transformation mechanism is
developed on the basis of a tangent function, such that the security of marine navigation
can be guaranteed.

The remainder of this paper is organized as follows. The preliminaries and mathematic
models of the USV are given in Section 2. Subsequently, Section 3 elaborates on the design
of the quantized adaptive control strategy. In Section 4, numerical simulations are presented
to authenticate the effectiveness of the proposed algorithm. Finally, conclusions are drawn
in Section 5.

2. Preliminaries and Problem Formulation
2.1. Mathematical Model of Underactuated USV

With no consideration of heave, roll, and pitch motion, the three degrees of freedom
(DOF) kinematics model of underactuated USV is expressed as:

.
x = u cos(ψ)− v sin(ψ)
.
y = u sin(ψ) + v cos(ψ)
.
ψ = r

(1)

where the vector η = [x, y, ψ]T denotes the position and heading angle in the earth-fixed
frame (EF) and the vector v = [u, v, r]T denotes the linear velocity and angular velocity in
the body-fixed frame (BF).

The dynamics model of underactuated vessels is formulated as [5]:
.
u = m22

m11
vr− fu(u) + 1

m11
Q(τu) +

1
m11

τwu
.
v = −m11

m22
ur− fv(v) + 1

m22
τwv

.
r = m11−m22

m33
uv− fr(r) + 1

m33
Q(τr) +

1
m33

τwr

(2)

where mii(i = 1, 2, 3) represents the added mass and combined inertia of the vessel; τu and
τr stand for the control input of surge propulsion force and yaw moment with Q(τ) as
the quantization conversion function; τwu, τwv, and τwr are defined as the various external
disturbances resulting from winds, currents, and waves. In addition, the hydrodynamic
damping terms fu(u), fv(v), and fr(r) are described as:

fu(u) = du
m11

u +
3

∑
i=2

dui
m11
|u|i−1u

fv(v) = dv
m22

v +
3

∑
i=2

dvi
m22
|v|i−1v

fr(r) = dr
m33

r +
3

∑
i=2

dri
m133
|r|i−1r

(3)

where the hydrodynamic damping coefficients du, dv, dr, dui, dvi, and dri can be obtained
by parameter identification using experimental data. Nevertheless, taking into account
the complicated and volatile maritime environment, the precise values of the above damp-
ing terms are difficult to measure in real time. Therefore, it is assumed that all of the
hydrodynamic parameters are bounded and unavailable.

2.2. Formulation of HLQ

In terms of the trajectory tracking control system of USVs, constrained communication
bandwidth usually exists between the controller and the actuators. As a novel technology
for wireless interaction, the quantifier plays a major role in alleviating the pressure of data
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transmission; refer to the existing results shown in [21]. The HLQ is introduced here to
replace the traditional continuous time signals:

Q(τ) =



τisgn(τ),
τi

1+δ < |τ| ≤ τi,
.
τ < 0

τi < |τ| ≤ τi
1−δ ,

.
τ > 0

τi(1 + δ)sgn(τ),
τi < |τ| ≤ τi

1−δ ,
.
τ < 0

τi
1−δ < |τ| ≤ τi(1+δ)

1−δ ,
.
τ > 0

0, 0 ≤ |τ| < τmin
1+δ ,

.
τ < 0

Q(τ(t−)),
τmin
1+δ < τ ≤ τmin,

.
τ > 0

.
τ = 0

(4)

where τi = ρ1−iτmin(i = 1, 2, · · ·) with τmin > 0 denotes the range of the hysteresis zone
for Q(τ). The parameter δ determines the transmitting rate of the communication chan-
nel and satisfies δ = (1− ρ)/(1 + ρ) with 0 < ρ < 1. Obviously, Q(τ) is in the set
U = {0,±τi,±τi(1 + δ)}.

Remark 1. Generally, we consider the USV as symmetric about the longitudinal section of the
hull. Introducing this assumption can remarkably simplify the complexity of the mathematical
model. Considering HLQ, on the one hand, the HLQ adopted in this paper possesses some common
features with conventional quantizers. For instance, a limited number of quantization levels can
be directly stored in the actuator, meaning that the output torque can be changed with only small
information codes being received. On the other hand, the unique advantage of HLQ lies in the
inherent hysteresis property, which has relevance for the reduction in interaction frequency and the
anti-chattering performance.

Inevitably, the introduction of the HLQ results in considerable quantization errors. To
eliminate the adverse impact on the control system, the quantized signal can be decom-
posed into a continuous part and a discontinuous part as follows [35]:

Q(τ) = κ(τ)τ − E(τ) (5)

where κ(τ) =

{
Q(τ)

τ , Q(τ) 6= 0
1, Q(τ) = 0

and E(τ) =

{
0, Q(τ) 6= 0
τ, Q(τ) = 0

.

Lemma 1. [35]: Considering Equation (5), it is easy to find that κ(τ) is continuous and E(τ) is
discontinuous; thus, the following inequality holds:{

1− δ ≤ κ(τ) ≤ 1 + δ
E(τ) ≤ τmin

(6)

where δ and τmin are the design parameters of HLQ.

Remark 2. Observing the output characteristics of the HLQ, there is no doubt that the quantization
error will increase as the control input increases. Practically, the selection of δ is capable of affecting
the difference between signals before and after the quantizer [35,36]. Nevertheless, as the upper
bound of the estimation error is assumed to rely on the size of the control input, it is difficult to
obtain the boundness in advance of the control design. To solve this problem, a novel quantization
decomposition was proposed in (5), such that the quantization error only depends on the information
of the HLQ.

2.3. Function Approximation Based on RBFNNs

As an effective technology for the nonlinear approximation of uncertain systems,
RBFNNs have been extensively used in dynamic analysis and advanced controller design.



Symmetry 2021, 13, 2208 5 of 20

In this paper, the model uncertainties caused by unmeasurable hydrodynamic damping
will be surmounted by RBFNNs.

Lemma 2. [4]: Any unknown smooth function f (x) : Rn → R can be expressed by the follow-
ing formula:

f (x) = WTh(X) + o (7)

where o is the additional approximation error; W = [w1, w2, · · · , wm]
T is the weight vec-

tor; wi, i = 1, 2, . . . , m denotes the gain coefficient of the corresponding hidden layer
node, with m standing for the node number; X = [X1, X2, . . . , Xm]

T is the input vector;
h(X) = [h1(X), h2(X), . . . , hm(X)]T denotes the Gaussian function vector formed as shown
in (8), with Cn×m = [c1, c2, . . . , cm] being the center matrix and σ = [σ1, σ2, . . . , σm]

T being
the width vector.

hi(X) = exp

(
−‖X− ci‖2

2σ2
i

)
, i = 1, 2, . . . , m (8)

Though effective, it is still costly to identify the network’s parameters online with the
increasing amount in hidden layer nodes. Consequently, in order to alleviate the problem
of the huge computational resources required without deteriorating the performance,
the MLP technology is implemented during the backstepping design. In this way, only
one scalar instead of the whole weight matrix is estimated adaptively, meaning that the
computational burden for nonlinear approximation is significantly decreased.

2.4. Problem Statement

For the purpose of describing the trajectory tracking of USVs, the reference infor-
mation, including the position and heading angle, is given by the virtual target, whose
dynamics are expressed as: 

.
xd = ud cos(ψ)− vd sin(ψ)
.
yd = ud sin(ψ) + vd cos(ψ)
.
ψd = rd

(9)

where ηd = [xd, yd, ψd]
T denotes the desired position and heading angle and vd = [ud, vd, rd]

T

represents the desired velocities of the virtual vessel.
Comparing the reference and actual trajectories, the tracking errors are defined as:

xe = xd − x, ye = yd − y,
ψe = ψr − ψ, Re =

√
x2

e + y2
e

(10)

where Re is the relative distance between the pursuer and the target. The azimuth of the
vessel is defined as ψr, which is determined by the position of the reference trajectory. Thus,
ψr is calculated as:

ψr =
1
2

π[1− sgn(xe)]sgn(ye) + arctan
(

ye

xe

)
(11)

Remark 3. It can be derived from (11) that ψr ∈ (−π, π]. In addition, in the cases of xe = 0 and
ye 6= 0, it can be concluded that arctan

(
ye
xe

)
→ ±π

2 . Meanwhile, if the position error satisfies

Re = 0, arctan
(

ye
xe

)
will be not defined. Therefore, it is specified that ψr = ψd when Re = 0.

The structure of the trajectory tracking control system of USV is shown as Figure 1. To
promote the controller design, several assumptions and the relevant lemma are given as:
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Figure 1. Structure of the trajectory tracking control system of USV.

Assumption 1. The reference trajectories in (9) should be smooth—that is, xd, yd, ψd,
.
xd,

.
yd, and

.
ψd are all bounded.

Assumption 2. The external disturbance, τwu, τwv, and τwr, are unknown but bounded—that is,
τwu ≤ du, τwv ≤ dv, and τwr ≤ dr hold with du, dv, dr in being unknown positive constants.

Lemma 3. [35]: For any ε > 0 and x ∈ R, the following inequality holds:

0 ≤ |x| − |x|2√
x2 + ε2

≤ |x| − |x|2

|x|+ ε
< ε (12)

The control objective of this study can be summarized as follows. The backstepping
filtering algorithm is constructed for the trajectory tracking control of underactuated USVs.
On the basis of Assumptions 1 and 2, the constrained communication bandwidth and
system uncertainties are taken into consideration. Consequently, the position and attitude
tracking errors are stabilized, while the predefined transient performance is guaranteed.

3. Adaptive Backstepping Design Based on Quantized Input

In this section, a quantized prescribed performance control strategy is provided for
the trajectory tracking of an underactuated USV. Aiming at stabilizing the position and
attitude tracking errors, the backstepping-based dynamic filtering method is developed
with compensation for EOC. In particular, the accurate approximation for unmeasured
parameters is implemented via MLP algorithm-based RBFNNs, which have a low bur-
den of computational resources. Meanwhile, with the consideration of the constrained
communication bandwidth between controllers and actuators, the HLQ is introduced to
provide the quantized control signal and the resulting quantization errors are eliminated
by resorting to the adaptive estimation.

3.1. Position Controller Design

When reviewing the tracking errors defined in (10), it follows that:

xe = Re cos(ψr), ye = Re sin(ψr) (13)

Taking into account (1) and (9), the time derivative of Re can be obtained as:

.
Re =

(
xe

.
xe + ye

.
ye
)
/Re

=
( .

xd −
.
x
)

cos(ψr) +
( .
yd −

.
y
)

sin(ψr)
=
( .

xd − u cos(ψ) + v sin(ψ)
)

cos(ψr) +
( .
yd − u sin(ψ)− v cos(ψ)

)
sin(ψr)

=
.
xd cos(ψr) +

.
yd sin(ψr)− u cos(ψe)− v sin(ψe)

(14)
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To ensure that the tracking error dynamics satisfy the designer-specified behavioral
metrics, the error transformation is executed [37] so that an equivalent “state-constrained”
model is established for the subsequent controller design. First off, a positive continue
function, b1(t), is introduced as the upper bound of Re, which means:

|Re| ≤ b1(t) (15)

with the performance function (PF) b1(t) satisfying b1(0) > Re(0). Furthermore, the
normalized tracking error (NTE) is expressed as:

Rn =
Re

b1
(16)

By resorting to the tangent function, the error transformation equation is defined as:

Rt = tan
(

πRn

2

)
(17)

Remark 4. Mathematically, if |Re| → b1(t) , it has Rn → 1 (or Rn → −1 ); thus, Rt → ∞ (or
Rt → −∞ ) holds and vice versa. In other words, the performance constraint (15) can be satisfied
through bounding the variable Rt. Consequently, the control objective of position tracking designs
an algorithm to guarantee the boundedness and convergence of Rt.

According to (14), the derivative of Rn and Rt can be obtained as:

.
Rn =

.
Reb1 − Re

.
b1

b2
1

=
1
b1

(
−Rn

.
b1 +

.
xd cos(ψr) +

.
yd sin(ψr)− u cos(ψe)− v sin(ψe)

)
(18)

.
Rt = ΓR

(
−Rn

.
b1 +

.
xd cos(ψr) +

.
yd sin(ψr)− u cos(ψe)− v sin(ψe)

)
(19)

where ΓR =
π(1+R2

t )
2b1

is a positive definite variable.
Step 1. With the definition of the velocity tracking error ue = ud − u, the Lyapunov

function candidate (LFC) is selected as:

V1 =
1
2

R2
t (20)

Taking the time derivative of V1 and substituting (19) yields:
.

V1 = Rt
.
Rt

= ΓRRt

(
−Rn

.
b1 +

.
xd cos(ψr) +

.
yd sin(ψr)− u cos(ψe)− v sin(ψe)

)
= ΓRRt

[
−Rn

.
b1 +

.
xd cos(ψr) +

.
yd sin(ψr)− ud cos(ψe) + ue cos(ψe)− v sin(ψe)

] (21)

To stabilize the transformed position tracking error Rt, the virtual control law ud is
proposed as:

ud =
1

cos(ψe)

(
k1Rt − Rn

.
b1 +

.
xd cos(ψr) +

.
yd sin(ψr)− v sin(ψe)

)
(22)

with the design parameter k1 being a positive constant.
Substituting it into (21),

.
V1 becomes:

.
V1 = ΓRRt(−k1Rt + ue cos(ψe)) (23)
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Step 2. To remedy the problem of the EOC, a first-order low-pass filter is introduced
to process the virtual command ud. The output characteristic of the filter is given as:

l1
.
uc + uc = ud, uc(0) = ud(0).

uc = (ud − uc)/ι1
(24)

where uc is the output signal and the constant ι1 is the filter parameter. Thus, in the
following design

.
ud is replaced by

.
uc. The second LFC is chosen as:

V2 = V1 +
1
2

u2
e (25)

According to the dynamic (2) and the result (23), the derivative of V2 is written as:

.
V2 =

.
V1 + ue

.
ue

= ΓRRt(−k1Rt + ue cos(ψe)) + ue
( .
uc −

.
u
)

= ΓRRt(−k1Rt + ue cos(ψe))

+ue

( .
uc − m22

m11
vω− 1

m11
Q(τu) + fu(u)− 1

m11
τwu

) (26)

In particular, the hydrodynamic damping term fu(u) is regarded as an unknown con-
tinuous function that can be approximated by RBFNN. Learning from Lemma 2, one finds:

fu(u) = WT
1 h1(v) + o1 (27)

where the approximation error o1 satisfies 0 < o1 ≤ O1.
In order to remove the need for the excessive calculations caused by estimating the

entire weight matrix, the upper bound β1 is introduced as β1 ≥ ‖W1‖ and the parameter
h1 is defined as h1 = ‖h1(v)‖. Hence,

.
V2 can be further derived as:

.
V2 = ΓRRt(−k1Rt + ue cos(ψe)) + ue

( .
uc − m22

m11
vω− 1

m11
Q(τu)

)
+ue

(
WT

1 h1(v) + o1 − 1
m11

τwu

)
≤ ΓRRt(−k1Rt + ue cos(ψe)) + ue

( .
uc − m22

m11
vω− 1

m11
Q(τu)

)
+|ue|

(
β1h1 + O1 +

1
m11

du

) (28)

Referring to the discussion in (11, 12), the quantized signal of the control input τu can
be obtained as:

Q(τu) = κ1(τu)τu − E1(τu) (29)

with 1− δ1 ≤ κ1(τu) ≤ 1 + δ1 and E1(τu) ≤ τumin.
To facilitate the adaptive estimation, it is defined that λ1 = 1

1−δ1
and D1 = O1 +

1
m11

du +
1

m11
τumin.

Moreover, the variables β̂1, D̂1, and λ̂1 are introduced as estimate values, while the estimate
errors are represented as β̃1, D̃1, and λ̃1.

β̃1 = β1 − β̂1, D̃1 = D1 − D̂1, λ̃1 = λ1 − λ̂1 (30)

Subsequently, the control signal is constructed as:

τu = m11λ̂1τu∗ (31)

τu∗ =
η2

t ue√
η2

t u2
e + ε1

+ (k2 + ku)ue (32)

ku =
β̂2

1h2
1√

β̂2
1h2

1u2
e + ε1

+
D̂2

1√
D̂2

1u2
e + ε1

(33)
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where ηt =
( .

uc − m22
m11

vr + ΓRRt cos(ψe)
)

and the controller parameter k2 is a positive
constant. Furthermore, the adaptive update laws are given as:

.
β̂1 = c1

(
h1|ue| − c2 β̂1

)
(34)

.
D̂1 = c3

(
|ue| − c4D̂1

)
(35)

.
λ̂1 = c5

(
ueτu∗ − c6λ̂1

)
(36)

where ci(i = 1, 2, 3, 4, 5, 6) are all positive parameters.

Remark 5. Considering the ingeniously designed controller (31–34), there exist three highlights
that deserve some attention. (i) Different from the conservative quantized control, the algorithm
introduced in this paper is developed under the unavailable quantizer parameter δ1. For this
reason, the constant λ1 is introduced for adaptive estimation and procedure (31) is constructed
to compensate the resulting concussion. (ii) The unknown constant D1 is defined as the lumped
additive uncertainties, which is constituted by the approximation error of NN, the environmental
disturbance, and the hysteresis zone of the quantizer. On the other hand, the scalar β1 is utilized for
estimating the weight matrix of RBFNN, which emphatically reflects the superiority of MLP in terms
of the computation burden. (iii) The first term in τu∗ stands for system dynamics compensation, and
the remainder suppresses the phenomenon of chattering, while the convergence of tracking errors
and estimate errors can be ensured.

For the sake of convenience, κ1(τu) and E1(τu) are abbreviated as κ1 and E1, respec-
tively. Thus, with the substitution of (29), (28) can be further written as:

.
V2 ≤ ΓRRt(−k1Rt + ue cos(ψe)) + ue

[ .
uc − m22

m11
vr− 1

m11
(κ1τu − E1)

]
+|ue|

(
β1h1 + O1 +

1
m11

du

) (37)

According to the property of κ1, λ1 and substituting (31), the term − 1
m11

(κ1τu − E1)
can be calculated as:

− 1
m11

(κ1τu − E1)ue = − 1
m11

(
κ1m11λ̂τu∗ − E1

)
ue

= −κ1

(
λ1 − λ̃1

)
ueτu∗ +

1
m11

E1ue

≤ −(1− δ1)
(

λ1 − λ̃1

)
ueτu∗ +

1
m11

E1ue

= −ueτu∗ + (1− δ1)λ̃1ueτu∗ +
1

m11
τumin|ue|

(38)

By recalling the control signal in (32) and utilizing Lemma 3, one finds:

− 1
m11

(κ1τu − E1)ue ≤ (1− δ1)λ̃1ueτu∗ +
1

m11
E1ue − ue

(
η2

t ue√
η2

t u2
e+ε1

+ (k2 + ku)ue

)
≤ −|ηtue| − (k2 + ku)u2

e + (1− δ1)λ̃1ueτu∗ +
1

m11
τumin|ue|+ ε1

(39)

Substituting the result into (37),
.

V2 can be scaled as:

.
V2 ≤ ΓRRt(−k1Rt + ue cos(ψe)) + ue

( .
uc − m22

m11
vω
)

−
∣∣∣( .

uc − m22
m11

vr + ΓRRt cos(ψe)
)

ue

∣∣∣− (k2 + ku)u2
e

+(1− δ1)λ̃1ueτu∗ + |ue|β1h1 + |ue|
(

O1 +
1

m11
du +

1
m11

τumin

)
+ ε1

≤ −k1ΓRR2
t − (k2 + ku)u2

e + (1− δ1)λ̃1ueτu∗ + |ue|β1h1 + |ue|D1 + ε1

(40)

Consequently, taking into account (33), a concise result can be obtained:



Symmetry 2021, 13, 2208 10 of 20

.
V2 ≤ −k1ΓRR2

t − k2u2
e − u2

e

(
β̂2

1h2
1√

β̂2
1h2

1u2
e+ε1

+
D̂2

1√
D̂2

1u2
e+ε1

)
+(1− δ1)λ̃1ueτu∗ + |ue|β1h1 + |ue|D1 + ε1
≤ −k1ΓRR2

t − k2u2
e − |ue|β̂1h1 − |ue|D̂1 + (1− δ1)λ̃1ueτu∗ + |ue|β1h1 + |ue|D1 + 2ε1

= −k1ΓRR2
t − k2u2

e + |ue|β̃1h1 + |ue|D̃1 + (1− δ1)λ̃1ueτu∗ + 2ε1

(41)

3.2. Attitude Controller Design

According to (10), the derivative of ψe is expressed as:

.
ψe =

.
ψr − r (42)

Step 1. To stabilize the attitude of the pursuer, the LFC is selected as:

V3 =
1
2

ψ2
e (43)

With the definition of the angular velocity tracking error being re = rd − r, the time
derivative of (44) is deduced as:

.
V3 = ψe

.
ψe

= ψe

( .
ψr − r

)
= ψe

( .
ψr + re − rd

) (44)

Specially, the virtual control law rd is designed as:

rd = k3ψe +
.
ψr (45)

with k3 being a positive constant. Hence,
.

V3 becomes:

.
V3 = ψe(re − k3ψe) (46)

Step 2. Referring to (24), let the virtual control law rd pass through a first-order filter:

ι2
.
rc + rc = rd, rc(0) = rd(0).

rc = (rd − rc)/ι2
(47)

where rc is the filtered signal and ι2 is the filter parameter. In this step,
.
rd is substituted

by
.
rc.

V4 = V3 +
1
2

r2
e (48)

Differentiating V4 with respect to time and substituting (10), one obtains:

.
V4 =

.
V3 + re

.
re

= ψe(re − k3ψe) + re
( .
rc −

.
r
)

= ψe(re − k3ψe) + re

( .
rc − m11−m22

m33
uv− 1

m33
Q(τr) + fr(r)− 1

m33
τwr

) (49)

One caveat here is that the nonlinear function fr(r) cannot be observed accurately.
Therefore, the MLP-based RBFNN is applied to approximate the time-varying dynamics.
According to Lemma 2, the following equation is valid.

fr(r) = WT
2 h2(v) + o2 (50)
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where the approximation error satisfies 0 < o2 ≤ O2. Moreover, two parameters are defined
as β2 ≥ ‖W2‖ and h2 = ‖h2(v)‖, meaning that only one scalar needs to be adaptively
estimated, which reduces the computational burden. In this way, (50) can be derived as:

.
V4 = ψe(re − k3ψe) + re

( .
rc − m11−m22

m33
uv− 1

m33
Q(τR) + WT

2 h2(v) + o2 − 1
m33

τwr

)
≤ ψe(re − k3ψe) + re

( .
rc − m11−m22

m33
uv− 1

m33
Q(τR)

)
+ |re|

(
β2h2 + O2 +

1
m33

dr

) (51)

Learning from Lemma 1, the quantized signal for control input τr can be written as:

Q(τr) = κ2(τr)τr − E2(τr) (52)

with 1− δ2 ≤ κ2(τr) ≤ 1 + δ2 and E2(τr) ≤ τrmin.
Before giving the control algorithm, it is necessary to define the parameter λ2 = 1

1−δ2

and the lumped unknown term D2 = O2 +
1

m33
dr +

1
m33

τrmin. Meanwhile, the adaptive
estimate values are introduced as D̂2, β̂2, and λ̂2, meaning that the estimate errors can be
expressed as:

D̃2 = D2 − D̂2, β̃2 = β2 − β̂2, λ̃2 = λ2 − λ̂2 (53)

Consequently, the control input is elaborated as:

τr = m33λ̂2τr∗ (54)

τr∗ =
η2

r re√
η2

r r2
e + ε2

+ (k4 + kr)re (55)

kr =
β̂2

2h2
2√

β̂2
2h2

2r2
e + ε2

+
D̂2

2√
D̂2

2r2
e + ε2

(56)

where ηr =
( .

rc − m11−m22
m33

uv + ψe

)
; k4 is a positive controller parameter. The adaptive

learning laws are given as:
.
β̂2 = c7

(
h2|re| − c8 β̂2

)
(57)

.
D̂2 = c9

(
|re| − c10D̂2

)
(58)

.
λ̂2 = c11

(
reτr∗ − c12λ̂2

)
(59)

where ci(i = 7, 8, 9, 10, 11, 12) are all positive constants.
According to the definitions of κ2 and λ2, the term − 1

m33
(κ2εω − E2) can be calcu-

lated as:
− 1

m33
(κ2τr − E2)re = − 1

m33

(
κ2m33λ̂2τr − E2

)
re

= −κ2λ̂2reτr +
1

m33
E2re

≤ −(1− δ2)
(

λ2 − λ̃2

)
reτr +

1
m33

E2re

= −εrre + (1− δ2)λ̃2reτr +
1

m33
τrminre

(60)

Substituting the control signal in (55) leads to:

− 1
m33

(κ2τr − E2)re ≤ − η2
r r2

e√
η2

r r2
e+ε2
− (k4 + kω)r2

e + (1− δ2)λ̃2reτr +
1

m33
τrminre

≤ −|ηrre| − (k4 + kr)r2
e + (1− δ2)λ̃2reτr +

1
m33

τrminre + ε2

(61)

Taking the results into consideration, (52) follows:

.
V4 ≤ ψe(re − k3ψe) + re

( .
rc − m11−m22

m33
uv
)
−
∣∣∣( .

rc − m11−m22
m33

uv + ψe

)
re

∣∣∣
−(k4 + kr)r2

e + (1− δ2)λ̃2reτr + |re|β2h2 + |re|
(

O2 +
1

m33
dr +

1
m33

τrmin

)
≤ −k3ψ2

e − (k4 + kr)r2
e + (1− δ2)λ̃2reτr + |re|β2h2 + |re|D2

(62)
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Finally, with the substitution of (57), a concise result is obtained:

.
V4 ≤ −k3ψ2

e − k4r2
e − r2

e

(
β̂2

2h2
2√

β̂2
2h2

2r2
e+ε2

+
D̂2

2√
D̂2

2r2
e+ε2

)
+(1− δ2)λ̃2reτr + |re|β2h2 + |re|D2

≤ −k3ψ2
e − k4r2

e − |re|β̂2h2 − |re|D̂2 + (1− δ2)λ̃2reτr + |re|β2h2 + |re|D2 + 2ε2

= −k3ψ2
e − k4r2

e + |re|β̃2h2 + |re|D̃2 + (1− δ2)λ̃2reτr + 2ε2

(63)

3.3. Stability Analysis

In this section, the stability analysis proceeds using the Lyapunov theory. First off, the
theorem is given as follows.

Theorem 1. Consider the underactuated AUV model described in (1) and (2) and the tracking error
dynamics (14) under Assumptions 1 and 2. On basis of the quantizer (4), the error transformation
(21), the filters (24) and (48), and the controllers (31)–(36) and (55)–(60) are capable of ensuring
that all signals in the closed-loop system are bounded and that the position tracking error Re satisfies
the predefined behavioral metrics.

Proof. In order to prevent the adverse effects caused by the introduction of filters, the filter
errors are defined and the validation will be provided to guarantee their convergence.

α̃u = uc − ud, α̃r = rc − rd (64)

Associated with the descriptions of (24) and (48), their time derivatives satisfy
the relation: .

α̃u =
.
uc −

.
ud = − α̃u

ι1
+

.
ud ≤ − α̃u

ι1
+ B1,

.
α̃r =

.
rc −

.
rd = − α̃r

ι2
+

.
rd ≤ − α̃r

ι2
+ B2.

(65)

where the continuous function Bi(i = 1, 2) possesses an unknown certain maximum—i.e.,
|Bi| ≤ ϑi.

Subsequently, the overall LFC is defined as:

V = V2 +
1

2c1
β̃2

1 +
1

2c3
D̃2

1 +
1−δ1
2c5

λ̃2
1 +

1
2 α̃2

u

+V4 +
1

2c7
β̃2

2 +
1

2c9
D̃2

2 +
1−δ2
2γ11

λ̃2
2 +

1
2 α̃2

r
(66)

With the aid of (41) and (63), differentiating V with respect to time yields:

.
V =

.
V1 +

1
c1

β̃1

.
β̃1 +

1
c3

D̃1

.
D̃1 +

1−δ1
γ2

λ̃1

.
λ̃1 + α̃u

.
α̃u

+
.

V2 +
1
c5

β̃2

.
β̃2 +

1
c7

D̃2

.
D̃2 +

1−δ2
γ6

λ̃2

.
λ̃2 + α̃r

.
α̃r

= −k1ΓRR2
t − k2u2

e + |ue|β̃1h1 + |ue|D̃1 + (1− δ1)λ̃1ueτu∗ + 2ε1

−β̃1
(
h1|ue| − c2 β̂1

)
− D̃1

(
|ue| − c4D̂1

)
− (1− δ1)λ̃1

(
ueτu∗ − c6λ̂1

)
+ α̃u

.
α̃u

−k3ψ2
e − k4r2

e + |re|β̃2h2 + |re|D̃2 + (1− δ2)λ̃2reτr + 2ε2

−β̃2
(
h2|re| − c8 β̂2

)
− D̃2

(
|re| − c10D̂2

)
− (1− δ2)λ̃2

(
reτr∗ − c12λ̂2

)
+ α̃r

.
α̃r

= −k1ΓRR2
t − k2u2

e + c2 β̂1 β̃1 + c4D̂1D̃1 + c6(1− δ1)λ̂1λ̃1 + α̃u
.
α̃u + 2ε1

−k3ψ2
e − k4r2

e + c8 β̂2 β̃2 + c10D̂2D̃2 + c12(1− δ2)λ̂2λ̃2 + α̃r
.
α̃r + 2ε2

(67)

By resorting to Young’s inequality, one of the above terms can be scaled as:

c2 β̂1 β̃1 = c2

(
−β̃2

1 + β1 β̃1

)
≤ c2

(
−β̃2

1 +
1

2σ1
β̃2

1 +
σ1
2 β2

1

)
≤ − c2(2σ1−1)

2σ1
β̃2

1 +
c2σ1

2 β2
1

(68)
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where σ1 > 0.5. Then, a similar calculation can be implemented for c4D̂1D̃1, c6(1− δ1)λ̂1λ̃1,
c8 β̂2 β̃2, c10D̂2D̃2, and c12(1− δ2)λ̂2λ̃2, whose results are shown as:

c4D̂1D̃1 ≤ − c4(2σ2−1)
2σ2

D̃2
1 +

c4σ2
2 D2

1

c6(1− δ1)λ̂1λ̃1 ≤ − c6(1−δ1)(2σ3−1)
2σ3

λ̃2
1 +

c6(1−δ1)σ3
2 λ2

1

c8 β̂2 β̃2 ≤ − c8(2σ4−1)
2σ4

β̃2
2 +

c8σ4
2 β2

2

c10D̂2D̃2 ≤ − c10(2σ5−1)
2σ5

D̃2
2 +

c10σ5
2 D2

2

c12(1− δ2)λ̂2λ̃2 ≤ − c12(1−δ2)(2σ6−1)
2σ6

λ̃2
2 +

c12(1−δ2)σ6
2 λ2

2

(69)

with σi > 0.5(i = 2, 3, 4, 5, 6).
On the other hand, with the consideration of (65), the terms for the filter error lead to:

α̃u
.
α̃u = − α̃2

u
ι1
+ α̃u

.
ud ≤ −

α̃2
u

ι1
+ |α̃u|ϑ1 ≤ − α̃2

u
ι1
+ α̃2

u +
ϑ2

1
4 ,

α̃r
.
α̃r = − α̃2

r
ι2
+ α̃r

.
rd ≤ −

α̃2
r

ι2
+ |α̃r|ϑ2 ≤ − α̃2

r
ι2
+ α̃2

r +
ϑ2

2
4 .

(70)

Substituting the results of (68)–(70),
.

V is finally obtained as:
.

V ≤ −k1ΓRR2
t − k2u2

e −
c2(2σ1−1)

2σ1
β̃2

1 −
c4(2σ2−1)

2σ2
D̃2

1 −
c6(1−δ1)(2σ3−1)

2σ3
λ̃2

1 −
(

1
γ1
− 1
)

α̃2
u

−k3ψ2
e − k4r2

e −
c8(2σ4−1)

2σ4
β̃2

2 −
c10(2σ5−1)

2σ5
D̃2

2 −
c12(1−δ2)(2σ6−1)

2σ6
λ̃2

2 −
(

1
γ2
− 1
)

α̃2
r

+ c2σ1
2 β2

1 +
c4σ2

2 D2
1 +

c6(1−δ1)σ3
2 λ2

1 +
ϑ2

1
4 + 2ε1

+ c8σ4
2 β2

2 +
c10σ5

2 D2
2 +

c12(1−δ2)σ6
2 λ2

2 +
ϑ2

2
4 + 2ε2

≤ −ρV + ∆

(71)

with

ρ = min

 2k1ΓR, 2k2, c1c2(2σ1−1)
σ1

, c3c4(2σ2−1)
σ2

, c5c6(2σ3−1)
σ3

, 2
(

1
γ1
− 1
)

2k3, 2k4, c7c8(2σ4−1)
σ4

, c9c10(2σ5−1)
σ5

, c11c12(2σ6−1)
σ6

, 2
(

1
γ2
− 1
) 

∆ = c2σ1
2 β2

1 +
c4σ2

2 D2
1 +

c6(1−δ1)σ3
2 λ2

1 +
ϑ2

1
4 + 2ε1

+ c8σ4
2 β2

2 +
c10σ5

2 D2
2 +

c12(1−δ2)σ6
2 λ2

2 +
ϑ2

2
4 + 2ε2

(72)

Thus far, this indicates that the transformed tracking errors, the estimate errors, and
the filter errors tend to converge exponentially into a tiny neighborhood around zero.
Hence, as illustrated in Remark 4, the predefined performance for the position tracking
errors is guaranteed all the while.

Ultimately, the validity of Theorem 1 has been illustrated. �

4. Simulation

In this section, four simulation examples are conducted to validate the stability and
exhibit the superiority of the proposed controller. First, a digital model is built on the
basis of the USV’s motion dynamics and the specific parameters are set reasonably. Subse-
quently, the simulation results will be displayed in the form of figures, which are capable
of demonstrating the detailed performance of the developed algorithm. Furthermore,
the experiments under different environments and the comparison with a conservative
controller provide to highlight the advantages of this work.

4.1. Parameter Setting

The vessel model parameters from [5] are adopted for numerical simulation, which
are presented in Table 1. For the reference trajectory, we have ud = 0.5 m/s, vd = 0 m/s,



Symmetry 2021, 13, 2208 14 of 20

rd = 0.5 ∗ π/180 rad/s, and the initial states are chosen as ηd(0) = [0.5 m, 0 m, 3 ∗ π/180 rad]T

and vd(0) = [0 m/s, 0 m/s, 0 rad/s]T. The external disturbances are given as (73). τwu(t)
τwv(t)
τwr(t)

 = kd

 sin(0.01 ∗ t)
cos(0.01 ∗ t)
sin(0.01 ∗ t)

 (73)

where kd is the amplitude parameter of the disturbances.

Table 1. Main parameters.

Parameter Value Unit Parameter Value Unit

m11 1.1274 kg dv 0.1183 kg/s
m22 1.8902 kg dv2 0.05915 kg/m
m23 0.1278 kg/m2 dv3 0.029575 kg/m2

du 0.0358 kg/s dr 0.0308 kg/s
du2 0.0179 kg/s dr2 0.0154 kg/m
du3 0.00895 kg/m2 dr3 0.0077 kg/m2

Simulations are conducted in four sets, which are distinguished by different initial
states and disturbances. The configurations of the Scenarios are given as follows:

Scenario I: η(0) = [−5 m,−5 m, 0.45 rad]T, v(0) = [0 m/s, 0 m/s, 0 rad/s]T, kd = 0.01
Scenario II: η(0) = [−5 m,−5 m, 0.45 rad]T, v(0) = [0 m/s, 0 m/s, 0 rad/s]T, kd = 0.04
Scenario III: η(0) = [−10 m,−10 m, 0.45 rad]T, v(0) = [0 m/s, 0 m/s, 0 rad/s]T, kd = 0.01
Scenario IV: η(0) = [−10 m,−10 m, 0.45 rad]T, v(0) = [0 m/s, 0 m/s, 0 rad/s]T, kd = 0.04

In this case, the performance function for Re is selected as
b1(t) = (30− 0.05) ∗ exp(−0.1 ∗ t) + 0.05. The parameters of the quantizer are chosen
as: δ1 = 0.01, τumin = 0.005, δ2 = 0.01, τrmin = 0.005. The parameters of the position
tracking controller (31)–(36) are set as: k1 = 0.01, k2 = 20, c1 = 1, c2 = 10, c3 = 1, c4 = 10,
c5 = 0.1, c6 = 5, ε1 = 0.001. On the other hand, the parameters of the attitude tracking
controller (55)–(60) are set as: k3 = 5, k4 = 20, c7 = 1, c8 = 5, c9 = 1, c10 = 5, c11 = 0.001,
c12 = 5, ε2 = 0.001. The time constant of the filter is chosen as ι1 = 0.01, ι2 = 0.01.

4.2. Robustness Test under Different Intensity of Disturbance

Trajectory tracking in the x− y plane is depicted in Figure 2. Specifically speaking, the
position tracking error and the heading tracking error are plotted in Figure 3, respectively.
From these results, it is observed that the virtual USV can follow the desired trajectory
with a fast convergence speed and satisfactory accuracy. Figure 3 shows that position
tracking with a prescribed performance and high stability can be achieved by the proposed
controllers. The output constraint of the position is guaranteed with the help of the tangent-
type error transformations, thereby meeting the requirements of the science objectives for
the given mission.

Figure 4 gives the velocity tracking errors of the surge and yaw motions, which can
converge to a compact set around the origin quickly and maintain a stable state thereafter.
The estimations of the adaptive parameters in surge motion and yaw motion are plotted in
Figures 5–7. This indicates that all of the adaptive parameters are bounded, which conforms
to Theorem 1. Quantized control signals that take values in a finite set are presented in
Figure 8. With the consideration of input quantization constraints, it is clear that the control
inputs are discrete and keep a constant value within a time interval, meaning that the data
transmission will be considerably improved.
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Figure 2. Trajectories of the USV in the 2D plane.

Figure 3. Time responses of position tracking errors and heading tracking errors.
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Figure 4. Time responses of velocity tracking errors.

Figure 5. Time responses of adaptive parameter estimations λ̂1 and λ̂2.
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Figure 6. Time responses of adaptive parameter estimations D̂1 and D̂2.

Figure 7. Time responses of adaptive parameter estimations β̂1 and β̂2.
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Figure 8. Time responses of quantized control forces.

From these figures, the boundedness of all of the closed loop signals can be easily
verified. That is to say that accurate trajectory tracking and attitude tracking are achieved
in this simulation, even in the presence of the quantized inter-vessel transmitted state
information, model uncertainties, and external disturbances. Furthermore, by comparing
all of the results under different scenarios, the proposed scheme enjoys a high robustness
and control performance under different initial tracking errors and disturbances. The
above-mentioned simulation analysis is in accordance with Theorem 1.

5. Conclusions

In this paper, a quantized prescribed performance control mechanism that considers
uncertain model dynamics and quantizer parameters is proposed for the trajectory tracking
of USVs. By combining the adaptive algorithm and the MLP-based NN technique, the
global boundedness and asymptotical stability of the closed-loop system are guaranteed.
Furthermore, the position tracking error has been constrained to the predefined region
with the aid of a tangent-type error transformation. Compared with the exiting quantized
framework, the significant advantage of the presented controller is that the information of
the HLQ does not need to be accurately known by the designer, while the data transmission
burden can be effectively alleviated. Numerical simulations have exhibited the effectiveness
and advantages of the control strategy developed.
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