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Abstract: The general dynamic characteristics of the acoustic cavity with multiple partial partitions
are presented in this thesis. A theoretical model has been developed for predictions, and several
configurations are analyzed. To describe the apertures on the interface of subcavities, the virtual air
panel assumption is introduced into the improved Fourier series system. The governing equations
of the coupling system are derived by using the energy principle. The results obtained with the
proposed model are firstly compared with the numerical calculations based on the finite element
method (FEM). Subsequently, a configuration made up from a rigid cavity partitioned by a partial
steel panel has been specifically built, and the forced responses of the coupling system have been
measured for comparison and model validation. The present results are excellent over most of the
studied frequency range. Furthermore, the visualizations of the interior sound intensity field of the
acoustic cavity with three partial partitions under different frequencies are researched to illustrate
the energy transmission paths and vibro-acoustic coupling mechanism of the complicated system.
The obtained results are believed to be helpful in the optimal design of the vibro-acoustic coupling
system with optimal sound insulation capacity.

Keywords: vibro-acoustic coupling; multiple partial partitions; dynamic characteristics; energy transmission

1. Introduction

Flexible panel structure and acoustic cavity coupling systems can be found in various
engineering fields, such as marine and astronautical engineering. A clear understand-
ing of the vibro-acoustic coupling and energy transmission mechanism is the necessary
prerequisite and foundation to develop effective means of noise and vibration control of
such complicated systems. To deal with this problem, several theoretical models have
been introduced to predict and analyze the dynamic characteristics of vibro-acoustic
coupling systems.

Dowell and Voss first studied the modal response of a coupled panel–cavity system
with regard to the modal characteristics of the uncoupled structural and acoustic systems [1].
Then, Pan et al. focused on the active control technology of the coupling systems to reduce
the noise transmission through a panel into a cavity [2,3]. They also investigated the effect
of the coupling on the medium-frequency response of the acoustic field in a panel–cavity
system on the basis of the classical modal coupling method [4,5]. Lately, the convergence
criteria of the method were revealed by Hu et al. through numerical analyses [6]. Kim and
Brennan presented a compact matrix formulation to analyze the vibro-acoustic coupled
system by the impedance and mobility methods [7]. Li and Cheng employed the combined
integro-modal method to investigate the coupling characteristics of a flexible panel backed
by an irregular acoustic cavity [8,9]. Du et al. proposed the full coupled theoretical model
to analyze the vibro-acoustic performance of the panel–cavity coupling system [10,11]. The
improved Fourier series method was employed to address the impedance discontinuity in
the vibro-acoustic research. Xie et al. presented the panel–cavity coupling system model
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by developing the variational method to predict the vibration and sound responses of the
coupled car-like model [12]. However, these studies were restricted to the relatively simple
panel–cavity systems with the interaction between structures and acoustic fields.

Unlike the most conventional vibro-acoustic coupling system, in many practical
applications, apertures placed on the boundary of the acoustic fields are needed to satisfy
the ventilation, heat exchange, and/or the technology requirements. Through the apertures,
there is a direct interaction between different acoustic fields. Thus, it is of great importance
to investigate the influence of the apertures on the general dynamic characteristics and
energy transmission mechanism of the coupling system.

The early research of apertures was performed without taking into account the thick-
ness of the boundaries. For example, Spence presented the diffraction of plane sound
waves by circular apertures, as the size of the aperture is of the same order of magnitude as
the wavelength [13]. Hongo and Serizawa evaluated the field diffracted by a rectangular
aperture in the infinitely baffle with the method of the Kobayashi potential by considering
two kinds of eigenfunction expansions [14]. Thereafter, Wilson and Soroka obtained the
approximate transmission loss of a circular aperture in a rigid wall of finite thickness by pos-
tulating rigid, massless, infinitely thin plane pistons at each end of the aperture [15]. Sauter
and Soroka investigated the sound transmission between two reverberant rooms through
a connecting rectangular aperture by the same theory [16]. Park and Eom examined the
acoustic scattering of a rectangular aperture in the infinitely baffle using the radiation
impedance concept [17]. Sgard et al. predicted the transmission loss of rectangular and
circular apertures based on the expansion of the wave field inside the aperture in terms
of propagating and evanescent acoustic modes, in which the modal radiation impedance
matrix of the aperture was calculated numerically [18]. The experimental validation of
this numerical method based on the modal approach was further presented by Trompette
et al. [19]. Most of the studies were based on plane wave approximation; the assumption
could be valid below its cut-off frequency and has a certain gap with the actual existence.

In the aspect of the sound transmission between two acoustic fields connected through
apertures, Seybert et al. solved the coupled interior/exterior boundary value problem
using the boundary element method (BEM) [20]. Pierce et al. formulated the integral matrix
of the sound radiation impedance of the square aperture on rigid enclosure boundaries [21].
Tong and Tang investigated the acoustical performance of the plenum windows installed on
a building facade by means of experimental works to prevent noise pollution [22]. Pàmies
et al. analyzed the sound radiation from an aperture on the rigid wall of a rectangular cavity
both theoretically and experimentally [23]. The effects of the radiation behavior of the
aperture for the interior acoustic field had been studied as the complex admittance of the
walls. Poblet-Puig et al. developed a modal model that can be used to perform predictions
of the sound transmitted through apertures connecting rooms of finite dimension [24].

Other models focused on the influence of the aperture on the panel–cavity system
in which the boundary conditions of the enclosed acoustic field consist of the flexible
panels and the apertures. This led to the interaction between different fields, which can
be both structural and acoustic. Kim and Kim studied the physical coupling phenomena
of a two-dimensional partially opened plate–cavity system to understand the coupling
mechanism of a generally coupled system [25,26]. Nearfield acoustic holography was used
to perform the visualization of the acoustic fields experimentally. Seo and Kim developed
a model of the finite space and semi-infinite space separated by two flexible structures and
one opening and predicted the energy distribution and energy flow of the vibro-acoustic
coupling system [27]. Yu et al. firstly considered thin apertures involved in complex vibro-
acoustic coupling systems as an equivalent structural component to investigate the sound
transmission between acoustic media through the interface consisting of both structures
and apertures using sub-structuring modeling techniques [28,29]. Apparently, less effort
has been made to the comprehensive model where the structural transmission path is
compatible with the acoustic transmission path between different acoustic fields.
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Therefore, the aim of this paper is to develop an analytical vibro-acoustic model of
the cavity partitioned by multiple partial partitions for attaining a deep understanding of
the energy transmission mechanisms. The virtual air panel assumption is introduced into
the improved Fourier series system to simulate the acoustic interface of subcavities. By
using the energy principle, the governing equations of the vibro-acoustic coupling system
are derived first. Afterward, the verification with the FEM and experimental works is
conducted to validate the accuracy of the present approach. Finally, the sound intensity
fields of the cavity with three partial partitions are predicted for identifying the energy
transmission mechanisms of the coupling system.

2. Model Description and Formulation
2.1. Problem Definition

The geometry of the presented problem is shown in Figure 1. The acoustic cavity with
dimensions of a × b × h comprises N + 1 subcavities separated by N partial partitions. The
side walls of the cavity are all rigid. The interfaces between two neighboring subcavities
are composed of partial partitions and apertures. The partitions are considered as flexible
panels with a general elastically restrained boundary condition on three edges that attached
to the side walls of the cavity and free boundary condition on the remaining one edge.
The two neighboring subcavities can be interacted through the apertures and the bending
vibration of the panels.
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Figure 1. Geometry of the vibro-acoustic coupling system: an acoustic cavity composed of N + 1 subcavities separated by N
partial partitions.

2.2. Field Variable Expansions

According to the dynamic characteristics, the original domain can be divided into
subcavities, panels, and apertures. The three kinds of subdomains are coupled with
each other.

The three-dimensional acoustic cavity in Figure 2 is the fundamental subdomain for
the proposed vibro-acoustic coupling model. The dimensions of the subcavities are aci × b
× h, where i = 1, . . . , N + 1. The subcavity at the far left of the model is denoted as c1, and
the right side wall of c1 is covered by the panel p1 and the aperture a1. The subcavity at the
far right of the model is denoted as cN+1, and the left side wall of cN+1 is covered by pN and
aN. Likewise, the left and right side walls of ci are covered by the panels pi−1, ai−1 and pi,
ai, respectively.
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In order to overcome the discontinuity of the acoustic boundaries, the improved
Fourier series method that expanded the sound pressure on the basis of the three-dimensional
Fourier series and introduced the supplementary functions on the non-rigid boundary
walls is employed. For this study, there are five rigid walls in c1 and cN+1, the sound
pressure of these two subcavities can be described as
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The sound pressure of other subcavities with four rigid walls are
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where λmci
x
= mci

x π/aci, λmci
y
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y π/b, λmci
z
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z π/h and the supplementary functions are
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For the flexible panel shown in Figure 3, the length, width, and thickness of the panel
are denoted as b, hpi, and δpi, respectively. Using the improved Fourier series method, the
transverse displacement of the panel is given by
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Considering the apertures located on the interfaces between two neighboring subcavi-
ties, the virtual air panel assumption is introduced to formulate the apertures as the flexible
air panel with small thickness δai and width hai, where hai = h − hpi. The field variable
expansion for the transverse displacement of the aperture can be written as
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where λmai
y
= mai

y π/b and λmai
z
= mai

z π/hai. The supplementary functions of the aperture
can be directly obtained from Equation (8) by replacing the subscript pi with ai.

2.3. Energy Principle

The energy principle will be used to drive the governing equation for the proposed cou-
pling system. This can be done by means of the Lagrangian equation of every subdomain.

Firstly, for the acoustic subcavities, the Lagrangian equations of the subcavities are
defined as

Lc1 = Uc1 − Tc1 − Wp1&c1 − Wa1&c1 − Ws (8)

Lci = Uci − Tci − Wpi−1&ci − Wai−1&ci − Wpi&ci − Wai&ci (9)

LcN+1 = UcN+1 − TcN+1 − WpN&cN+1 − WaN&cN+1 (10)

where the potential energy and kinetic energy of the ith subcavity are respectively derived by

Uci =
1

2ρ0c2
0

∫
Vci

p2
cidvci

= 1
2ρ0c2

0

∫ h
0

∫ b
0

∫ aci
0 p2

ci(xci, yci, zci)dxcidycidzci

(11)

Tci =
1

2ρ0ω2
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Vci
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∂pci
∂xci

)2
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(

∂pci
∂yci
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(

∂pci
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+
(
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]

dxcidycidzci

(12)

where ρ0 and c0 are the mass density and sound speed of the acoustic medium in the
cavity, respectively.

The work done due to the vibration of the panels and apertures are respectively
calculated from

Wpi&ci =
∫ b

0

∫ hpi

0
wpi pcidypidzpi (13)

Wai&ci =
∫ b

0

∫ hai

0
wai pcidyaidzai. (14)

The work done by the point source is

Ws = −1
2

∫
Vc1

pc1Qsδ(xc1 − xs)δ(yc1 − ys)δ(zc1 − zs)

jω
dvc1 (15)

where Qs is the volume velocity and δ(x, y) is the Dirac delta function.
The panels and apertures of the coupling system can both be treated as two-dimensional

flexible structures in the proposed model. As a result of the significant difference between
the impedances of the panels and apertures, the coupling between these two types of
subdomains is so weak that it can be neglected. Therefore, the Lagrangian equations of the
panels and apertures can be defined as

Lpi = Upi − Tpi + Wci&pi + Wci+1&pi (16)

Lai = Uai − Tai + Wci&ai + Wci+1&ai (17)
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where the potential and kinetic energies of the ith panel are derived by
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where K and M denote the stiffness and mass matrixes, respectively. C denotes the cou-

pling matrixes. P denotes the Fourier series coefficient vector of the subcavities. W denotes 

the Fourier series coefficient vector of the panels and apertures. 

Then, the matrix equation of the vibro-acoustic coupling system can be constructed 

by combining the above equations. 
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Tpi =
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ρpiδpiω
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0

∫ hpi

0
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where Dpi = Epiδ
3
pi/
[
12
(

1 − µ2
pi

)]
, Epi, δpi, µpi, and ρpi denote the flexural rigidity,

Young’s modulus, the thickness, the Poisson’s ratio, and the mass density. kpi
z0 and Kpi

z0 are
the stiffness of translational and rotational springs along the z = 0 edge. The parameter
describing the properties of the apertures can be obtained by replacing the subscript pi
with ai.

According to energy conservation theory, the work done by the sound pressure acting
on the panels and apertures is derived from

Wci&pi = Wpi&ci, Wci&ai = Wai&ci. (20)

Substituting the field functions of the subdomains into each Lagrangian function, and
following the Rayleigh–Ritz procedure, the matrix equations are able to be obtained.(

Kc1 − ω2Mc1

)
Pc1 + ω2Cp1&c1Wp1 + ω2Ca1&c1Wa1 = Ws (21)(

KcN+1 − ω2McN+1

)
PcN+1 + ω2CpN&cN+1WpN + ω2CaN&cN+1WaN = 0 (22)(

Kci − ω2Mci
)
Pci + ω2Cpi−1&ciWpi−1 + ω2Cai−1&ciWai−1 + ω2Cpi&ciWpi + ω2Cai&ciWai = 0 (23)(

Kpi − ω2Mpi

)
Wpi + Cci&piPci + Cci+1&piPci+1 = 0 (24)(

Kai − ω2Mai

)
Wai + Cci&aiPci + Cci+1&aiPci+1 = 0 (25)

where K and M denote the stiffness and mass matrixes, respectively. C denotes the coupling
matrixes. P denotes the Fourier series coefficient vector of the subcavities. W denotes the
Fourier series coefficient vector of the panels and apertures.

Then, the matrix equation of the vibro-acoustic coupling system can be constructed by
combining the above equations. (

K − ω2M
)

E = F (26)

where E is a vector that contains all the unknown Fourier expansion coefficients in the field
functions of the subdomains and F is the excitation vector.

On one hand, the modal parameters of the coupled vibro-acoustic system can be
obtained by solving the normal eigenvalue problem in Equation (26) by setting the loading
vector on the right-hand side of the equation to zero. On the other hand, all the unknown
Fourier series coefficients of the field functions of the subdomains can be determined by
solving Equation (26) directly. On performing the analysis of the coupling system, the
structural velocities and the acoustic pressures at any point inside the coupling system are
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obtained. Subsequently, on post-processing the data, certain other parameters representing
the measure of the energy transmission such as the sound intensity can be calculated from

Ici =
1
2

pciu∗
ci (27)

where uci is the particle velocity inside the sound field, and * donates the complex conjugate.

3. Validation of the Theoretical Modeling

To verify the performance of the developed vibro-acoustic coupling model, the dy-
namic characteristics of the coupling system are solved through the proposed model and
FEM. In addition, a comparison of the theoretical and experimental results for the vibro-
acoustic coupling system is done in the subsequent section. In all the examples shown
here, the air in the acoustic cavity is assumed to have parameter values of c0 = 340 m/s
and ρ0 = 1.21 kg/m unless otherwise specified.

First of all, the classical rigid-walled rectangular cavity model with dimensions of 1 m
× 1 m × 1 m shown in Figure 4a was utilized as a benchmark. The cavity was divided by a
virtual air partition with a thickness of 0.1 mm at x = 0.5 m inside the cavity, as depicted
in Figure 4b. The system can be partitioned into two cavities and an air panel. The air
partition introduced in this study served the purpose of demonstrating the virtual air panel
assumption effectiveness. As we all know, the exact values for the natural frequencies of a
rigid-walled cavity are calculated from

fn =
c0

2

√(nx

a

)2
+
(ny

b

)2
+
(nz

h

)2
(28)

where nx, ny, and nz denote the modal orders in x, y, and z directions, respectively. Table 1
shows the comparison of the first eight natural frequencies of the rigid-walled cavity from
the present method and the analytical results. The excellent agreement between the two
predictions for the first eight modes partially indicates the effectiveness and accuracy of
the proposed theoretical model.
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Table 1. The natural frequencies of the rigid-walled cavity.

Mode
Natural Frequency (Hz)

1 2 3 4 5 6 7 8

Present 170.00 170.00 170.00 240.42 240.42 240.42 294.44 340.00
Analytical 170.00 170.00 170.00 240.42 240.42 240.42 294.45 340.00

Further, we considered a partial rigid partition placed in the middle of the cavity
with dimensions of 1 × 1 × 1 m3, as shown in Figure 5. Applying the theoretical model
described in Section 2, the cavity can be partitioned into two subcavities and a partial
aperture. The natural frequencies of the coupling system with a varying width of the
aperture are listed in Table 2. The results correspond to the width of the aperture ha = 0.2 m,
0.4 m, 0.6 m, and 0.8 m respectively. The comparison results are calculated by FEM.
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Figure 5. An acoustic cavity with a partial rigid partition model.

Table 2. The first six natural frequencies of the cavity with a partial rigid partition coupling system
with a varying width of the aperture.

ha (m)
Natural Frequency (Hz)

1 2 3 4 5 6

0.2
74.47 170.00 170.00 185.13 208.69 240.42

(74.81 *) (170.00) (170.00) (185.73) (208.88) (240.42)

0.4
97.23 170.00 170.00 195.11 217.86 240.42

(97.24) (170.00) (170.00) (195.85) (217.39) (240.42)

0.6
125.78 170.00 170.00 211.66 218.51 240.42

(125.76) (170.00) (170.00) (211.46) (218.12) (240.42)

0.8
158.07 170.00 170.00 227.38 232.41 240.42

(157.95) (170.00) (170.00) (227.96) (232.05) (240.42)
* Results in parentheses are calculated by FEM.

As can be seen in the preceding table, the agreement between the modal frequencies
obtained with both calculation methods for different widths of the aperture is very good.
This comment is also valid in the forced responses of the coupling system. To calculate
the airborne sound insulation, a harmonic volume point source with volume velocity
Q0 = 2 × 10−5 m3/s is placed in the cavity at position (0.1, 0.1, 0.1) m. Figure 6 shows the
comparison of the sound pressure responses of the coupling system at positions (0.3, 0.4,
0.5) m and (0.9, 0.9, 0.9) m from both the present model and FEM.
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Figure 6. Sound pressure responses at two positions inside the acoustic cavity with a partial rigid partition. (a) (0.3, 0.4,
0.5) m, (b) (0.9, 0.9, 0.9) m.

It is also observed that the analytical results predicted from the proposed theoretical
model match very well with the numerical results obtained by FEM. The difference found
in the magnitude of the curves is small and mainly caused by the different introduced
mechanisms of the damping ratio. These comparison works imply that the virtual air panel
assumption is acceptable to derive an accurate dynamic model of the vibro-acoustic cou-
pling system and validate the quality of the predictions done through the present model.

4. Experimental Work

In this section, relevant experimental works are performed on the vibro-acoustic
coupling system. The experimental arrangement is the rigid acoustic cavity with a partial
flexible partition illustrated in Figure 7. The top and bottom sub of the cavity, i.e., c1
and c2 have a dimension of 0.5 × 0.4 m2 with c1 and c2 being 0.38 m and 0.28 m height,
respectively. The experimental setup was placed in a laboratory room. To isolate the
environmental effect, the side walls of two cavities are made of acrylic glass with a thickness
of 15 mm to simulate the rigid boundaries except for the interfaces of the cavities and the
flexible partition/aperture. The flexible panel with dimensions of 0.4 × 0.4 × 0.002 m3 is
clamped along three edges and free for the rest of one edge. It is made up of steel with
Young’s modulus of 210 GN/m, a mass density of 7800 kg/m, a Poisson ratio of 0.3, and a
modal damping ratio assumed to be 0.002. A pair of square steel flanges are made by the
mechanical process to connect the acoustic cavities and the panel structure. To guarantee
the clamped boundary condition, thirty-eight bolts are used to fix three edges of the panel
through two steel flanges.
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In measuring the transfer functions of the coupling system, a vibrator (JZK-5) is
employed to produce structural excitation. The vibrator is suspended in the experimental
system by soft springs. The springs and vibrator construct a single-freedom vibration
system. Since low stiffness leads to low frequency, the output power of the vibration
is supposed to be totally acted on the coupling system. The vibrator is supplied with
a broadband signal of 1–500 Hz for vibrating the panel. To measure the external force
signal, an impedance head (B&K2635) is placed at the end of the excitation bar, which is
located at the position (0.246, 0.203, 0.380) m. Two acceleration sensors (B&K4508B) and
four microphones (B&K type4943) are used to test the acceleration signal and pressure
signal, respectively. All the signals are digitized by the multi-channel data acquisition
system (PULSE 3560D) at a sufficient sampling rate of 16 KHz. The frequency response
functions for the pressure and acceleration can be determined by dividing by the force
signal. A comparison of the theoretical predictions and experimental measurements for the
pressures and accelerations of the acoustic cavity with a partial flexible partition is shown
in Figure 8.

It can be found that the experimental measurements agree reasonably well with
the theoretical predictions in the frequency range, except that some measured resonance
peaks appear offset. The theoretical curve is closer to the experimental result in the lower
frequency range than in the higher frequency range. This is because the simplified model
disregards the exterior acoustic and vibration field and the damping effect becomes larger
as the frequency increases. The results suggest that the proposed theoretical model is
well replicated in the experiment works. For the slight difference, this is understandable
in that there are significant energy dissipation mechanisms and a dimensional error in
the experiment, which are excluded from theory. Further improvements in modeling of
the external excitation and/or the structural boundary conditions could minimize the
difference seen in response curves. In any case, the obtained agreement in the general trend
of the results and the order of magnitude is satisfactory.
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5. Results and Discussions

Based on the proposed theoretical model, the dynamic performance of the acoustic
cavity with multiple partial partitions will be investigated and discussed. The coupling
system consists of three flexible panels symmetrically placed inside a rigid cavity with the
dimension of 2 × 1 × 1 m3, as shown in Figure 9. The width of the panels made of steel
along the z-axis is 0.8 m and the thickness is 0.003 m, and the general boundary conditions
are taken into account.
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The natural frequencies of the coupling system are shown in Table 3. Three types of
boundary conditions are involved: the elastically restrained represented by E in which the
translational and rotational restraining coefficients are set to 103, the simply supported
represented by S, and the clamped represented by C. The table shows that for the flexible
partitions with different boundary conditions, the present results for the natural frequencies
of the coupling system and FEM numerical results agree well. Compared with FEA, the
present method can be easily extended to the complex vibro-acoustic coupling system
consisting of different subdomain components without much modification. Therefore, the
method is more suitable for parametric study, sensitivity and uncertainty analysis, and de-
sign optimization. The results also show that the first six modes of the coupling system are
distributed by the panels and change significantly with the different boundary conditions.

Table 3. The first six natural frequencies of the acoustic cavity with three partial flexible partitions
with different boundary conditions.

B.C.
Natural Frequency (Hz)

1 2 3 4 5 6

E
4.825 4.881 4.921 8.646 8.646 8.756

(4.859 *) (4.907) (5.065) (8.731) (8.776) (8.813)

S
8.995 9.052 9.052 26.408 26.408 26.690

(8.990) (9.055) (9.141) (26.244) (26.462) (26.544)

C
17.847 17.994 18.399 35.226 36.701 36.701

(17.903) (18.041) (18.103) (35.339) (36.778) (36.922)
* Results in parentheses are calculated by FEM.

As mentioned earlier, the structural and the acoustic field functions of the coupling
system can be directly obtained through the proposed theoretical model. Then, the dy-
namics and energy transmission characteristics of the acoustic cavity with three simply
supported partial partitions can be obtained by data processing. Here, a harmonic volume
point source with a volume velocity Q0 = 2 × 10−5 m3/s is applied at the point (0.1, 0.1,
0.1) m of the cavity. The sound intensity fields of the coupling system excited by the point
source under different frequencies are established in Figure 10. The red asterisk indicates
the place of the point source, and the orientation and magnitude of the arrows are used to
represent the sound intensity vectors. Figure 11 examines the corresponding magnitudes
of the sound intensity vectors.

Figure 10a–d shows the sound intensity vectors of the coupling system to reveal the
energy transmission paths under different exciting frequencies of 5 Hz, 65 Hz, 170 Hz,
and 340 Hz, respectively. The figure shows that the levels of the sound intensity have a
different effect among the four considered cases. As all the subdomains are not at resonance
when the exciting frequency is 5 Hz as shown in Figure 10a, the corresponding patterns
of energy transmission paths are distinctly different from other exciting frequencies, and
the corresponding magnitudes of the sound intensity vectors shown in Figure 11a are
much smaller. The energy mainly flows through the apertures. In Figure 10b, the exciting
frequency is close to the natural frequency of the panels, the external excitation generates
large energy input into the coupling system. The acoustic energy flows in a state of disorder
by the structural paths. Figure 10c,d clearly show that the pattern of the sound intensity
vectors is the same as the modal shapes of the subcavities due to the resonance of the
subcavities. Generally, there are significant changes in the energy transmission paths within
the coupling system due to variations of the exciting frequency.
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For the example studied here, the input energy of the external excitation, the energy
transmission paths in the coupling system, and the coupling mechanisms can be clearly
seen. It can be found that the energy fields and transmission paths of the coupling system
are extremely influenced by the multiple partial partitions. The sound intensity vectors
of the coupling system are sensitive to the exciting frequency because of the different
contributions of the subdomains.
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6. Conclusions

The analysis theoretical model of the acoustic cavity with multiple partial partitions
has been established in the present paper. The virtual air partition assumption is applied
to construct the apertures on the interfaces of the neighboring subcavities. The improved
Fourier series method and Rayleigh–Ritz procedure are employed to derive the eigenvalue
equation of the coupling system. Several numerical simulations of the coupling system were
performed. For demonstration, FEM results and experimental dates are used as comparison
results for the proposed theoretical model. It was demonstrated that the present method
could accurately estimate the dynamic behavior of the coupling system. Moreover, the
proposed model is employed to examine the sound intensity field of the coupling system.
It was observed that the energy transmission paths within the coupling system change
largely with the variations of the exciting frequency because of the different contributions
of the subdomains. The findings provide an understanding of the vibro-acoustic coupling
characteristics and energy transmission mechanisms of the coupling system which can
be used to achieve a better dynamic design in the engineering applications for enhanced
vibration and acoustic suppression.
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