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Abstract: In this article, we introduce a new algorithm-based scheme titled asymptotic homotopy
perturbation method (AHPM) for simulation purposes of non-linear and linear differential equations
of non-integer and integer orders. AHPM is extended for numerical treatment to the approximate
solution of one of the important fractional-order two-dimensional Helmholtz equations and some of
its cases . For probation and illustrative purposes, we have compared the AHPM solutions to the
solutions from another existing method as well as the exact solutions of the considered problems.
Moreover, it is observed that the symmetry or asymmetry of the solution of considered problems
is invariant under the homotopy definition. Error estimates for solutions are also provided. The
approximate solutions of AHPM are tabulated and plotted, which indicates that AHPM is effective
and explicit.

Keywords: fractional order partial differential equation; caputo derivative; asymptotic homotopy
perturbation method; AHPM

MSC: 35A22; 35A25; 35K57

1. Introduction

In recent years, fractional calculus has made a great contribution to the fields of
science and engineering due to its many applications in the fields of damping visco
elasticity, biology, electronics, genetic algorithms, signal processing, robotic technology,
traffic systems, telecommunication, chemistry, physics, and economics and finance. This
has all been possible due to such mathematicians as Riemann, Liouville, Leibniz, Euler,
Bernoulli, Wallis, and L’ Hospital, who played an important role in the development of
fractional calculus. In this regard, our research focuses on the following fractional order
equations of Helmholtz, which are important in fractional calculus.

∂αU(x, y)
∂xα

+
∂2U(x, y)

∂y2 + ρ U(x, y) = ξ(x, y) (1)

and initial condition
U(0, y) = ξ(y) (2)
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The Helmholtz equation is used in the study of physical problems consisting of partial
differential equations in space-time, such as scattering problems in electromagnetism and
acoustics in many areas, i.e., in aeronautics, marine technology geophysics, and optical
problems. For further applications and studies about the concern problem, see the research
study [1–3] and references therein.

In fact, in fractional calculus, many researchers have focused on the various schemes
and aspects of partial differential equations and fractional order partial differential equa-
tions (FPDEs) as well, see [4–11]. In this regard, various types of techniques have been
developed for numerical solutions of non-linear and linear differential equations of integer
order. However, there are very few schemes that have been extended to find the solution of
linear and nonlinear differential equations of fractional order; for reading, see [12–17]. In
this article, we desire to contribute to and extend the recent technique asymptotic homotopy
perturbation method (AHPM) for the solution of real-world problems. In 2019, AHPM [18]
was used for the first time for the solution of the Zakharov–Kuznetsov equation. The main
aim of our work is to introduce the proposed technique, which is easy to apply and more
efficient than existing procedures. In this concern, we introduce and apply the asymptotic
homotopy perturbation method (AHPM) to obtain the approximate solution of fractional
order Helmholtz Equations (1) and (2). In addition, we compare the AHPM solution to the
exact solution as well as to the HPETM solution.

2. Preliminaries

In this section, from the fractional calculus, we give some basic definitions for the
reader, as follows:

Definition 1 ([19]). Riemann–Liouville integral of fractional order α ∈ R+ for the function
g ∈ L([0, 1], R) is given as:

Iα
0 h(t) =

1
Γ(α)

∫ t

0
(t− s)α−1g(s)ds, (3)

provided that integral exists (on right hand side).

Definition 2 ([19]). For a real number p ∈ R, a function f : R→ R+ is said to be in the space
Cp if it can be written as f (t) = tq f1(t) with q > p, f1(t) ∈ C[0, ∞) such that f (t) ∈ Cm

p if
f (m) ∈ Cp for m ∈ N∪ {0}.

Definition 3 ([19]). Caputo fractional derivative of a function h ∈ Cm
−1 with m ∈ N ∪ {0} is

provided as:

Dα
t h(t) =

Im−α f (m), m− 1 < α ≤ m, m ∈ N,
dm

dtm h(t), α = m, m ∈ N.
(4)

Definition 4 ([19]). The two parameter Mittag-Leffler function is provided as:

Eα,β(t) =
∞

∑
k=0

tk

Γ(kα + β)
. (5)

If α = β = 1 in eq(5), we obtain E1,1(t) = et and E1,1(−t) = e−t.

3. Construction of the Method (AHPM)

Here, in this section, we will discuss that the best way to establish AHPM procedure
to solve fractional order problem in the following form

T(U(x, y)) + f (x, y) = 0 (6)
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B
(

U(x, y),
∂ U(x, y)

∂x

)
= 0 (7)

where T(U(x, y)) is a differential operator that may consist of ordinary, partial, or time-
fractional differential or space fractional derivative. T(U(x, y)) can be expressed for frac-
tional model as follows:

∂α U(x, y)
∂xα

+ N(U(x, y)) + f (x, y) = 0 (8)

and condition

B
(

U(x, y),
∂ U(x, y)

∂x

)
= 0, (9)

where ∂α

∂xα denotes the Caputo derivative operator; N may be linear or non linear operator; B
denotes a boundary operator; U(x, y) is unknown exact solution of above equation; f (x, y)
denotes known function; and x, y denote special and temporal variables, respectively.

Let us construct a homotopy Φ(x, y; p) : Ω× [0, 1]→ R satisfies

∂αΦ(x, y; p)
∂xα

+ f (x, t)− p[N(Φ(x, y; p))] = 0, (10)

where p ∈ [0, 1] is said to be an embedding parameter. In this phase, the proposed
deformation Equation (10) is an alternate form of the deformation equations as:

(1− p)[L(Φ(x, y; p))− L(U0(x, y)) + f (x, y)] + p[T(Φ(x, y; p)) + f (x, y)] = 0, (11)

(1− p)[L(Φ(x, y; p))− L(U0(x, y))] = ph[T(Φ(x, y; p)) + f (x, y)], (12)

and
(1− p)[L(Φ(x, y; p)) + f (x, y)] = H(p)[T(Φ(x, y; p)) + f (x, y)], (13)

in HPM, HAM, and OHAM proposed by Liao in [20], He in [21], and Marinca in [22],
respectively.

Basically, according to homotopy definition, when p = 0 and p = 1 we have
Φ(x, y; p) = U0(x, y), Φ(x, y; p) = U(x, y).

Obviously, when the embedding parameter p varies from 0 to 1, the defined homotopy
ensures the convergence of Φ(x, y; p) to the exact solution U(x, y). Consider Φ(x, y; p)
in the form

Φ(x, y; p) = U0(x, y) +
∞

∑
i=1

Ui(x, y)pi (14)

and assuming N(Φ(x, y; p)) as follows

N(Φ(x, y; p)) = B1N0 +
∞

∑
i=1

(
i

∑
m=0

Bi+1−mNm

)
pi, B1 + B2 + B3 + ... = −1. (15)

where Bi = Bi(x, y; ci), f or i = 1, 2, 3, . . . are arbitrary auxiliary functions, will be dis-
cussed later. Thus, if p = 0 and p = 1 in Equation (10), we have

∂αU(x, y)
∂xα

+ f (x) = 0, and
∂αU(x, y)

∂xα
+ N(U(x, y)) + g(x, y) = 0,

respectively.
It is obvious that the construction of introduced auxiliary function in Equation (15)

is different from the auxiliary functions that are proposed in articles [20–22]. Hence, the
procedure proposed in our paper is different from the procedures proposed by Liao, He,
and Marinca in aforesaid papers [20–22] as well as optimal homotopy perturbation method
(OHPM) in [23].
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Furthermore, when we substitute Equations (14) and (15) in Equation (10) and equate
like power of p, the obtained series of simpler linear problems are

p0 :
∂αU0(x, y)

∂xα
+ f = 0,

p1 :
∂αU1(x, y)

∂xα
= B1N0,

p2 :
∂αU2(x, y)

∂xα
= B2N0 + B1N1,

p3 :
∂αU3(x, y)

∂xα
= B3N0 + B2N1 + B1N2,

and kth order iteration is

pk :
∂αUk(x, y)

∂xα
=

k−1

∑
i=0

Bk−i Ni,

We obtain the series solutions by using the integral operator on both sides of the above
simple fractional differential equation. The convergence of the series solution Equation (14)
to the exact solution depends upon the auxiliary parameters (functions) Bi(x, y; ci). The
choice of Bi(x, y; ci) is purely on the basis of terms that appear in non-linear section of the
Equation (6). Equation (14) converges to the exact solution of Equation (6) at p = 1:

Ũ(x, y) = U0(x, y) +
∞

∑
k=1

Uk(x, y; ci). (16)

Particularly, we can truncate Equation (16) into finite m-terms to obtain the solution
of nonlinear problem. The auxiliary convergence control constants c1, c2, c3, . . . can be
found by solving the system

R(∂x1, ∂y1) = R(∂x2, ∂y2) = R(∂x3, ∂y3) = . . . = R(∂xk, ∂yk) = 0, ∂xi, ∂yi ∈ [0, 1]. (17)

It can be verified to observe that HPM is only a case of Equation (10) when p = −p and

N(Φ(x, y; p)) = N0 +
∞

∑
i=1

NiPi.

The HAM is also a case of Equation (10) when p = ph and

N(Φ(x, y; p)) = N0 +
∞

∑
i=1

NiPi

The OHAM is also another case when

Bk−1 = Bk−2 + hk(t, cj) +
k−2

∑
i=1

hk−(i+1)(t, cj)Bi, and hk(t, cj) = ck

in Equation (15), we obtain exactly the series problems that are obtained by OHAM after
expanding and equating the like power of p in deformation equation. Furthermore, con-
cerning the optimal homotopy asymptotic method (OHAM) mentioned in this manuscript
and presented in [22], the version of OHAM proposed in 2008 was improved over time,
and the most recent improvement, which also contains auxiliary functions, is presented
in papers [24,25]. We also have improved the version of OHAM by introducing a very
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new auxiliary function in Equation (15). This paper uses a new and more general form of
auxiliary function:

N(Φ(x, y; p)) = B1N0 +
∞

∑
i=1

(
i

∑
m=0

Bi+1−mNm

)
pi

that depends on arbitrary parameters B1, B2, B3, . . . and is useful for adjusting and con-
trolling the convergence of nonlinear part as well as linear part of the problem with
simple way.

4. Applications of AHPM

Here, we apply AHPM to obtain the solutions of the following fractional order problems.

Example 1. Consider

∂αU(x, y)
∂xα

+
∂2U(x, y)

∂y2 −U(x, y) = 0, (18)

with 1 < α ≤ 2, and initial condition

U(0, y) = y.

By taking

N =
∂2U(x, y)

∂y2 −U(x, y), (19)

and the zero, 1st, 2nd, 3rd and 4th order problems are

∂αU0

∂xα
= 0, U0(0, y) = y

∂αU1

∂xα
= B1N0, U1(0, y) = 0,

∂αU2

∂xα
= B2N0 + B1N1, U2(0, y) = 0,

∂αU3

∂xα
= B3N0 + B2N1 + B1N2, U3(0, y) = 0,

∂αU4

∂xα
= B4N0 + B3N1 + B2N2 + B1N3, U3(0, y) = 0,

Solving the above equations, we get the zero, 1st, 2nd, 3rd, and 4th order solutions are

U0(x, y) = y,

U1(x, y) = −B1y
xα

Γ(α + 1)
,

U2(x, y) = −B2y
xα

Γ(α + 1)
+ B2

1y
x2α

Γ(2α + 1)
,

U3(x, y) = −B3y
xα

Γ(α + 1)
+ 2B1B2y

x2α

Γ(2α + 1)
− B3

1y
x3α

Γ(3α + 1)
,

U4(x, y) = −B4y
xα

Γ(α + 1)
+ (2B1B3 + B2

2)y
x2α

Γ(2α + 1)
− 2B2

1B2y
x3α

Γ(3α + 1)
+ B4

1y
x4α

Γ(4α + 1)
,
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and so on. By taking B1 = c1, B2 = c2, B3 = c3, B4 = c4 and consider

Ũ = U0 + U1 + U2 + U3 + U4.

The residual is

R =
∂αŨ(x, y)

∂xα
+

∂2Ũ(x, y)
∂y2 − Ũ(x, y). (20)

For constant, c1, c2, c3 solving Equation (17) we get c1 = 1, c2 = −0.6666,
c3 = 0.4482, c4 = −1.7816. Profile of solutions of the Example 1 have been provided
in Tables 1 and 2 and Figure 1.

Example 2. Consider another model of FPDEs,

∂αU(x, y)
∂xα

+
∂2U(x, y)

∂y2 + 5U(x, y) = 0, (21)

where 1 < α ≤ 2, and initial condition is

U(0, y) = y.

Taking

N =
∂2U(x, y)

∂y2 + 5U(x, y), (22)

again cosider the zero, 1st, 2nd, 3rd, and 4th order problems are

∂αU0

∂xα
= 0, U0(0, y) = y

∂αU1

∂xα
= B1N0, U1(0, y) = 0,

∂αU2

∂xα
= B2N0 + B1N1, U2(0, y) = 0,

∂αU3

∂xα
= B3N0 + B2N1 + B1N2, U3(0, y) = 0,

∂αU4

∂xα
= B4N0 + B3N1 + B2N2 + B1N3, U3(0, y) = 0,

Using the above equations, the zero, 1st, 2nd, 3rd, and 4th order solutions are

U0(x, y) = y,

U1(x, y) = 5B1y
xα

Γ(α + 1)
,

U2(x, y) = 5B2y
xα

Γ(α + 1)
+ 25B2

1y
x2α

Γ(2α + 1)
,

U3(x, y) = 5B3y
xα

Γ(α + 1)
+ 50B1B2y

x2α

Γ(2α + 1)
+ 125B3

1y
x3α

Γ(3α + 1)
,
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U4(x, y) = 5B4y
xα

Γ(α + 1)
+ 25(2B1B3 + B2

2)y
x2α

Γ(2α + 1)
+ 375B2

1B2y
x3α

Γ(3α + 1)

+625B4
1y

x4α

Γ(4α + 1)
,

and so on.
By taking B1 = c1, B2 = c2, B3 = c3, B4 = c4, and using

Ũ = U0 + U1 + U2 + U3 + U4,

the series solution of order four is

Ũ = y + 5(c1 + c2 + c3 + c4)y
xα

Γ(α + 1)
+ 25(c2

1 + c2
2 + 2c1c2 + 2c1c3)

y
x2α

Γ(2α + 1)
+ 125(c3

1 + 3c2
1c2)y

x3α

Γ(3α + 1)
+ 625c4

1y
x4α

Γ(4α + 1)
.

For c1, c2, c3, and c4 respectively, solving Equation (17) we get the constant values,
c1 = −0.2, c2 = −0.1, c3 = −0.075, andc4 = −0.05. Profile of solutions of the Example 2
has been provided in Tables 3 and 4 and Figure 2.

Example 3. Consider another special model of FPDEs,

∂αU(x, y)
∂xα

+
∂2U(x, y)

∂y2 − 2U(x, y) = (12x2 − 3x4)siny, (23)

where 1 < α ≤ 2, and initial condition is

U(0, y) = 0.

taking

L =
∂αU(x, y)

∂xα
− (12x2 − 3x4)siny (24)

and

N =
∂αU(x, y)

∂yα
− 2U(x, y) (25)

∂αU0

∂xα
= 0, U0(0, y) = 0. (26)

∂αU1

∂xα
= B1N0, U1(0, y) = 0, (27)

∂αU2

∂xα
= B2N0 + B1N1, U2(0, y) = 0, (28)

∂αU3

∂xα
= B3N0 + B2N1 + B1N2, U3(0, y) = 0, (29)

Using the above Equation (26)–(29), the zero, 1st, 2nd, 3rd, and 4th order solutions are

U0(x, y) =
(

24
xα+2

Γ(α + 3)
− 72

xα+4

Γ(α + 5)

)
sin(y),

U1(x, y) = −B1

(
72

x2α+2

Γ(2α + 3)
− 216

x2α+4

Γ(2α + 5)

)
sin(y),
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U2(x, y) = −B2

(
72x2α+2

Γ(2α + 3)
− 216x2α+4

Γ(2α + 5)

)
sin(y) + 3B2

1

(
72x3α+2

Γ(3α + 3)
− 216x3α+4

Γ(3α + 5)

)
sin(y),

U3(x, y) = −B3

(
72x2α+2

Γ(2α + 3)
− 216x2α+4

Γ(2α + 5)

)
sin(y) + 6B1B2

(
72x3α+2

Γ(3α + 3)
− 216x3α+4

Γ(3α + 5)

)
sin(y)

−9B3
1

(
72

x4α+2

Γ(4α + 3)
− 216

x4α+4

Γ(4α + 5)

)
sin(y),

The series solution of order three can be written as

Ũ = U0 + U1 + U2 + U3.

The residual is

R =
∂αŨ(x, y)

∂xα
+

∂2Ũ(x, y)
∂y2 − 2Ũ(x, y)− (12x2 − 3x4)siny. (30)

Using Equation (30) and B1 = c1, B2 = c2, and B3 = c3, for these constants, again we solve
Equation (17). Profile of solutions of the Example 3 has been provided in Tables 5 and 6 and Figure 3.

Table 1. Solution of Example 1 by AHPM taking c1 = 1; c2 = −0.6666; c3 = 0.4482; c4 = −1.7816;
and α = 1.7, 1.8, and 1.9, for distinct values of x at y = 0.01.

x AHPM (α = 1.7) AHPM (α = 1.8) AHPM (α = 1.9)

0.05 0.010027164039 0.0100224080748 0.0100184659335
0.10 0.0100947256496 0.0100808753719 0.0100689828802
0.15 0.0101969542295 0.0101715408955 0.0101492689388
0.20 0.0103314950768 0.0102927831639 0.0102583683627
0.25 0.0104970602326 0.0104437304068 0.0103958031903
0.30 0.0106929289205 0.0106239262991 0.0105613761196
0.35 0.0109187473072 0.0108331937404 0.0107550889561
0.40 0.011174428065 0.0110715657551 0.0109771008868
0.45 0.0114600931854 0.0113392458535 0.0112277044737
0.50 0.0117760387022 0.0116365834877 0.0115073108446

Table 2. Comparsion of AHPM and HPETM [1] results of example 1 in term of absolute error by
taking c1 = 1, c2 = −0.6666, c3 = 0.4482, c4 = −1.7816, and α = 2 for distinct values of (x, y).

(x, y) Exact Solution AHPM Solution Error (AHPM) Error (HPET M [1])

(0.1, 0.1) 0.100500416806 0.100500419954 3.148× 10−9 4.4682560× 10−8

(0.2, 0.2) 0.204013351124 0.204013451861 1.007× 10−7 9.8994158× 10−8

(0.3, 0.3) 0.313601554239 0.313602319178 7.649× 10−7 9.8994158× 10−7

(0.4, 0.4) 0.432428948735 0.432432171974 3.223× 10−6 2.9025947× 10−6

(0.5, 0.5) 0.563812982603 0.563822818267 9.836× 10−6 3.8474635× 10−6

(0.6, 0.6) 0.711279130945 0.711303602181 2.447× 10−5 4.7800451× 10−5

(0.7, 0.7) 0.878618303942 0.878671186553 5.288× 10−5 5.6998309× 10−5

(0.8, 0.8) 1.06994795704 1.07005103358 1.031× 10−4 6.6061216× 10−5

(0.9, 0.9) 1.2897777469 1.28996342214 1.857× 10−4 7.4980409× 10−5

(1, 1) 1.54308063482 1.54339489437 3.143× 10−4 8.3745391× 10−5
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Table 3. Solution of Example 2 by AHPM taking c1 = −0.2; c2 = −0.1; c3 = −0.075; c4 = −0.05; and
α = 1.5, 1.7, and 1.9, for distinct values of x at y = 0.001.

x AHPM(α = 1.5) AHPM(α = 1.7) AHPM(α = 1.9)

0.05 9.8219e−04 9.9156e−04 9.9608e−04
0.10 9.4995e−04 9.7267e−04 9.8539e−04
0.15 9.0881e−04 9.4578e−04 9.6849e−04
0.20 8.6099e−04 9.1206e−04 9.4573e−04
0.25 8.0790e−04 8.7232e−04 9.1738e−04
0.30 7.5062e−04 8.2722e−04 8.8368e−04
0.35 6.9002e−04 7.7735e−04 8.4488e−04
0.40 6.2683e−04 7.2322e−04 8.0122e−04
0.45 5.6171e−04 6.6532e−04 7.5297e−04
0.50 4.9524e−04 6.0411e−04 7.0037e−04

Table 4. Absolute error of Example 2 by AHPM taking c1 = −0.2, c2 = −0.1, c3 = −0.075, c4 = −0.05,
and α = 2 for distinct values of x at y = 0.001.

x Exact Solution (α = 2) AHPMSolution (α = 2) Error

0.05 9.9376e−04 9.9734e−04 3.5880e−06
0.10 9.7510e−04 9.8939e−04 1.4284e−05
0.15 9.4428e−04 9.7616e−04 3.1882e−05
0.20 9.0166e−04 9.5770e−04 5.6044e−05
0.25 8.4778e−04 9.3408e−04 8.6304e−05
0.30 7.8331e−04 9.0538e−04 1.2207e−04
0.35 7.0907e−04 8.7171e−04 1.6265e−04
0.40 6.2597e−04 8.3319e−04 2.0722e−04
0.45 5.3505e−04 7.8994e−04 2.5489e−04
0.50 4.3745e−04 7.4213e−04 3.0468e−04

Table 5. Solution of Example 3 by AHPM taking c1 = 0.48075; c2 = 0.1063055; c3 = −01.5870555;
and α = 1.5, 1.7, 1.9, for distinct values of x at y = 0.005.

x AHPM(α = 1.5) AHPM(α = 1.7) AHPM(α = 1.9)

0.05 2.8921e−07 1.1950e−07 4.8972e−08
0.10 3.2885e−06 1.5558e−06 7.3135e−07
0.15 1.3677e−05 6.9909e−06 3.5572e−06
0.20 3.7693e−05 2.0325e−05 1.0931e−05
0.25 8.2927e−05 4.6558e−05 2.6117e−05
0.30 1.5822e−04 9.1722e−05 5.3223e−05
0.35 2.7362e−04 1.6285e−04 9.7182e−05
0.40 4.4034e− 04 2.6795e−04 1.6375e−04
0.45 6.7076e−04 4.1599e−04 2.5948e−04
0.50 9.7838e−04 6.1687e−04 3.9175e−04

Table 6. Absolute error of of Example 3 by AHPM taking c1 = 0.48075, c2 = 0.1063055,
c3 = −01.5870555, and α = 2 for distinct values of x at y = 0.005.

x Exact Solution (α = 2) AHPMSolution (α = 2) Error

0.05 3.1250e−08 3.1250e−08 6.9749e−16
0.10 5.0000e−07 5.0000e−07 1.7859e−13
0.15 2.5312e−06 2.5312e−06 4.5783e−12
0.20 8.0000e−06 7.9999e−06 4.5749e−11
0.25 1.9531e−05 1.9531e−05 2.7282e−10
0.30 4.0500e−05 4.0499e−05 1.1738e−09
0.35 7.5031e−05 7.5027e−05 4.0316e−09
0.40 1.2800e−04 1.2799e−04 1.1743e−08
0.45 2.0503e−04 2.0500e−04 3.0158e−08
0.50 3.1250e−04 3.1243e−04 7.0133e−08
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Figure 1. The left side figure shows the comparison of AHPM solution and exact solution of Example 1 for different values
of α and x at y = 0.01. The right side figure shows the absolute error of AHPM solution and exact solution of Example 1 for
different values of x and α = 2 at y = 0.01.
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Figure 2. The left side figure shows the comparison of AHPM solution and exact solution of Example 2 for different values
of α and x at y = 0.001. The right side figure shows the absolute error of AHPM solution and exact solution of Example 2
for different values of x and α = 2 at y = 0.001.
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Figure 3. The left side figure shows the comparison of AHPM solution and exact solution of Example 3 for different values
of α and x at y = 0.005. The right side figure shows the absolute error of AHPM solution and exact solution of Example 3
for different values of x and α = 2 at y = 0.005.
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5. Discussion and Conclusions

In this paper, we have applied a new recent procedure asymptotic homotopy pertur-
bation method (AHPM) for the analytical solution of fractional order two-dimensional
Helmholtz equations. The fractional derivatives are described in the Caputo sense. The
procedure of AHPM is effective and accurate, as compared with existing analytical tech-
niques. All the figures show that the symmetry or asymmetry of the solutions of the
original problems is invariant by using the homotopy deformation Equation (10). All the
computation work, tables, and figures are handled by Matlab software. The errors in the
tables are very small. This reveals that the solutions obtained by AHPM are precise. From
the tabulation and graphical section, it is observed that the results of AHPM are highly
accurate. The high-accurracy solution of AHPM to the real-world problem (1) is one of
the most important findings and reveals that AHPM can be used to find the approximate
solution to fractional partial differential equations where analytical solutions may not exist,
where the data provided prevents the direct application of existing analytical methods, or
where existing analytical methods are time-consuming when huge data sets or complex
functions are involved. AHPM is an extension and generalization of perturbation methods.
The implementation of the proposed novel scheme for the numerical treatment of nonlinear
coupled problems that emerge in numerous sectors of research and engineering is one of
the proposed method’s future directions.
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