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Abstract: The maximum weighted independent set (MWIS) problem is important since it occurs in
various applications, such as facility location, selection of non-overlapping time slots, labeling of
digital maps, etc. However, in real-life situations, input parameters within those models are often
loosely defined or subject to change. For such reasons, this paper studies robust variants of the MWIS
problem. The study is restricted to cases where the involved graph is a tree. Uncertainty of vertex
weights is represented by intervals. First, it is observed that the max–min variant of the problem
can be solved in linear time. Next, as the most important original contribution, it is proved that
the min–max regret variant is NP-hard. Finally, two mutually related approximation algorithms for
the min–max regret variant are proposed. The first of them is already known, but adjusted to the
considered situation, while the second one is completely new. Both algorithms are analyzed and
evaluated experimentally.

Keywords: weighted graph; independent set; robust optimization; interval uncertainty; tree; com-
plexity; approximation algorithm

1. Introduction

Our introduction starts with some well-known definitions, which can be found in
many textbooks, e.g., [1,2]. Let us consider an undirected graph G. Obviously, G is a
symmetric object, since its edges are bidirectional. Or differently speaking, the adjacency
matrix of G is symmetric [1]. An independent set is a set of vertices of G that are not adjacent
to each other. Suppose that vertices of G are given non-negative weights. Then, the weight
of an independent set is defined as the sum of its vertex weights. The (conventional)
maximum weighted independent set (MWIS) problem consists of finding an independent
set whose weight is as large as possible.

Our work is concerned with robust optimization [3–7]. We consider robust variants of
the MWIS problem, where vertex weights are uncertain [8–12]. Thereby, uncertainty is
expressed through a finite set of scenarios. Each scenario gives one possible combination
of vertex weights. It is assumed that all weights are non-negative integers. The set of
scenarios can be given explicitly—then we speak about discrete uncertainty. Or possible
weights of a vertex can be given by an interval—then the set of all scenarios is implicitly given
as the Cartesian product of all intervals, and we speak about interval uncertainty.

No matter which uncertainty representation is used, there are still several possibilities
how to choose a robust solution of a problem. Each possibility corresponds to a different
criterion of robustness. In this paper, two robust variants of the MWIS problem are considered,
which correspond to the two most popular robustness criteria. The first criterion is called
max–min [3] or absolute robustness [7]—it selects the independent set whose minimal
weight over all scenarios is as large as possible. The second criterion is called min–max
regret [3] or robust deviation [7]—it selects the independent set whose maximal deviation of
weight from the conventional optimum, measured over all scenarios, is as small as possible.
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Although the considered robust MWIS problem variants seem to be quite abstract,
they actually occur in many applications. Thereby uncertainty in vertex weights corre-
sponds to the fact that in real-life situations, many input parameters are loosely defined or
subject to change. The most common application is facility location [13], where positions of
facilities (e.g., shopping malls, gas stations) need to be chosen, so that some kind of profit
is maximized and the facilities are not too close one to another. Another interesting appli-
cation is selection of program slots of television channels for giving an advertisement [14].
To maximize the effect of advertising, it is important that the slots do not overlap in time
and that they attract as many viewers as possible. A relatively new application is labeling
of digital maps [10,15]. Such maps must display labels that correspond to certain points
of interest (restaurants, cinemas, etc.). The shown labels should be chosen according to
personal preferences of the viewer, and they should not overlap on the display.

This paper is concerned with solving the mentioned two robust MWIS problem
variants on a special type of graphs, i.e., on undirected trees (or trees for short). Thereby, it
is assumed that uncertainty in vertex weights is represented by intervals. Our goal is to
study computational complexity of the considered robust variants, and also to propose
suitable exact or approximate algorithms for their solution.

Now, we will explain our motivation for considering trees. Since the conventional
MWIS problem is NP-hard in general [16], it is obvious that all its robust variants must
also be NP-hard in general. But on the other hand, it is known that the conventional MWIS
problem can be solved in polynomial (even linear) time if the involved graph is a tree [17].
This leaves a possibility that robust variants of the same problem can also be solved more
efficiently on trees than on general graphs. Thus an interesting topic for research would
be to explore computational complexity of robust MWIS problem variants on trees. Or in
other words, it would be interesting to see whether restriction to trees assures the same
computational advantage in the robust setting as in the conventional setting. Additional
motivation for considering trees comes from the fact that such graphs occur in certain
applications, e.g., some forms of facility location.

Our work is related to some other works from the literature. We have been inspired
by [8,12], where an analogous complexity analysis of robust MWIS problem variants
has been done for so-called interval graphs rather than for trees. Interval graphs are
another class of graphs where the conventional MWIS problem can be solved in polynomial
time [14,18]. It is important to note that interval graphs and trees are two different classes,
i.e., none of them is a subset of the other [11]. Thus the available results from [8,12]
regarding interval graphs cannot be applied to trees, and a separate study of complexity
is needed.

This work is also in a close relationship with our previous paper [11], in which the same
robust MWIS problem variants on trees have been considered under discrete uncertainty
representation. More precisely, this paper is in fact a sequel of [11], where the results
from [11] are extended to interval uncertainty representation. Thereby a seemingly small
difference, dealing with uncertainty representation, produces radically different results.
Indeed, the max–min problem variant considered in [11] is NP-hard, while in this paper
it is solvable in linear time. The min–max regret variant turns out to be NP-hard in both
papers, but the corresponding proofs of NP-hardness are quite different. The algorithms
proposed in the two papers do not resemble one to another since they assume different
sets of scenarios.

Apart from this introduction, the rest of the paper is organized as follows. Section 2 is
concerned with solving the max–min variant of the MWIS problem on trees under interval
uncertainty. Section 3 studies complexity of the corresponding min–max regret variant.
Section 4 presents a simple approximation algorithm for the min–max regret variant, and
analyzes its speed and accuracy when it is applied to our problem instances. Section 5
constructs an extended version of the same algorithm aimed to achieve better accuracy.
Section 6 reports on an experimental evaluation of both algorithms within our setting. The
final Section 7 gives conclusions.
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2. Max–Min Variant

As already announced, we study robust variants of the MWIS problem. Thus, we
consider independent sets in a graph G whose vertices are assigned non-negative integer
weights. Uncertainty in weights is expressed through a finite set of scenarios S. More
precisely, let n be the number of vertices in G. Denote the vertices with v1, v2, . . . , vn. Then,
each scenario s ∈ S is specified by a list of integers ws

1, ws
2, . . . , ws

n, where ws
i is the weight

of vi under s.
Let us denote the weight of an independent set X under scenario s by F(X, s). Obvi-

ously, it holds that F(X, s) = ∑vi∈X ws
i . In this section, we restrict it to the max–min variant

of the problem, which is defined in terms of F(X, s) as follows.

Definition 1. A max–min solution to the MWIS problem is an independent set XA that maximizes
the function mins∈S F(X, s) over the whole collection of possible independent sets.

From now on, it is assumed that uncertainty in vertex weights is expressed by intervals.
It means that the weight of vi can take any integer value from a given integer interval [li, ui].
The set of scenarios S is then implicitly given as the Cartesian product of all intervals. For
any scenario s ∈ S it holds that ws

i ∈ [li, ui].
Solving the max–min variant of the MWIS problem under interval uncertainty is

closely related to the so-called minimum scenario. It is the scenario s where each vertex vi
has the minimum possible weight, i.e., ws

i = li. Namely, the following well-know claim
is valid.

Proposition 1. Under interval uncertainty, a max–min solution to the MWIS problem is obtained
by solving the conventional (non-robust) MWIS problem according to the minimum scenario.

The proof of Proposition 1 can be found in [12]. The same claim in a more general
setting is also stated without proof in [3]. According to Proposition 1, the max–min variant
of the MWIS problem under interval uncertainty is as hard as the conventional variant.
However, let us now assume additionally that our graph G is a tree. Then, according to [17],
the conventional variant can be solved in linear time. Thus, the following consequence of
Proposition 1 and [17] holds.

Proposition 2. With restriction to trees and under interval uncertainty, a max–min solution to the
MWIS problem can be obtained in time O(n). Here, n is the number of vertices in the involved tree.

Proof. The conventional problem instance based on the minimum scenario specified by
Proposition 1 can be constructed in time O(n). The constructed instance can be solved by
the algorithm from [17] again in time O(n). Thus, the total time is O(n).

Thus, in our considered situation (restriction to trees, interval uncertainty), the max–
min variant of the MWIS problem is easy to solve. Indeed, a very fast exact algorithm is
available. There is no need to design new algorithms. Therefore the max–min variant will
be skipped from the rest of the paper.

3. Min–Max Regret Variant

As in the previous section, we again study a robust variant of the MWIS problem.
Thus, we again consider independent sets in a graph G whose vertices are assigned non-
negative integer weights. Uncertainty in weights is still expressed through a finite set of
scenarios S. However, now we focus on the min–max regret variant of the problem.

Along with the notation from the previous section, some additional symbols will also
be used. Indeed, F∗(s) will denote the optimal solution weight for the conventional MWIS
problem instance with vertex weights set according to scenario s ∈ S. For an independent
set X and a scenario s, D(X, s) will be the “regret” (deviation from optimum) of X under s,
i.e., D(X, s) = F∗(s)− F(X, s). For an independent set X, R(X) will denote the maximal
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regret of X, i.e., R(X) = maxs∈S D(X, s). With this notation, the min–max regret variant is
defined as follows.

Definition 2. A min–max regret solution to the MWIS problem is an independent set XD that
minimizes the function R(X) = maxs∈S D(X, s) = maxs∈S(F∗(s)− F(X, s)) over the whole
collection of possible independent sets.

From now on, it will again be assumed that uncertainty in vertex weights is expressed
by intervals. Thus, again, the weight of a vertex vi can take any integer value from a given
integer interval [li, ui], and the set of scenarios is the Cartesian product of all those intervals.
For any independent set X, we can construct the corresponding “worst” scenario sX , where
the weight of vi is equal to li if vi ∈ X, and equal to ui if vi /∈ X. It is interesting to note
that the maximal regret of X can be characterized in terms of its worst scenario sX in the
following way.

Proposition 3. Within the MWIS problem under interval uncertainty, the maximal regret of an
independent set X is achieved on its worst scenario sX , i.e.,

R(X) = D(X, sX) = F∗(sX)− F(X, sX).

Proof. In [3], the same claim has been proved in a more general setting, but for the case
where the associated conventional (non robust) problem is a minimization problem. That
proof will now be adjusted for maximization, as it is needed for our MWIS problem. Indeed,
let X be an independent set, s ∈ S a scenario, sX the worst scenario for X, X∗s the optimal
solution for scenario s, and X∗sX

the optimal solution for scenario sX . Then, it holds:

D(X, s) = F∗(s)− F(X, s)

= ∑
vi∈X∗s \X

ws
i − ∑

vi∈X\X∗s
ws

i (since the common summands cancel)

≤ ∑
vi∈X∗s \X

ui − ∑
vi∈X\X∗s

li (since li ≤ ws
i ≤ ui)

= F(X∗s , sX)− F(X, sX) (again, since the common summands cancel)

≤ F(X∗sX
, sX)− F(X, sX) (since X∗sX

is optimal for sX)

= F∗(sX)− F(X, sX) = D(X, sX).

Thus, D(X, s) ≤ D(X, sX) for any s, and therefore R(X) = D(X, sX).

As in the previous section, we are again interested in a special situation under interval
uncertainty, where the graph G involved in the MWIS problem is a tree. Since in such
situation both the conventional and the max–min variant of the problem can be solved in
linear time, one can hope that the min–max regret variant can also be solved with the same
efficiency. Unfortunately, this is not true. Namely, the following theorem holds.

Theorem 1. With restriction to trees and under interval uncertainty, finding a min–max regret
solution to the MWIS problem is NP-hard.

Proof. In [8], there is a similar theorem that refers to the so-called interval graphs instead
of trees. Our proof is analogous to the proof from [8], but adjusted for trees. It is based
on polynomial reduction of the NP-complete partition problem [16] to our robust problem.
Here is the definition of partition:

Instance: a list of positive integers a1, a2, . . . , an.
Question: is there a subset of indices I ⊂ {1, 2, . . . , n} such that ∑i∈I ai = ∑i/∈I ai ?



Symmetry 2021, 13, 2259 5 of 16

Our polynomial reduction works as follows. For a given instance of the partition
problem we compute b = 1

2 ∑n
i=1 ai and construct the corresponding instance of the MWIS

problem shown by Figure 1. The tree involved in our instance consists of the root v0 and
of n vertical segments. In the i-th segment there are two vertices: the “upper” one vi1
and the “lower” one vi2. Uncertainty of vertex weights is expressed through intervals.
More precisely:

• The weight of v0 is between 0 and b.
• For any i = 1, 2, . . . , n, the weight of vi1 is between 3b− 3

2 ai and 3b.
• For any i = 1, 2, . . . , n, the weight of vi2 is exactly 3b− ai.

Figure 1. A tree that reduces a partition problem instance to a MWIS problem instance.

In order to find the solution of our MWIS problem instance, one can restrict to nontrivial
(non-expandable) independent sets (i.e., those that cannot be expanded with an additional
vertex). Obviously, there exist two types of nontrivial independent sets:

Type 1: The root v0 is included. For each i = 1, 2, . . . , n the lower vertex vi2 is included.

Type 2: The root v0 is not included. For each i = 1, 2, . . . , n one among vertices vi1 and vi2
is included (but not both). For at least one i, the upper vertex vi1 is included.

Let us denote with optD the maximal regret of a min–max regret solution XD to our
constructed MWIS problem instance, i.e., optD = R(XD) = min R(X) over all independent
sets X of type 1 or 2. We claim the following:

The answer to the given partition problem instance is “yes” if and only if optD ≤ 3
2 b.

We prove the above claim by proving both directions.
The “if” direction. Suppose that the answer to the partition problem instance is “yes”.

Then, there exists a set of indices I ⊂ {1, 2, . . . , n} such that ∑i∈I ai = ∑i/∈I ai = b. We
construct the independent set X by excluding v0, and by choosing vi1 for i ∈ I and vi2 for
i /∈ I, respectively. The worst scenario sX then looks as follows:

• v0 has weight b,
• vi1 has weight 3b− 3

2 ai if i ∈ I, and 3b if i /∈ I,
• vi2 has weight 3b− ai if i ∈ I, and again 3b− ai if i /∈ I.

We compute F(X, sX):

F(X, sX) = ∑
i∈I

(3b− 3
2

ai) + ∑
i/∈I

(3b− ai)

= 3nb− 5
2

b.
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We compute F∗(sX), i.e., we find the conventional optimum under scenario sX by consider-
ing different solutions and identifying the best of them.

• Type 1 solution has the weight

b +
n

∑
i=1

(3b− ai) = 3nb− b.

• The best type 2 solution is obtained so that in each vertical segment of T the heavier
among two vertices is chosen. The obtained weight is

∑
i∈I

(3b− ai) + ∑
i/∈I

3b = 3nb− b.

Thus,
F∗(sX) = max{3nb− b, 3nb− b} = 3nb− b.

Next, we apply Proposition 3 to compute the maximal regret for X:

R(X) = F∗(sX)− F(X, sX)

= 3nb− b− 3nb +
5
2

b

=
3
2

b.

Since optD is the minimum over all maximal regrets, it holds that

optD ≤ R(X) ≤ 3
2

b.

The “only if” direction. Suppose that optD ≤ 3
2 b. Then, there exists an independent

set X such that R(X) ≤ 3
2 b. Thereby X cannot be of type 1, namely it can easily be checked

that for the type 1 solution the maximal regret is equal to 2b, which is surely > 3
2 b. Thus,

our X must be of type 2, i.e., it does not include v0, for any i it contains either vi1 or vi2 (but
not both), and for at least one i it contains vi1.

Let I′ be the subset of {1, 2, . . . , n} such that i ∈ I′ if vi1 ∈ X, and i /∈ I′ if vi2 ∈ X. The
worst scenario sX looks as follows:

• v0 has weight b,
• vi1 has weight 3b− 3

2 ai if i ∈ I′, and 3b if i /∈ I′,
• vi2 has weight 3b− ai if i ∈ I′, and again 3b− ai if i /∈ I′.

We compute F(X, sX):

F(X, sX) = ∑
i∈I′

(3b− 3
2

ai) + ∑
i/∈I′

(3b− ai)

= 3nb− 2b− 1
2 ∑

i∈I′
ai.

We compute F∗(sX). Thus, we search the conventional optimum under scenario sX by
comparing all feasible solutions.

• Type 1 solution has the weight

b +
n

∑
i=1

(3b− ai) = 3nb− b.
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• The “heaviest” type 2 solution is obtained so that in each vertical segment of T the
heavier among two vertices is chosen. The obtained weight is

∑
i∈I′

(3b− ai) + ∑
i/∈I′

3b = 3nb− ∑
i∈I′

ai.

Thus,

F∗(sX) = max

{
3nb− b, 3nb− ∑

i∈I′
ai

}
.

Now, we can compute the maximal regret for X by using Proposition 3:

R(X) = F∗(sX)− F(X, sX)

= max

{
b +

1
2 ∑

i∈I′
ai, 2b− 1

2 ∑
i∈I′

ai

}
.

From the fact that R(X) ≤ 3
2 b, one can conclude the following:

• It cannot be true that ∑i∈I′ ai > b since otherwise the left-hand part within the above
max{. . . , . . .} would be > 3

2 b.
• It cannot be true that ∑i∈I′ ai < b since otherwise the right-hand part within the above

max{. . . , . . .} would be > 3
2 b.

Thus, the exact equality must hold, i.e., ∑i∈I′ ai = b, which means that I′ determines a
partition.

4. Simple Algorithm

In the previous section, it has been proved that, under interval uncertainty, the min–
max regret variant of the MWIS problem is NP hard, even with restriction to trees. Thus,
unless P = NP, one cannot hope to find an efficient algorithm that solves the considered
problem variant under the considered circumstances. The only feasible solution strategy is
trying to find a good approximate algorithm.

In this section, we propose a simple approximate algorithm based on the so-called
average scenario. It is the scenario where each vertex vi has the average weight from its
interval [li, ui], i.e., the (possibly non-integer) weight (li + ui)/2. Going into more details,
the proposed algorithm works as follows.

• For a given instance of the considered MWIS problem variant, find the average scenario.
• Solve the conventional (non-robust) MWIS problem instance according to the aver-

age scenario.
• The obtained solution (independent set) X̄ serves as an approximation of a min–max

regret solution.

The considered algorithm is not only an approximate, but also an approximation
algorithm [19], in the sense that it allows a constant approximation ratio. Allowing a
constant approximation ratio q means in our case the following. If X̄ is an independent set
produced by the algorithm and optD is the maximal regret of a corresponding truly optimal
independent set, then R(X̄) ≤ q · optD. Thereby the same q is used for all problem instances.

The described algorithm is in fact well known in the literature [3,8]. It can be applied
in more general situations, but we believe that it is especially advantageous in our situation.
Namely, its properties are then summarized by the following proposition.

Proposition 4. With restriction to trees and under interval uncertainty, the algorithm based on the
average scenario finds an approximate min–max regret solution to the MWIS problem in timeO(n).
Here, n is the number of vertices in the involved tree. The algorithm achieves the approximation
ratio 2, and this ratio cannot be improved for trees.
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Proof. In [8], it has been proved that the considered algorithm is an approximation algo-
rithm with a constant approximation ratio not greater than 2. The proof from [8] is valid
for general graphs, and can therefore be applied to trees. Our estimate for computing time
is specific for trees, and it comes from the fact that the associate conventional problem
(with the average scenario) can be solved by the linear-time algorithm from [17]. Note that
the algorithm from [17] also works correctly when vertex weights are non-negative real
numbers. To complete the proof, one must demonstrate that the general approximation
ratio 2 from [8] cannot be improved for trees. We do this by presenting our own original
problem instance involving a tree, where the algorithm returns a solution X̄ such that R(X̄)
is exactly equal to 2 · optD. Indeed, our problem instance is specified by Figure 2. The
figure shows a tree consisting of five vertices, each with a given interval for its weight.

Now, the example from Figure 2 will be explained in more detail. The vertices of
the shown tree are denoted with v0, v1, v2, v3 and v4. The intervals for their weights are
in turn [12, 24], [58, 84], [84, 85], [31, 47], and [72, 97]. It is easy to check that there are only
four nontrivial (non-expandable) independent sets, i.e., {v0, v3, v4}, {v1, v2}, {v1, v4}, and
{v2, v3}. The weights of the five vertices according to the average scenario are in turn 18,
71, 84.5, 39, and 84.5. The weights of the four independent sets under the average scenario
are in turn 123.5, 155.5, 155.5, and 123.5. Thus, our approximation algorithm can return
the independent set X̄ = {v1, v2} as its approximate solution. On the other hand, it can be
checked by straightforward computation that the maximal regrets for the four independent
sets are in turn 54, 26, 13, and 66. Thus, the maximal regret of our approximate solution
is R(X̄) = 26, while the minimal maximal regret over all solutions is optD = 13. Thus, it
really holds that R(X̄) = 2 · optD.

v0 [12, 24]

v1 [58, 84]

v3 [31, 47]

v2 [84, 85]

v4 [72, 97]

Figure 2. A MWIS problem instance where the maximal regret of the approximate solution is 2 times
larger than the minimal maximal regret.

5. Extended Algorithm

In this section, we present an extended algorithm for solving the min–max regret
variant of the MWIS problem on trees and under interval uncertainty. It is built upon the
simple algorithm from the previous section. It starts with the solution obtained by the
simple algorithm and tries to improve that solution through local search. Obviously, the
solution obtained with the extended algorithm is never worse than the one obtained with
the simple algorithm. Consequently, the extended algorithm can also be regarded as an
approximation algorithm with the same or better approximation ratio.

The outline of our extended algorithm is described by the pseudo-code from Figure 3. The
code obeys the standard local-search strategy developed, e.g., in [20,21]. Thus, for a given
robust MWIS problem instance the algorithm first finds an initial solution, i.e., a feasible
independent set. In our case the initial solution is constructed by invoking the simple
algorithm from the previous section. Next, the initial solution is repeatedly improved,
thus producing a series of current solutions. In each iteration, the algorithm generates
a neighborhood, which consists of various feasible perturbations of the current solution.
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All independent sets in the neighborhood are evaluated according to the maximal regret
function R( ). The best member of the neighborhood (i.e., the one whose maximal regret is
minimal) is identified. If that member is better than the current solution (i.e., its maximal
regret is smaller), it becomes the new current solution and the algorithm resumes with
a new iteration. Otherwise, the algorithm stops. The last current solution is regarded as
nearly optimal (according to the min–max regret criterion).

Local search for the min-max regret variant of the
MWIS problem on trees and under interval uncertainty {

input the problem instance;
X = the independent set computed by the simple algorithm
from Section 4 applied to the given problem instance;
evaluate X according to the maximal regret function R( );
while (true) {

generate the neighborhood N of X consisting
of a desired number of feasible independent sets;
evaluate all independent sets in N
according to the maximal regret function R( );
Y = the best-evaluated independent set in N ;
if (Y is better than X)

X = Y;
else

break;
}
output X as the min-max regret solution;

}

Figure 3. Pseudo-code of the extended algorithm.

A special property of our extended algorithm is that it considers only such solutions
(independent sets) that are optimal (in the conventional sense) for some scenario. That
scenario can consist either of integer or of real vertex weights. The mentioned property
holds not only for the initial solution (which is optimal for the average scenario), but also
for all subsequently generated current solutions and members of their neighborhoods.
Consequently, each considered solution can be identified with its scenario. Modification of
a current solution within local search is accomplished by perturbing the respective scenario
rather than perturbing the independent set itself. Indeed, it is much easier to perturb the
scenario in a feasible way. Transformation of a scenario into the corresponding independent
set is accomplished by the linear-time algorithm from [17].

Now, it will be explained in more detail how the solutions considered by our extended
algorithm are evaluated and compared.

• Let σ be the current scenario (equivalent of the current solution). We compute the
respective independent set X by applying the algorithm from [17]. In order to evaluate
X, we first construct its “worst” scenario sX (see Section 3), and then compute its
maximal regret R(X) according to the formula from Proposition 3:

R(X) = F∗(sX)− F(X, sX).

Note that F∗(sX) in the above formula requires an additional call of the algorithm
from [17].

• Suppose that the current scenario σ has been perturbed in some way. Let τ be
the obtained perturbed version of σ. Similarly as before, we switch from τ to its
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corresponding independent set Y by using the algorithm from [17]. To evaluate Y, we
again construct its “worst” scenario sY and compute its maximal regret

R(Y) = F∗(sY)− F(Y, sY).

Thereby the value F∗(sY) is obtained by calling once more the algorithm from [17].

Within one iteration of local search, σ usually does not need to be evaluated since its
respective maximal regret R(X) is already available from the previous iteration. However,
construction and evaluation of τ must be repeated many times in order to produce a
neighborhood with a desired size. Among all instances of τ, one is identified whose
respective Y has the smallest maximal regret R(Y). As explained earlier, the identified τ
will become the next current scenario if its R(Y) is smaller than R(X).

Next, we have to explain how a current scenario σ is transformed into one of its
perturbed versions τ. Perturbation can be done in many ways. In the present variant of the
algorithm, two parameters with values between 0 and 1 are chosen in advance:

• Perturbation probability π,
• Perturbation intensity δ.

Then, for each vertex in the tree the probability that its weight will change during
perturbation is equal to π. The increase or decrease of weight (when it happens) is limited
to the respective weight-interval width multiplied by the factor δ. Of course, change is done
only to the extent that would not violate the original interval restriction for that particular
weight. For instance, let the number of vertices be n = 500 and π = 0.2. Let vertex weights
be in the range between 1 and 50 and δ = 0.1. Then, each of 500 vertices perturbs its weight
independently one from another with probability 20%. Whenever a weight changes, the
amount of change is a random number between ±10% of 50 (i.e., between −5 and +5).

Let us say something about computational complexity of the extended algorithm. Con-
struction of an instance of τ is done in time linear with respect to the tree size n. Evaluation
of σ or of any instance of τ requires two invocations of the (linear-time) algorithm from [17].
Consequently, for a constant neighborhood size, the computing time of an iteration is linear
with respect to n.

Regarding space complexity, the extended algorithm does not require a lot of memory.
It only needs to store information about the tree and about the current best solution.
Iterations do not require new space because a new better solution replaces the current best
solution. Consequently, the total space requirement is linear with respect to the tree size n.

6. Experimental Evaluation

In this section, we present our experimental evaluation of the two algorithms from
Sections 4 and 5, respectively. It would be nice if the algorithms could be tested on some
established benchmark instances for robust variants of the MWIS problem. However, to
the best of our knowledge, such benchmarks do not exist, especially not on trees or with
interval uncertainty. Therefore, we have generated our own three test groups, the first
comprising 30, the second 120, and the third again 120 robust MWIS problem instances.
We call the three groups small, medium-sized and large instances, respectively.

Here follows a more detailed description of our test data. Of course, all instances in
our test groups are posed on trees, and uncertainty of their vertex weights is expressed
by intervals. Additionally, all instances are meant to be solved according to the min–max
regret criterion. Some parameters, such as numbers of vertices, bounds for tree outspread
or bounds for vertex weights, are chosen in advance. The remaining details are generated
randomly. Indeed:

• Small instances are based on random trees consisting of n = 20 vertices, where each
vertex has at most 3 children. The lower bound for a vertex weight is always 1, and
the upper bound is at most 5.

• Medium-sized instances comprise random trees with n = 500 vertices. There are
four subgroups of 30 instances, characterized by different outspread bounds. More
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precisely, in the first subgroup, each vertex in a tree can have at most three children,
while the maximum number of children in the second, third and fourth subgroup is
5, 10 and 15, respectively. Regardless of a subgroup, the range for a vertex weight is
from 1 to at most 50.

• Large instances contain random trees having n = 10000 vertices. Again, there are four
subgroups of 30 instances, characterized by different outspread bounds. Depending
on a subgroup, a vertex can have at most 3, 5, 10 and 15 children, respectively. In all
four subgroups, vertex weights are in the interval from 1 to at most 1000.

A full specification of all problem instances can be found in our repository at the
address http://hrzz-rodiopt.math.pmf.unizg.hr (accesed on 20 November 2021).

The instances from the first group may look rather small (only 20 vertices). However,
according to our experience, they are in fact the largest ones that can be solved to optimality
by using a straightforward mathematical model and a general-purpose software such as
CPLEX [22]. Indeed, our straightforward model is based on constraints corresponding
to extremal scenarios [12]. For 20 vertices, there are as many as 220 = 1,048,576 such
constraints. All of them are explicitly listed in the model, thus reaching the limits of CPLEX
capabilities. It is true that some larger problem instances could still be solved exactly by
more sophisticated models and algorithms [3], where only a small part of the constraint set
is initially used and then gradually extended. However, exploration of such methods is
beyond the scope of this paper.

The simple algorithm from Section 4, as well as the extended algorithm from Section 5,
have been implemented in the Java programming language. Both implementations also
comprise the linear-time algorithm from [17] as a subroutine. In the second implementation,
the two parameters π and δ (see Section 5), as well as the neighborhood size for local search,
can freely be chosen and specified as input data. To measure accuracy of our approximation
algorithms (at least on small instances), we have also used the previously mentioned CPLEX
package. All software has been installed on the same computer, with an Intel Core I7-
975OH @2.60 GHz processor and 16 GB of RAM, running a 64-bit operating system. Our
original source code is available in the same repository as the problem instances.

In the experiments we have solved each problem instance from each of the three test
groups by both approximation algorithms. The small instances (first test group) have
additionally been solved to optimality by CPLEX (with the straightforward mathematical
model and explicitly listed constraints). The medium-sized and large instances (second
and third test group) have repeatedly been solved by the extended algorithm, each time
with a different combination of parameters π and δ. In all experiments, the neighborhood
size within local search has been fixed to 100.

For each solution we have recorded the obtained maximal regret R() and the correspond-
ing computing time. The results of the experiments are summarized in Tables 1–3. Thereby
Table 1 corresponds to small, Table 2 to medium-sized, and Table 3 to large instances.

Let us now take a closer look at Table 1. Each row of the table corresponds to one of
the 30 small problem instances. For each instance, its identifier is shown (comprising its
number of vertices, tree outspread bound and bound for vertex weights). Additionally,
there is the (truly minimal) maximal regret obtained by CPLEX and the maximal regrets
computed by the simple and the extended algorithm, respectively. The results of the
extended algorithm have been obtained with the parameter values π = 0.2 and δ = 1.0.
Note that for 21 out of 30 instances, the simple algorithm reaches the same maximal regret
as CPLEX. For 8 out of 9 remaining instances the extended algorithm improves the result
obtained by the simple algorithm, thus reaching again the minimal maximal regret found
by CPLEX. There is only one instance where both our approximation algorithms fail to
produce the optimal solution. For each approximate solution the table also shows its
empirical approximation ratio, i.e., the quotient of its maximal regret versus the minimal
maximal regret. The average approximation ratio is 1.12 for the simple algorithm, and
1.01 for the extended algorithm. This is much better than the worst-case approximation
ratio 2 from Proposition 4.

http://hrzz-rodiopt.math.pmf.unizg.hr
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Next, we will explain in more detail Table 2. Each row of that table corresponds to one
subgroup of 30 medium-sized problem instances with a particular tree outspread bound.
All instances within the same subgroup have identifiers with the same prefix, as shown in
the first column of the table. The prefix comprises the number of vertices (i.e., 500), the tree
outspread bound (i.e., at most 3, 5, 10 and 15 children per vertex, respectively), and the
bound for vertex weights (between 1 and at most 50).

Table 2 does not contain truly optimal solutions since the instances are too large to be
solved exactly by CPLEX. Instead, only the average maximal regrets obtained by the two ap-
proximation algorithms are shown, together with their corresponding average computing
times in milliseconds. Additionally, there are the average improvements achieved by the ex-
tended algorithm versus the simple algorithm, and the average slowdowns of the extended
algorithm versus the simple algorithm. Thereby the improvement for a particular problem
instance is computed as the difference of the two corresponding maximal regrets divided
by the larger maximal regret. Similarly, the slowdown for a particular problem instance is
obtained as the larger computing time divided by the smaller computing time. All values
for individual problem instances (maximal regrets, times, improvements, slowdowns) are
averaged over each subgroup of 30 problem instances.

Table 2 also presents the concrete values of parameters π and δ used within the
extended algorithm. Thereby, for each subgroup of problem instances, different values
have been chosen. In fact, in our experiments, we have tested various combinations of π
and δ:

π = {0.1, 0.2, 0.3, ..., 1} ∪ {0.01, 0.03, ..., 0.09} ∪ {0.002, 0.005}
δ = {0.1, 0.2, 0.3, ..., 1}

The values shown in the table are those that assured the largest average improvements
for particular subgroups. One can see that the extended algorithm always improves the
results of the simple algorithm, but this improvement is paid by much longer comput-
ing time.

From Table 2, one can also observe that improvement usually becomes better (larger)
when tree outspread becomes smaller. The best improvement is achieved on trees whose
vertices have up to 5 children, while the worst improvement occurs when vertices can have
15 children. On the other hand, slowdowns behave in the opposite way, i.e., they are better
(smaller) for trees with larger outspread. Indeed, the best slowdown is accomplished if
vertices can have 15 children, and the worst slowdown is for trees whose vertices do not
have more than three children. This behavior can be explained as follows: when the total
number of vertices is fixed, trees with larger outspread have less levels. And less levels
means less independent sets, so there are less combinations to try. The extended algorithm
will finish faster because the generated neighborhoods will contain small numbers of new
independent sets.

Finally, let us say something about Table 3. It deals with large problem instances,
but otherwise is analogous to Table 2. Again, one can see the average improvements and
slowdowns of the extended algorithm versus the simple algorithm depending on the tree
outspread bound. There is a similar correlation of improvement or slowdown versus tree
outspread as in Table 2. Compared to Table 2, average improvements are roughly the same,
but they are achieved with much smaller values for π. In fact, average improvements for
medium-sized problem instances are optimal when π ∈

[
0.3, 1

]
, while for large instances

they are optimal when π ∈
[
0.005, 0.1

]
. These two intervals do not have intersection. The

perceived phenomenon regarding values of π can be explained in the following way. In order
to get a new independent set, we need to change the current independent set, but the change
must not be too drastic since the current independent set is already a good solution. Large
problem instances have much more vertices, thus the same total amount of change is obtained
with a smaller value of π. If one compares values of δ from Tables 2 and 3, one can see that
there is no such big difference as for values of π. Thus, for both medium-sized and large
problem instances, changes of vertex weights (when they occur) should have similar intensity.
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Table 1. Results of experiments—small problem instances.

Instance CPLEX- Simple Simple Extended Extended
Identifier Max Regret Algorithm— Algorithm— Algorithm— Algorithm-

Max Regret Approx Ratio Max Regret Approx Ratio

20_3_5_1 6 6 1 6 1
20_3_5_2 5 7 1.4 5 1
20_3_5_3 7 10 1.43 7 1
20_3_5_4 4 5 1.25 4 1
20_3_5_5 3 3 1 3 1
20_3_5_6 4 5 1.25 5 1.25
20_3_5_7 7 10 1.43 7 1
20_3_5_8 5 7 1.4 5 1
20_3_5_9 3 3 1 3 1

20_3_5_10 4 5 1.25 4 1
20_3_5_11 2 2 1 2 1
20_3_5_12 1 1 1 1 1
20_3_5_13 6 6 1 6 1
20_3_5_14 2 2 1 2 1
20_3_5_15 1 1 1 1 1
20_3_5_16 4 4 1 4 1
20_3_5_17 2 2 1 2 1
20_3_5_18 4 5 1.25 4 1
20_3_5_19 4 4 1 4 1
20_3_5_20 1 1 1 1 1
20_3_5_21 2 2 1 2 1
20_3_5_22 3 3 1 3 1
20_3_5_23 3 3 1 3 1
20_3_5_24 5 5 1 5 1
20_3_5_25 2 2 1 2 1
20_3_5_26 1 2 2 1 1
20_3_5_27 3 3 1 3 1
20_3_5_28 4 4 1 4 1
20_3_5_29 6 6 1 6 1
20_3_5_30 2 2 1 2 1
Average 1.12 1.01

Table 2. Results of experiments—medium-sized problem instances.

Instance
Identifiers

Perturbation
Probability π

Perturbation
Intensity δ

Simple
Algorithm:
Avg Max

Regret, Avg
Time (ms)

Extended
Algorithm:
Avg Max

Regret, Avg
Time (ms)

Avg
Improvement

(%)

Avg Slowdown
(×)

500_3_50_1, 0.3 0.8 563.83, 523.70, 6.92 368.65
500_3_50_2, 0.572 204.562
· · · · · · · · · · · · ,
500_3_50_30
500_5_50_1, 0.8 0.5 260.13, 238.20, 7.55 233.67
500_5_50_2, 0.534 122.849
· · · · · · · · · · · · ,
500_5_50_30
500_10_50_1, 1.0 0.7 97.43, 93.83, 3.35 154.45
500_10_50_2, 0.508 77.400
· · · · · · · · · · · · ,
500_10_50_30
500_15_50_1, 0.6 0.6 53.70, 50.77, 3.33 140.86
500_15_50_2, 0.466 65.261
· · · · · · · · · · · · ,
500_15_50_30
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Table 3. Results of experiments—large problem instances.

Instance
Identifiers

Perturbation
Probability π

Perturbation
Intensity δ

Simple
Algorithm:
Avg Max

Regret, Avg
Time (ms)

Extended
Algorithm:
Avg Max

Regret, Avg
Time (ms)

Avg
Improvement

(%)

Avg Slowdown
(×)

10000_3_1000_1, 0.005 1 222304.23, 206120.87, 7.27 4606.52
10000_3_1000_2, 42.877 197213.616
· · · · · · · · · · · · · · · ,
10000_3_1000_30
10000_5_1000_1, 0.01 1 103190.80, 97932.13, 5.03 2048.50
10000_5_1000_2, 48.395 99002.375
· · · · · · · · · · · · · · · ,
10000_5_1000_30
10000_10_1000_1, 0.1 0.6 34275.20, 33040.10, 3.52 566.14
10000_10_1000_2, 45.168 25593.548
· · · · · · · · · · · · · · · ,
10000_10_1000_30
10000_15_1000_1, 0.1 0.9 19133.20, 18680.03, 2.41 382.99
10000_15_1000_2, 44.829 17154.839
· · · · · · · · · · · · · · · ,
10000_15_1000_30

It is interesting to note that average improvements in Tables 2 and 3 stay similar,
although large problem instances contain 20 times more vertices than medium-sized
instances. In more detail, average improvements for medium-sized instances are slightly
better on subgroups with five and 15 children, while for large instances they are slightly
better on subgroups with three and 10 children. On the other hand, average slowdown does
not increase 20 times on large instances. In fact, it increases between 2.4 and 12.5 times. The
greatest increase is for trees with small outspread and it becomes smaller as the outspread
grows. The observed nonlinearity assures that the extended algorithm can be used for very
large trees, even larger than those involved in our experiments.

7. Conclusions

In this paper, we have studied two robust variants of the MWIS problem, i.e., the max–
min and the min–max regret variant. Both of them have been posed on trees. Uncertainty
has been restricted to vertex weights and represented by intervals. We have been interested
in complexity aspects, as well as in algorithmic aspects.

On one hand, we have observed that the considered max–min variant can easily be
solved in linear time, by an algorithm originally intended for the conventional (non-robust)
variant. On the other hand, we have proved that the corresponding min–max regret variant
is NP-hard, which justifies its approximate solution. Consequently, the algorithmic part
of the paper has been devoted to two approximation algorithms for the min–max regret
variant. They are called simple and extended algorithm, respectively. The first of them
gives the solution based on the so-called average scenario, while the second one tries to
improve that solution by local search.

The simple algorithm runs on our problem instances in linear time. However, its
general worst-case approximation ratio 2 cannot be improved in spite of restriction to
trees. Still, the experiments presented in the paper clearly indicate that the corresponding
average approximation ratio, at least on small trees, is much better, i.e., slightly larger than
1. Regarding the extended algorithm, the experiments have confirmed that it produces
even better solutions than the simple algorithm. Indeed, on large trees it improves accuracy
of the simple algorithm up to 7%. However, this improvement in accuracy is paid by much
larger computing time.
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It is important to note that the min–max regret variant of the MWIS problem under
interval uncertainty is fairly demanding in computational sense, even when restricted to
trees. Namely, the number of implicitly given scenarios that must be considered grows
exponentially with the number of vertices. According to our experience, state-of-the-art
computers with available software are able to find exact solutions only on rather small
trees having few dozens of vertices. At this moment, our approximation algorithms seem
to be the only known solution methods that are suitable for larger trees.

In our future work, we will try to speed up the extended algorithm by parallel
processing. It can be done since each iteration of the involved local search consists of
parallelizable computations. Our second plan for the future is to develop an iterative exact
algorithm for the min–max regret variant. The idea is to use a mathematical model, where
an initial (small) constraint set is iteratively extended as long as the corresponding solution
is infeasible. We expect that such an algorithm will be able to find exact solutions for
problem instances of moderate size.
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10. Klobučar, A.; Manger, R. An evolutionary algorithm for the robust maximum weighted independent set problem. Automatika

2020, 61, 523–536. [CrossRef]
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