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Abstract: In this paper, several multi-layer-coupled star-composed networks with similar symmetri-
cal structures are defined by using the theory of graph operation. The supra-Laplacian matrix of the
corresponding multi-layer networks is obtained according to the master stability equation (MSF). Two
important indexes that reflect the synchronizability of these kinds of networks are derived in the case
of bounded and unbounded synchronized regions. The relationships among the synchronizability,
the number of layers, the length of the paths, the branchings, and the interlayer and intralayer
coupling strengths in the two cases are studied. At the same time, the simulation experiments are
carried out with the MATLAB software, and the simulated images of the two symmetrical structure
networks’ synchronizability are compared. Finally, the factors affecting the synchronizability of
multi-layer-coupled star-composed networks are found. On this basis, optimization schemes are
given to improve the synchronizability of multi-layer-coupled star-composed networks and the
influences of the number of central nodes on the networks’ synchronizability are further studied.

Keywords: interlayer coupling; star-composed networks; graph operation; synchronizability

1. Introduction

Complex networks have appeared in many aspects of our lives; they are used in the
prevention of the spread of epidemic diseases, computer networks, social networks, and
other fields [1–4]. These networks are an important interdisciplinary research field that has
attracted the interest of many scholars. In recent years, many new advances have been
made in the research of complex networks, such as the spread and stability of complex
networks [5,6], the synchronization and consensus of multi-layer complex networks [7–15],
diffusion in multi-layer networks [16–20], and the modeling and robustness of multi-layer
complex networks [21–25].

Common network synchronization types are complete synchronization [8] and phase
synchronization [26]. This paper studies the complete synchronization of networks accord-
ing to the master stability equation (MSF) proposed by Pecora and Carroll [27]. Research on
the synchronizability of multi-layer networks mostly focuses on structures such as star-like
networks, and there has been little research on the synchronizability of multi-layer star-
composed networks. On the one hand, the symmetrical structures of multi-layer-coupled
star-composed networks are more complex and the calculation of the synchronizability
indexes in these symmetrical structures is more difficult than the calculation of the indexes
of other types of structure. On the other hand, the characteristic polynomials of many
star-composed coupled networks can not be solved analytically.

In recent years, scholars have obtained many classical results on the synchronization of
star-like networks. Aguirre et al. [28] studied how the degree of nodes connected between
two layers of networks affects the synchronizability of the whole system and proposed
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an effective synchronization strategy. Zhu et al. [29] studied the relationships among the
synchronizability of two k-layer variable-coupling windmill-type networks, the number of
nodes, the coupling strength, and other parameters in the case of unbounded and bounded
synchronized regions and provided an optimization scheme to improve the synchroniz-
ability. Deng et al. [30] gave the characteristic polynomials of multi-layer-coupled chain
networks, discussed the relationships between synchronizability and different parameters
in the case of unbounded and bounded synchronized regions, and further provided image
examples to verify the effectiveness of their theoretical analysis. Li et al. [31] studied the bi-
partite synchronization of coupled inertial memory neural networks with cooperative and
competitive interaction. Two simulation examples were given to verify the effectiveness of
the proposed discontinuous control strategy for bipartite synchronization. Inspired by the
above works of literature, the main contents of this paper are as follows:

1. We provide definitions of star-composed networks and introduce the relevant theoret-
ical knowledge required for the synchronization of multi-layer networks.

2. The supra-Laplacian matrix of multi-layer-coupled star-composed networks is given
according to the MSF. With the help of graph theory and graph operation, the impor-
tant indexes reflecting the synchronizability are obtained for the cases of bounded
and unbounded synchronized regions.

3. According to the important indexes of synchronizability, we obtain the relationships
between synchronizability and the parameters of multi-layer-coupled star-composed
networks.

4. Through simulation experiments, we obtain the relationships between the synchro-
nizability and various parameters, and provide a theoretical basis for optimizing the
synchronizability of multi-layer-coupled star-composed networks.

The structure of this paper is as follows. In Section 2, the preliminaries required to
study the synchronization of multi-layer-coupled star-composed networks are given. In
Section 3, the eigenvalue spectrum and the synchronizability indexes of multi-layer-coupled
star-composed networks are studied and extended to a more general case. In Section 4, the
synchronizability of multi-layer-coupled star-composed networks is simulated numerically.
In Section 5, the main conclusions of this paper are given.

2. Preliminaries
2.1. The Synchronizability of Multi-Layer Networks

According to the dynamic equation of the ith node of the Lth layer in the Q-layer
network [32]:

dxL
i

dt
= f (xL

i )− aL

N

∑
j=1

ωL
ijΦ(xL

j )− d
Q

∑
T=1

dLT
i Υ(xL

i ), (1)

i = 1, 2, · · · , N, L = 1, 2, · · · , Q.

where N is the number of nodes in each layer; Q is the number of layers; xL
i is the state

variable of the ith node of the Lth layer; f (∗) is the dynamic function; aL is the intralayer
coupling strength of the Lth layer; d is the interlayer coupling strength; Φ is the intralayer
coupling function; and Υ is the interlayer coupling function. The property of the Laplacian
matrix can ensure the block diagonalization of the Jacobian, which means that the MSF can
be used to determine the stability of a synchronized solution by reducing the dimensionality
of the synchronization problem [27], HL = (ωL

ij) = SL −WL is the Laplacian matrix of the

Lth layer. Additionally, SL = (sL
ii) ∈ RN×N is the degree matrix of the Lth layer, where

sL
ii = d(vi), and d(vi) is the degree of the vertex vi. WL = (wL

ij) ∈ RN×N is the adjacency
matrix of the Lth layer. If there is an edge between the vertex vi and vj of the Lth layer,
wL

ij = 1; otherwise, wL
ij = 0(i, j = 1, 2, 3, · · · , N − 1, N).

In this paper, we consider the coupling strength of multi-layer networks. The weighted
Laplacian matrix of the Lth layer is H(L) = aL(SL −WL). The interlayer-weighted Lapla-
cian matrix is defined as dD = d(dLT

i ) ∈ RQ×Q(L, T = 1, 2, 3, · · · , Q). If there is an edge
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between the ith node of the Lth layer and the ith node of the Tth layer, dLT
i = −1; otherwise,

dLT
i = 0 and dLL

i = −∑Q
T=1,T 6=L dLT

i (L, T = 1, 2, 3, · · · , Q).
The supra-Laplacian matrix of the multi-layer network is H = HL + HI , where

HI = dD
⊗

IN , IN is the identity matrix of N × N, and
⊗

is the Kronecker product.

HL =


H(1) 0 · · · 0 0

0 H(2) · · · 0 0
...

...
...

...
...

0 0 · · · H(Q−1) 0
0 0 · · · 0 H(Q)

 =
Q⊕

L=1

H(L) (2)

The eigenvalues of a square matrix A are the roots of its characteristic polynomial Ψ(λ),
Ψ(λ) = |λI − A|. The eigenvalues of matrices have many applications [8,33]. In this paper,
the eigenvalues of the supra-Laplacian matrix H are used to study the synchronizability of
the networks. The eigenvalues of the supra-Laplacian matrix H are λ1, λ2, λ3, · · · , λn−1, λn.
λ1 = 0 is obtained from the properties of the supra-Laplacian matrix. According to the
MSF, when the synchronized region is unbounded, the larger the λ2 is, the stronger the
synchronizability of the network is; when the synchronized region is bounded, the smaller
the r = λmax/λ2 is, the stronger the synchronizability of the network is [29].

2.2. Graph Theory and Star-Composed Networks

In this paper, we consider undirected and connected graph G. The vertex set of
G is V(G) = {v1, v2, v3, · · · , vn−1, vn}, and the edge set of G is E(G) = {(vi, vj)|i, j =
1, 2, 3 · · · , n; i 6= j}. The edge set and the vertex set uniquely determine the graph. Let Kp
be a complete graph with p nodes, Pn be a path of length n, and Ek be a graph that has k
vertices with an empty edge set.

The star-composed networks studied in this paper are introduced below. We first give
two graph operations.

Definition 1. ([34]) Let G1, G2 represent two simple graphs with n1, n2 vertices and m1, m2 edges,
respectively. The corona operation G1 ◦ G2 is the graph obtained from one copy of G1 and n1 copies
of G2, before joining the ith vertex of G1 to every vertex in the ith copy of G2(i = 1, 2, · · · , n1).

Definition 2. ([35]) Let G1, G2 represent two simple graphs. The conjunction operation G15 G2
is defined as the graph, which is obtained from the disjoint union of G1 and G2 by adding the edges
{ab : a ∈ V(G1), b ∈ V(G2)}.

G1(1, k, n) = (K15 Ek) ◦ Pn is composed of one center node, k branchings, and paths
of length n. G2(2, k − 1, n) = (K2 5 Ek−1) ◦ Pn is composed of two center nodes, k − 1
branchings, and paths of length n. Its connection relationships are shown in Figure 1. The
red nodes represent the central nodes, the yellow nodes represent the branchings nodes,
the green nodes represent the nodes of the paths, and the black solid lines represent the
interlayer connection relationships between the nodes.

GQ
1 (1, k, n) and GQ

2 (2, k− 1, n) are composed of Q layers G1(1, k, n) and G2(2, k− 1, n),
respectively. The total number of nodes is Q(nk + n + k + 1), and the connection relation-
ships are shown in Figure 2. The colored dotted lines represent the connection relationships
between each layer.
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Figure 1. Single-layer star-composed network.

Figure 2. Double-layer star-composed network.



Symmetry 2021, 13, 2224 5 of 16

Lemma 1. ([30]) Let A, B be two M×M square matrices, and K be an integer; then,∣∣∣∣∣∣∣∣∣
A B · · · B
B A · · · B
...

...
. . .

...
B B · · · A

∣∣∣∣∣∣∣∣∣
K×K

= |A + (K− 1)B| · |A− B|(K−1). (3)

3. The Eigenvalue Spectrum and Synchronizability Indexes of Multi-Layer Coupled
Star-Composed Networks

3.1. The Eigenvalue Spectrum and Synchronizability Indexes of GQ
1 (1, k, n)

Similar to the network structure of G2
1(1, 8, 4) in Figure 2, each layer has the same

topology. We assume that a is the intralayer coupling strength and d is the interlayer
coupling strength. According to the concept of supra-Laplacian matrix, it is not difficult to
obtain the supra-Laplacian matrix of GQ

1 (1, k, n):

H1 =


(k + n)a −a −a · · · −a
−a Θ1 0 · · · 0
−a 0 Θ1 · · · 0

...
...

...
. . .

...
−a 0 0 · · · Θ1


(k+1)×(k+1)

,

where Θ1 = (n + 1)a.

H2 =


−a 0 0 · · · 0
0 −a 0 · · · 0
0 0 −a · · · 0
...

...
...

. . .
...

0 0 0 · · · −a


(k+1)×(k+1)

,

H3 =


2a 0 0 · · · 0
0 2a 0 · · · 0
0 0 2a · · · 0
...

...
...

. . .
...

0 0 0 · · · 2a


(k+1)×(k+1)

,

H4 =


3a 0 0 · · · 0
0 3a 0 · · · 0
0 0 3a · · · 0
...

...
...

. . .
...

0 0 0 · · · 3a


(k+1)×(k+1)

,

The supra-Laplacian matrix of Lth layer is:

H(L)
1 =



H1 H2 H2 H2 · · · H2 H2
H2 H3 H2 0 · · · 0 0
H2 H2 H4 H2 · · · 0 0
H2 0 H2 H4 · · · 0 0
...

...
...

...
. . .

...
...

H2 0 0 0 · · · H4 H2
H2 0 0 0 · · · H2 H3


,
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Combined with the interlayer supra-Laplacian matrix:

H =


Θ2 −dI −dI · · · −dI
−dI Θ2 −dI · · · −dI
−dI −dI Θ2 · · · −dI

...
...

...
. . .

...
−dI −dI −dI · · · Θ2

,

where Θ2 = H(L)
1 + (Q− 1)dI.

Then, the characteristic polynomial is:

ΨI(λ) = det(λI − H) =


Θ3 dI dI · · · dI
dI Θ3 dI · · · dI
dI dI Θ3 · · · dI
...

...
...

. . .
...

dI dI dI · · · Θ3

,

where Θ3 = λI − H(L)
1 − (Q− 1)dI.

According to Lemma 1, we have:

ΨI(λ) = |λI − H(L)
1 ||λI − H(L)

1 −QdI|Q−1. (4)

The eigenvalue spectrum of H is:

0, (n + 1)a,
k + n + 2±

√
(k + n + 2)2 − 4(k + 1)

2
a,

n + 2±
√
(n + 2)2 − 4
2

a︸ ︷︷ ︸
k−1

,

Qd, (n + 1)a + Qd︸ ︷︷ ︸
Q−1

, 4asin2(
απ

2n
) + a︸ ︷︷ ︸

k+1

(α = 1, 2, · · · , n− 1),

k + n + 2±
√
(k + n + 2)2 − 4(k + 1)

2
a + Qd︸ ︷︷ ︸

Q−1

,

n + 2±
√
(n + 2)2 − 4
2

a + Qd︸ ︷︷ ︸
(Q−1)(k−1)

, 4asin2(
απ

2n
) + a + Qd︸ ︷︷ ︸

(Q−1)(k+1)

(α = 1, 2, · · · , n− 1).

Deduced from the preliminary knowledge, the minimum nonzero eigenvalue is:

λ2 = min{n + 2−
√
(n + 2)2 − 4
2

a, Qd}.

The maximum eigenvalue is:

λmax =
k + n + 2 +

√
(k + n + 2)2 − 4(k + 1)

2
a + Qd.

Then, we have:

r = (
k + n + 2 +

√
(k + n + 2)2 − 4(k + 1)

2
a + Qd)/λ2. (5)
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3.2. The Eigenvalue Spectrum and Synchronizability Indexes of GQ
2 (2, k− 1, n)

Similar to the network structure of G2
2(2, 7, 4) in Figure 2, we examine the eigenvalue

spectrum of GQ
2 (2, k− 1, n) using a similar method:

H5 =


(k + n)a −a −a · · · −a
−a (k + n)a −a · · · −a
−a −a Θ4 · · · 0

...
...

...
. . .

...
−a −a 0 · · · Θ4


(k+1)×(k+1)

,

where Θ4 = (n + 2)a.
The supra-Laplacian matrix of the Lth layer is:

H(L)
2 =



H5 H2 H2 H2 · · · H2 H2
H2 H3 H2 0 · · · 0 0
H2 H2 H4 H2 · · · 0 0
H2 0 H2 H4 · · · 0 0
...

...
...

...
. . .

...
...

H2 0 0 0 · · · H4 H2
H2 0 0 0 · · · H2 H3


,

Combined with the interlayer supra-Laplacian matrix:

H̃ =


Θ5 −dI −dI · · · −dI
−dI Θ5 −dI · · · −dI
−dI −dI Θ5 · · · −dI

...
...

...
. . .

...
−dI −dI −dI · · · Θ5

,

where Θ5 = H(L)
2 + (Q− 1)dI.

The characteristic polynomial is:

ΨI I(λ) = |λI − H(L)
2 ||λI − H(L)

2 −QdI|Q−1. (6)

The eigenvalue spectrum of H̃ is:

0, (n + 1)a, k+n+2±
√

(k+n+2)2−4(k+1)
2 a,

n + 3±
√
(n + 3)2 − 8
2

a︸ ︷︷ ︸
k−2

,

Qd, (n + 1)a + Qd︸ ︷︷ ︸
Q−1

, 4asin2(
βπ

2n
) + a︸ ︷︷ ︸

k+1

(β = 1, 2, · · · , n− 1),

k + n + 2±
√
(k + n + 2)2 − 4(k + 1)

2
a + Qd︸ ︷︷ ︸

(Q−1)

,

n + 3±
√
(n + 3)2 − 8
2

a + Qd︸ ︷︷ ︸
(k−2)(Q−1)

, 4asin2(
βπ

2n
) + a + Qd︸ ︷︷ ︸

(k+1)(Q−1)

(β = 1, 2, · · · , n− 1).

By comparison, the minimum nonzero eigenvalue is:

λ2 = min{n + 3−
√
(n + 3)2 − 8
2

a, Qd}.
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The maximum eigenvalue is:

λmax =
k + n + 2 +

√
(k + n + 2)2 − 4(k + 1)

2
a + Qd.

Then, we have:

r = (
k + n + 2 +

√
(k + n + 2)2 − 4(k + 1)

2
a + Qd)/λ2. (7)

3.3. The Eigenvalue Spectrum and Synchronizability Indexes of GQ
p (p, k + 1− p, n)

The multi-layer-coupled star-composed networks with p central nodes are considered,
(3 ≤ p ≤ k), and the multi-center-coupled star-composed networks can be written as
GQ

p (p, k + 1− p, n) = (Kp∇Ek+1−p) ◦ Pn.
The eigenvalue spectrum of the supra-Laplace matrix obtained by the same method is:

0, (n+ 1)a,
k + n + 2±

√
(k + n + 2)2 − 4(k + 1)

2
a︸ ︷︷ ︸

p

,
n + p + 1±

√
(n + p + 1)2 − 4p
2

a︸ ︷︷ ︸
k−p

,

Qd, (n + 1)a + Qd︸ ︷︷ ︸
Q−1

, 4asin2(
γπ

2n
) + a︸ ︷︷ ︸

k+1

(γ = 1, 2, · · · , n− 1),

k + n + 2±
√
(k + n + 2)2 − 4(k + 1)

2
a + Qd︸ ︷︷ ︸

p(Q−1)

,

n + p + 1±
√
(n + p + 1)2 − 4p
2

a + Qd︸ ︷︷ ︸
(k−p)(Q−1)

, 4asin2(
γπ

2n
) + a + Qd︸ ︷︷ ︸

(k+1)(Q−1)

(γ = 1, 2, · · · , n− 1).

We can easily obtain the required indicators. The minimum nonzero eigenvalue is as
follows:

λ2 = min{n + p + 1−
√
(n + p + 1)2 − 4p
2

a, Qd}.

The maximum eigenvalue is:

λmax =
k + n + 2 +

√
(k + n + 2)2 − 4(k + 1)

2
a + Qd.

Then, we have:

r = (
k + n + 2 +

√
(k + n + 2)2 − 4(k + 1)

2
a + Qd)/λ2. (8)

4. Numerical Simulation Experiment and Analysis

In the analysis of the above sections, we can obtain the relationships between the syn-
chronizability and various parameters of multi-layer-coupled star-composed networks. This
section tests the accuracy of the above mentioned theoretical results through a large number
of numerical simulation experiments. Firstly, the state trajectories of star-composed networks
are described to illustrate that their synchronization can be realized by MATLAB. Secondly,
considering the actual initial value, the change images of the synchronizability of the star-
composed networks are obtained by MATLAB. Finally, we analyze the relationships between
the synchronizability and parameters of multi-layer-coupled star-composed networks.
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We consider an example of a coupling system composed of two layers. The network
topology is shown in Figure 3. The number of layers is Q = 2, N = 9 is the number of
nodes in each layer, and the dynamics of each node are given as follows [36]:

dxL
i

dt
=
|xL

i + 1| − |xL
i − 1|

2
+ ∑

j∈Ni

aij(xL
j − xL

i ) + ∑
j∈Ni

bij(x3−L
j − xL

i )

where xL
i is the state of a node, |x+1|−|x−1|

2 represents the inherent nonlinear dynamics of
the node, i = 1, 2, 3, · · · , 8, 9, L = 1, 2; aij represents the intralayer connection, and the
connection weight is 1. bij denotes the interlayer connection, and the connection weight is
2.5. The initial value of the system is randomly selected. Through the simulation, the state
trajectory of the system is shown in Figures 4 and 5. It can be seen that the state trajectory
of nodes achieves synchronization under the coupling effect.

In the following analysis, in order to distinguish the synchronizability indexes of multi-
layer-coupled star-composed networks, when the synchronized region is unbounded, we
use λ2a and λ2b to represent the synchronizability indexes of GQ

1 (1, k, n) and GQ
2 (2, k− 1, n).

When the synchronized region is bounded, the synchronizability indexes of GQ
1 (1, k, n) and

GQ
2 (2, k− 1, n) are represented by ra and rb, respectively.

Figure 3. An example of double-layer star-composed network.

t
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x
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Figure 4. The state trajectories of the first layer.
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Figure 5. The state trajectories of the second layer.

1. When the synchronized region is unbounded, we set n = 5, a = 2, d = 0.008, Q = 40,
with the increase in k as in Figure 6. λ2a remains unchanged at 0.2918 and λ2b remains
unchanged at 0.32. The synchronizability is not affected by k. We set k = 10, a = 2,
d = 0.008, Q = 40. With the increase in n in Figure 7, λ2a remains unchanged at 0.32
and then decreases monotonically to 0.0196, while λ2b remains unchanged at 0.32
and then decreases monotonically to 0.0486. The synchronizability of GQ

1 (1, k, n) and
GQ

2 (2, k − 1, n) reached the maximum at n = ba/Qd + Qd/a − 2c and
n = b2a/Qd + Qd/a − 3c, respectively, and the length of the paths reaches the
maximum. We set k = 10, n = 5, d = 0.008, Q = 40, with the increase in a as in
Figure 8. λ2a monotonically increases from 0.0729 to 0.32 and then remains unchanged,
while λ2b monotonically increases from 0.1629 to 0.32 and then remains unchanged.
The synchronizability of GQ

1 (1, k, n) and GQ
2 (2, k − 1, n) reaches the maximum at

a = (n + 2 +
√
(n + 2)2 − 4)Qd/2 and a = (n + 3 +

√
(n + 3)2 − 8)Qd/4, respec-

tively, and the intralayer coupling strength is the minimum. We set k = 10, n = 5,
a = 2, Q = 40. With the increase in d in Figure 9, λ2a monotonically increases from
0.04 to 0.2918 and then remains unchanged, while λ2b monotonically increases from
0.04 to 0.6515 and then remains unchanged. The synchronizability of GQ

1 (1, k, n)
and GQ

2 (2, k− 1, n) reaches the maximum at d = (n + 2−
√
(n + 2)2 − 4)a/2Q and

d = (n + 3−
√
(n + 3)2 − 8)a/2Q, respectively, and the interlayer coupling strength

is the minimum. We set k = 10, n = 5, a = 2, d = 0.008, with the increase in as
Q in Figure 10. λ2a monotonically increases from 0.016 to 0.2918 and then remains
unchanged, while λ2b monotonically increases from 0.016 to 0.6515 and then remains
unchanged. The synchronizability of GQ

1 (1, k, n) and GQ
2 (2, k− 1, n) reaches the max-

imum at Q = (n + 2−
√
(n + 2)2 − 4)a/2d and Q = (n + 3−

√
(n + 3)2 − 8)a/2d,

respectively, and the number of layers is the minimum.
2. When the synchronized region is bounded, we set n = 5, a = 2, d = 0.008, Q = 40,

with the increase in k as in Figure 6. ra monotonically increases from 91.2508 to 1094.7
and rb monotonically increases from 83.2082 to 998.1725. When k is the minimum, the
synchronizability is the maximum. We set k = 10, a = 2, d = 0.008, Q = 40. With the
increase in n in Figure 7, ra rapidly increases from 127.0276 to 17141 and rb rapidly
increases from 127.0276 to 6922.5. When n is the minimum, the synchronizability
is the maximum. We set k = 10, n = 5, d = 0.008, Q = 40. With the increase
in a in Figure 8, ra decreases slowly from 174.5482 to 171.1677 and then increases
rapidly to 233.7460, while rb decreases slowly from 78.1736 to 77.2113 and then
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increases rapidly to 233.7460. The synchronizability of GQ
1 (1, k, n) and GQ

2 (2, k −
1, n) reaches the maximum at a = (n + 2 +

√
(n + 2)2 − 4)Qd/2 and a = (n + 3 +√

(n + 3)2 − 8)Qd/4, respectively. We set k = 10, n = 5, a = 2, Q = 40. With
the increase in d in Figure 9, ra decreases rapidly from 1242.3 to 171.2582 and then
increases monotonically to 581.4077, while rb decreases slowly from 1242.3 to 77.2526
and then increases rapidly to 260.3906. The synchronizability of GQ

1 (1, k, n) and
GQ

2 (2, k− 1, n) reaches the maximum at d = (n + 2−
√
(n + 2)2 − 4)a/2Q and d =

(n + 3−
√
(n + 3)2 − 8)a/2Q, respectively. We set k = 10, n = 5, a = 2, d = 0.008.

With the increase in Q in Figure 10, ra rapidly decreases from 3104.3 to 171.1760
and then slowly increases to 172.9032, while rb decreases rapidly from 3104.3 to
77.2158 and then increases slowly to 77.4368. The synchronizability of GQ

1 (1, k, n)
and GQ

2 (2, k− 1, n) reaches the maximum at Q = (n + 2−
√
(n + 2)2 − 4)a/2d and

Q = (n + 3−
√
(n + 3)2 − 8)a/2d, respectively.
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5. Main Results
5.1. The Parameters That Affect the Synchronizability of Star-Composed Networks

Based on the above situation, for GQ
1 (1, k, n) networks when the synchronized region

is unbounded, the synchronizability of the networks is only related to the number of layers,
the length of paths, the interlayer coupling strength, and the intralayer coupling strength.
When the synchronized region is bounded, the synchronizability of the networks is related
to the interlayer coupling strength, the intralayer coupling strength, the length of paths,
the branchings, and the number of layers. See Table 1 for the specific relationships. For
GQ

2 (2, k− 1, n) networks, whether the synchronized region is bounded or unbounded, the
factors affecting the networks’ synchronizability are the same as GQ

1 (1, k, n); see Table 2 for
the specific relationships.

Table 1. Relationships among all parameters affecting GQ
1 (1, k, n) networks’ synchronizability.

k ↑ n ↑ a ↑ d ↑ Q ↑

λ2 = min{Qd, ∆1}
∆1 < Qd − ↓ ↑ − −
∆1 > Qd − − − ↑ ↑

r = λmax/λ2
∆1 < Qd ↑ ↑ ↓ ↑ ↑
∆1 > Qd ↑ ↑ ↑ ↓ ↓

∆1 =
n+2−
√

(n+2)2−4
2 a, ↑ strengthen, ↓ weaken, − unchanged.

Table 2. Relationships among all parameters affecting GQ
2 (2, k− 1, n) networks’ synchronizability.

k ↑ n ↑ a ↑ d ↑ Q ↑

λ2 = min{Qd, ∆2}
∆2 < Qd − ↓ ↑ − −
∆2 > Qd − − − ↑ ↑

r = λmax/λ2
∆2 < Qd ↑ ↑ ↓ ↑ ↑
∆2 > Qd ↑ ↑ ↑ ↓ ↓

∆2 =
n+3−
√

(n+3)2−8
2 a, ↑ strengthen, ↓ weaken, − unchanged.
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5.2. Optimizing Synchronizability of GQ
p (p, k + 1− p, n) Networks

We further discuss the synchronizability of the multi-layer-coupled star-composed
networks with the central nodes p. Figures 6–10 show the relationships between the
synchronizability of GQ

p (p, k + 1− p, n)(p = 1, 2) and the affecting factors. GQ
p (p, k + 1−

p, n) have similar figures; the specific relationship is shown in Table 3.

Table 3. Relationships between all parameters affecting GQ
p (p, k + 1− p, n)(3 ≤ p ≤ k) networks’

synchronizability.

k ↑ n ↑ a ↑ d ↑ Q ↑

λ2 = min{Qd, ∆3}
∆3 < Qd − ↓ ↑ − −
∆3 > Qd − − − ↑ ↑

r = λmax/λ2
∆3 < Qd ↑ ↑ ↓ ↑ ↑
∆3 > Qd ↑ ↑ ↑ ↓ ↓

∆3 =
n+p+1−

√
(n+p+1)2−4p
2 a, ↑ strengthen, ↓ weaken, − unchanged.

1. When the synchronized region is unbounded, the synchronizability is not affected by
k. With the increase in the length of paths n, the synchronizability of the networks
remains unchanged and then decreases. The synchronizability of GQ

p (p, k + 1− p, n)
reaches the maximum at n = bap/Qd + Qd/a − (p + 1)c and the length of paths
reaches the maximum. With the increase in intralayer coupling strength a, the syn-
chronizability of the networks increases first and then remains unchanged. The
synchronizability of GQ

p (p, k + 1− p, n) reaches the maximum at a = (n + p + 1 +√
(n + p + 1)2 − 4p)Qd/2p, and the intralayer coupling strength is the minimum. With

the increase in interlayer coupling strength d, the synchronizability of the networks in-
creases first and then remains unchanged. The synchronizability of GQ

p (p, k + 1− p, n)
reaches the maximum at d = (n + p + 1−

√
(n + p + 1)2 − 4p)a/2Q and the inter-

layer coupling strength is the minimum. With the increase in the number of lay-
ers Q, the synchronizability of the networks increases first and then remains un-
changed. The synchronizability of GQ

p (p, k + 1− p, n) reaches the maximum at Q =

(n + p + 1−
√
(n + p + 1)2 − 4p)a/2d and the number of layers is the minimum. It

can be seen that in order to improve the synchronizability of the networks, the length of
paths n should be appropriately reduced, and the intralayer coupling strength a, inter-
layer coupling strength d, and number of layers Q should be appropriately increased.

2. When the synchronized region is bounded, with the increase in the branchings k and
the length of paths n, the synchronizability of the networks continues to weaken. With
the increase in the intralayer coupling strength a, the synchronizability of the networks
increases first and then decreases. The synchronizability of GQ

p (p, k + 1− p, n) reaches
the maximum at a = (n + p + 1 +

√
(n + p + 1)2 − 4p)Qd/2p. With the increase in

the interlayer coupling strength d, the synchronizability of the networks increases
first and then decreases. The synchronizability of GQ

p (p, k + 1− p, n) reaches the
maximum at d = (n + p + 1−

√
(n + p + 1)2 − 4p)a/2Q. With the increase in the

number of layers Q, the synchronizability of the networks increases first and then
decreases. The synchronizability of GQ

p (p, k + 1 − p, n) reaches the maximum at
Q = (n + p + 1−

√
(n + p + 1)2 − 4p)a/2d. From the above analysis, in order to

improve the synchronizability of the networks, we reduce the branchings k and
the length of paths n and appropriately increase the intralayer coupling strength
a, interlayer coupling strength d, and number of layers Q to the corresponding
inflection points.
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5.3. Impact of the Number of Central Nodes on the Synchronizability

In the numerical simulation, we determined that the synchronizability of the networks
with two central nodes is better than that of the networks with one central node. Whether
the synchronized region is bounded or unbounded, with the increase in the central nodes
p, the synchronizability of the networks will not be weaker than the synchronizability of
the networks with fewer central nodes.

There are still many problems that need to be solved in multi-layer-coupled star-
composed networks. For example, what will happen to the synchronizability after giv-
ing different coupling strengths to multi-layer-coupled star-composed networks? For
multi-layer-coupled star-composed networks, we need to further study how to keep the
synchronizability unchanged when changing multiple parameters.
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