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Abstract: Solar magnetic activity exhibits a complex nonlinear behavior, but its dynamic process
has not been fully understood. As the complex network technique can better capture the dynamics
of nonlinear system, the visibility graphs (VG), the horizontal visibility graphs (HVG), and the
limited penetrable visibility graphs (LPVG) are applied to implement the mapping of sunspot relative
numbers in the northern and southern hemispheres. The results show that these three methods can
capture important information of nonlinear dynamics existing in the long-term hemispheric sunspot
activity. In the presentation of the results, the network degree sequence of the HVG method changes
preferentially to the original data series as well as the VG and the LPVG, while both the VG and the
LPVG slightly lag behind the original time series, which provides some new ideas for the nonlinear
dynamics of the hemispheric asymmetry in the two hemispheres. Meanwhile, the use of statistical
feature-skewness values and complex network visibility graphs can yield some complementary
information for mutual verification.
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1. Introduction

The complexity of solar magnetic activity and its long-term variability have been
studied for a long time, and it was known as early as the last century that solar activity is
characterized by the hemispheric asymmetry [1,2]. By studying the spatial distribution of
the number or area of sunspots, the hemispheric asymmetry of solar magnetic activity was
confirmed by Newton and Milsom [3]. The longest record of solar activity variability is the
number of sunspots, and the study of hemispheric asymmetry in the two hemispheres has
gradually moved from sunspots to almost all solar activity phenomena, such as coronal
mass ejections [4], flare activity [5–7], differential rotation [8,9], polar faculae [10,11], and
so on.

It is interesting to note that the influence of solar activity on the Earth’s climate was
found to be significant a long time ago. For example, Herschel [12] speculated that solar
variability would cause changes in the Earth’s climate, and concluded that rainfall was less
when there were fewer sunspots. Eddy [13] found that the Maunder Minimum (1645–1715),
an anomalous decrease in sunspot numbers, corresponded in time to the trough of the
Little Ice Age in Western Europe. Currie [14] found that many elements of climate (e.g.,
temperature, rainfall, sea level) exhibit cyclical variations similar to solar magnetic activity.
Friis-Christensen et al. [15] also found a high correlation between northern hemisphere
land surface temperature and the length of the solar activity cycle.

Haigh [16] and Svensmark [17] have pointed out that solar activity is an important
factor driving the Earth’s climate change. Therefore, it is still of great importance to examine
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the influence of solar activity on the Earth’s climate on longer time scales. Furthermore,
the asymmetry of solar activity can be introduced the cycle pattern of solar activity [18],
which improves the human understanding of solar activity and the prediction accuracy
of space climate, and plays a driving force for the research of a series of solar physics
fields. For instance, by studying the full disk images at 30.4, 19.5, and 28.4 nm wavelengths
during solar cycle 24, Sharma et al. [8] presented evidence of a very strong and statistically
significant relationship between solar activity and hemispheric asymmetry in solar coronal
rotation rate. They found that the phase of sunspot numbers lags behind the hemispheric
asymmetry index by 1.56 years. Deng et al. [19] studied the mid-term periodicities of polar
faculae in the northern and southern hemispheres for a time interval from 1951 August to
1998 December, and found that the periodicities on both hemispheres are not identical.

Traditional methods usually consider the amplitude [3] and phase difference [20] to
study the north–south asymmetry of solar activity and predict the solar activity cycle by
the empirical data analysis-driven approach. In recent years, solar activity asymmetry has
been studied using the latitudinal and longitudinal distributions, showing that the north–
south asymmetry largely depends on the asynchronous development of activity in the
two hemispheres [21]. By using the cross-correlation analysis, the cross wavelet transform,
and the cross-recurrence plot methods, the temporal evolution of group sunspot numbers
is found to be different between the two hemispheres, providing a lot of reference value
for studying sunspot activity [22]. Although these methods have advantages, considering
the nonlinear dynamics of solar activity [23], the traditional linear methods have some
limitations in predicting the solar cycle, which are not sufficient to fully capture the
nonlinear dynamics of solar activity.

The complex network-based visibility graph is a technique for studying nonlinear
systems. It is able to capture information that cannot be extracted by traditional linear
methods. As a powerful tool for studying nonlinear dynamics [24], it is widely used to
explore complicated data in many scientific fields. Complex network-based visibility meth-
ods, including the visibility graphs (VG; [25]), the horizontal visibility graphs (HVG; [26]),
and the limited penetrable visibility graphs (LPVG; [27]), have been applied with better
feedback on processing nonlinear time series. These methods showed that the improved
visibility-based techniques have obtained better results in the solar physics field [28,29],
which are more able to extract amplitude differences and phase differences of nonlinear
systems. Notably, in the study of Zou et al. [30], the visibility graph methods applied on
a single time series of solar activity indicator is extended to a double sequence of solar
activities (i.e., separately for the northern and southern hemispheres), which provides us a
new perspective to understand the hemispheric asymmetry of solar activity.

In this work, complex network techniques are applied to investigate the long-term
hemispheric asymmetry of sunspot relative numbers obtained from the National Astro-
nomical Observatory of Japan (NAOJ). The framework of this work is organized as follows.
In Section 2, the data used and its methods are described in detail. Section 3 presents a
comparative analysis of the obtained results. Finally, the conclusions and discussions of
the current work are shown in Section 4.

2. Data and Methods
2.1. Sunspot Data

The sunspot relative numbers are the most commonly used parameter to describe
solar activity. The sunspot time series used in this work are derived from the Mitaka
observatory of NAOJ which was formerly the Tokyo Astronomical Observatory (before
1989), University of Tokyo [31]. The Mitaka Observatory recorded daily sunspot relative
numbers over the whole solar disk since 1928, while the daily sunspot relative numbers of
the northern and southern hemispheres were recorded separately since March 1939 [32].

Figure 1 shows the daily time series of sunspot relative numbers from the NAOJ/
Mitaka observatory (upper panel) along with the International Sunspot Number (ISSN;
lower panel) from 1 March 1939 to 30 September 2019. The daily time series of ISSN
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version 2.0 [33] come from the World Data Center-Sunspot Index and Long-term Solar
Observations (WDC-SILSO). To check for the relatedness of different origins for the daily
sunspot numbers, we performed a correlation analysis [34] between them for the same time
interval. A correlation coefficient of 0.8862 (99.9% confidence) is obtained, which justifies
the use of sunspot relative numbers obtained from the NAOJ/Mitaka observatory for our
analysis.

In our work, we choose the monthly sunspot relative numbers (averaged daily num-
bers in each month) in the northern and southern hemispheres to analyze the north–south
asymmetry of sunspot activity. Figure 2 shows the time series of monthly sunspot relative
numbers on both hemispheres. There are 967 natural months from 1939 March to 2019
September, covering solar cycles 17 to 24.
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Figure 1. The daily time series of sunspot relative numbers from the NAOJ/Mitaka observatory (upper panel) along with
the International Sunspot Number (ISSN; lower panel) from 1 March 1939 to 30 September 2019.

The traditional method for measuring the north–south asymmetry of sunspot activity
is to calculate the absolute or normalized difference between the two hemispheres. The
absolute difference of sunspot relative numbers can be described as:

ANum(t) = NNor(t)− NSou(t) (1)

and the normalized difference of sunspot relative numbers is [3,35]:

NNum(t) =
NNor(t)− NSou(t)
NNor(t) + NSou(t)

(2)

where NNor(t), NSou(t) are the sunspot relative numbers in the northern and southern
hemispheres, respectively.
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Figure 2. Monthly distribution of sunspot relative numbers in the northern and southern hemispheres
during the time interval from March 1939 to September 2019.

The long-term variations of sunspot relative numbers in the two hemispheres are
shown in the top panel of Figure 3. Here, the width of the running window is ω = 270
months. The absolute and normalized differences of hemispheric sunspot activity are
shown in the middle and bottom panels of Figure 3, respectively. In Section 3.2, we will
explain why the running window is chosen as 270 months.

15

20

25

30

35

40

45

�
��

��
��
��
��

	�
��

��������
��������

−5

0

5

10

15

�
	�
��
��
��
�
�
��
��

�

1950 1960 1970 1980 1990 2000 2010
�������������

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

�
��
�
��
��
��
��
�
��
��

�

Figure 3. Monthly hemispheric sunspot relative numbers (top panel), the absolute difference (middle
panel), and the normalized difference (bottom panel) with a running width of ω = 270 months.
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2.2. Visibility Graphs

The idea of the VG is that in the network, each node of the complex network corre-
sponds to each observation in the time series. If the visibility criterion of the VG is satisfied,
then two nodes have edges connected to each other. This is the edge of the network, and
the visibility criterion can be described below.

Consider a time variable X = {xi}T
i=1 of length T , each time node corresponds to a

time series observation, and if any two data points (ti, xi) and (tj, xj) in the time series are
visible to each other, they correspond to any point (tk, xk) , with ti < tk < tj ∈ T , satisfying
the following equation.

xk < xj + (xi − xj)
tj − tk

tj − ti
(3)

The VG algorithm has been applied in several fields and achieved good results,
which proves that the VG can be used as an alternative framework to study the statistical
characteristics of sunspot time series.

2.3. Horizontal Visibility Graphs

With the deepening of time series visualization research, Luque et al. [26] proposed
a new simpler and more calculation-efficient algorithm, i.e., the HVG. It is based on
the following principle: the same two data points (ti, xi) and (tj, xj) in a time variable
X = {xi}T

i=1 of length T are visible for any (tk, xk), if they satisfy the following equation:

xk < min(xi, xj) (4)

For all tk with ti < tk < tj .
The HVG criterion is more restrictive than the VG, so the degree of nodes inside its

network is generally smaller than that of the VG, but it provides a simpler algorithm and a
faster process implementation than the VG.

2.4. Limited Penetrable Visibility Graphs

In the framework of the idea of visibility graph network building, Ning-De et al. [27]
proposed the LPVG, which is an innovative method is reducing noise interference in the
time-series data. The nodes that should be connected in the network nodes are isolated by
noise interference, which has an impact on visibility graph network building. Moreover,
the dynamics features are masked by the noise. i.e., following the rules of the visibility
graph algorithm on the improvement. Let the limited penetrable sight distance be N, when
the connection of any two points is cut by an intermediate node with a return of 1 ≤ N.
These two points satisfy the visibility criterion, and any two data points (ti, xi) and (tj, xj)

of the time series variable X = {xi}T
i=1 of the same length T that are l apart are visible to

each other, then there exist p data points (tk, xk) between these two data points, where the
following equation is satisfied.

xk > xj + (xi − xj)
tj − tk

tj − ti
(5)

The rest of the l − p data points (tm, xm) , ti < tm < tj ,satisfy:

xm < xj + (xi − xj)
tj − tm

tj − ti
(6)

It is shown that the LPVG has a larger average degree value and not only retains the
original visibility principle but also improves it and has an advantage over the VG and the
HVG in terms of noise immunity and visibility.
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3. Results
3.1. Statistical Characteristics of the Data

Considering the complexity of the solar magnetic activity, the probability distribution
functions (PDFs) of the hemispheric sunspot relative numbers are first discussed. The
results are shown in Figures 4 and 5. It is easily found that sunspot data can be characterized
by a non-normal distribution with a significant left-skewed (negative-skewed feature). The
skewness values are calculated to be SN = −1.06 and SS = −0.51 for the northern and
southern hemispheres, respectively.
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Figure 4. Probability distribution functions of sunspot relative numbers in the northern (upper
panel) and southern (lower panel) hemispheres, respectively.
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Figure 5. Upper panel: the yearly skewness values of hemispheric sunspot relative numbers. Lower panel: the difference of
the yearly skewness of hemispheric sunspot relative numbers.

With the above basic characteristics of sunspot data, the following work sets the stage
to seek whether some commonalities can be obtained between the statistical features and
the conclusions obtained from the complex network-based visibility graphs approach.

3.2. VG Analysis of North–South Asymmetry

Evidence has been studied that hemispheric asymmetries in rotation profiles appear
to have temporal variation within small scales [9]. In order to better investigate the long-
term variation of the north–south asymmetry of solar magnetic activity, we do not focus
overly on the solar activity information of small timescales in this work. To eliminate the
short-term timescale effect of the solar data, we first perform a smoothing window (the
width is 270 months).

Small smooth windows do not identify the shifts in the hemispheric behavior of
the two hemispheres well. Conversely, high-frequency variations of the Sun as well as
low-frequency variations are both smoothed for a much larger smoothing window [30] on
the sunspot time series. Then, we use the VG method to implement a mapping of the data
from time-series data to a complex network, converting it into a degree series, where the
degree of a node in the network is defined as the number of edges connected to this node,
the degree refers to the complexity of the local solar magnetic activity of the original series,
i.e., the intensity of the fluctuations, rather than the strength of solar activity.

The results of the VG analysis are shown in Figure 6. From this figure, we can
find that a phase transition occurred between the northern and southern hemispheres,
and this time period was concentrated between 1980 and 1990. From 1970 to 1980, the
transition from a higher degree in the southern hemisphere to a higher degree in the
northern hemisphere. It shows the opposite trend with the time series diagram presented
in Figure 2. Before 1980, the relative sunspot number in the northern hemisphere was
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higher than that in the southern hemisphere most of the time, which probably means that
the northern hemisphere is more active than the southern hemisphere. From the VG results,
the complexity of sunspot activity in the southern hemisphere is higher than that in the
northern hemisphere, and it can also be simply observed from the time series diagram that
the number of sequence fluctuations in the southern hemisphere before 1980 is more than
that in the northern hemisphere, which corroborates with our results.

Looking at the statistical characteristics obtained from Section 3.1, we find that the
skewness values fluctuate relatively smoothly until 1970, with a large fluctuation between
1970 and 1980, and then remain in a relatively smooth state, suggesting that the fluctuation
of the skewness values in the similar interval between 1970 and 1980 also indicates the
active transition between the northern and southern hemispheres.
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Figure 6. The degree sequences of the sunspot relative numbers for the northern and southern hemi-
spheres (top panel), and the absolute (middle panel) and normalized (bottom panel) hemispheric
differences of the degree sequences.

3.3. HVG Analysis of North–South Asymmetry

To further obtain more information, we construct the complex networks using the
HVG, and the results are shown in Figure 7. Compared with the VG, the results obtained by
the HVG are much more interesting. Firstly, the values of the degree sequences constructed
by the HVG are much lower than those constructed by the VG, which is consistent with
the expected results. Secondly, it is worth noting that the hemispheric transition of the
results obtained by the HVG is earlier than the VG. The possible reason is that the HVG
provides limited information about the studied sunspot data. The solar activity has complex
variations, but the HVG can grasp the overall changes with minimum information.

3.4. LPVG Analysis of North–South Asymmetry

The LPVG has a better anti-noise effect compared with the above two algorithms, and
can provide more complete information about the inherited series. The analysis results are
shown in Figure 8.

Compared with the results of the VG, the average value of the degree sequence
obtained by the LPVG is higher, but the trend remains roughly the same. The transition
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period is consistent with the VG algorithm, and it is worth noting that the LPVG plays
a certain effect of homogenizing the fluctuations of the transition period between the
northern and southern hemispheres.
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Figure 7. Similar to Figure 6, but for the HVG.
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Figure 8. Similar to Figure 6, but for the LPVG.
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4. Discussion and Conclusions

In the present work, three nonlinear analysis methods, i.e., the VG, the HVG, and
the LPVG, are used to investigate the north–south asymmetry of sunspot relative num-
bers. Compared with the original time series studied in this work, the network structure
constructed by the nonlinear techniques provides some additional information.

In the original time series plot (the top panel of Figure 3), during the period from
1950 to 1980, the activity in the southern hemisphere is much weaker than in the northern
hemisphere. For the absolute and normalized differences, the values in this time interval
are all positive (the middle and bottom panels of Figure 3). Based on the VG algorithm, the
hemispheric sunspot numbers show a shift from a southward dominant (from 1950 to 1980)
to a northward dominant pattern (about 1980 onwards). The direct results of the original
time series are likely to be based on classical information of north–south asymmetry such
as the amplitude, while the properties of the VG algorithm reflect the underlying nonlinear
dynamics of solar time series, characterized by the complexity of nonlinear behaviors.
That is to say, the analysis results show that a shift in the solar hemisphere (i.e., a shift
in the magnitude of hemispheric activity) occurred during the time period around 1980
(Figures 6–8), in the opposite direction to the shift in the original time series shown in
Figure 3. It is interesting to note that, by studying the Greenwich sunspot area data,
Zolotova et al. [36] concluded that the phase difference between the northern and southern
hemispheres is anti-correlated with the latitude of the magnetic equator, a result somewhat
similar to that of our present work. Maybe there is some degree of association between
the degree sequence of the complex network and the magnetic equator. Further work is
needed to explore their relationship in the future.

Three nonlinear methods are also used to compare the transition period, i.e., the
transition between the northern and southern hemispheres. The results obtained by the VG
and the LPVG are similar, and only have a smoothing difference in fluctuations. However,
the HVG, due to its limited information of the extracted degrees, shows an earlier transition
compared to the VG and the LPVG. At the same time, there are large fluctuations in the
skewness values in the two hemispheres during this period. Here, the skewness values
represent the statistical characteristics that can be used to analyze the temporal changes of
sunspot relative numbers in the two hemispheres.

The complex network methods also have some limitations. For instance, the noise
effects may cause disconnection of nodes that should be connected in the VG and the
HVG, and connect nodes that should not be connected in the LPVG. Therefore, it is still a
big challenge to find a visibility method that minimizes the noise, and there is still much
work to be done to provide more information on the dynamics of solar activity asymmetry
for both hemispheric time series data and to explore sunspot data in more detail from
statistical aspects.
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