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Abstract: In this paper, we define D-magic labelings for oriented graphs where D is a distance set.
In particular, we label the vertices of the graph with distinct integers {1, 2, . . . , |V(G)|} in such a
way that the sum of all the vertex labels that are a distance in D away from a given vertex is the
same across all vertices. We give some results related to the magic constant, construct a few infinite
families of D-magic graphs, and examine trees, cycles, and multipartite graphs. This definition grew
out of the definition of D-magic (undirected) graphs. This paper explores some of the symmetries we
see between the undirected and directed version of D-magic labelings.
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1. Introduction

A labeling of a graph or digraph is simply defined as an assignment of numbers
(usually integers) to the vertices, edges, or both, such that certain conditions hold. There
are many different types of labelings as can be seen in Gallian’s survey [1]. However, most
of these labelings are defined on undirected graphs. In 1985, Bloom and Hsu introduced
graceful labelings on directed graphs [2]. In 2008, magic labelings of directed graphs
were introduced in [3]. Other magic-type labelings on directed graphs have been studied
in [4–9].

In Vilfred’s 1994 Ph.D. thesis, distance magic labelings were introduced [10]. A dis-
tance magic labeling, or Σ labeling, of a graph G on n vertices is a bijection f : V(G) →
{1, 2, . . . , n} such that at any vertex x, the weight of x, ∑y∈N(x) f (y) is constant, where
N(x) is the open neighbourhood of x, i.e., the set of vertices adjacent to x. Five years later,
Jinah [11] defined a variation of the distance magic labeling, called the closed distance
magic labeling, where the weight of a vertex x is summed over the closed neighbourhood
of x, i.e., the set containing x and all vertices adjacent to x. D-magic labelings were first
introduced by O’Neal and Slater as a generalization of these two previously mentioned
labelings [12].

Definition 1. Let G be a graph with n vertices and diameter diam(G). Let D ⊆ {0, 1, . . . , diam(G)}
be a set of distances in G. G is said to be D-magic if there exists a bijection f : V → {1, 2, . . . , n} and
a magic constant k such that for any vertex x, ∑y∈ND(x) f (y) = k, where ND(x) = {y|d(x, y) =
d, d ∈ D} is the D-neighbourhood set of x.

One of the most important results for D-magic labelings is in [13,14] where it is shown
that for a particular graph, the magic constant is unique and is determined by its fractional
domination number. For more results, refer to survey articles [15,16].

In this paper, we explore the directed version of D-magic labelings.
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2. Definitions and Notation
2.1. Oriented Graphs

An oriented graph G can be described as a collection V = V(G) of vertices together
with a collection E = E(G) of ordered pairs of vertices called directed edges. If there is
an edge (x, y), we may write x → y. By definition, oriented graphs do not contain any
repeated directed edges, contain no loops (i.e., edges of the form (x, x)) and they do not
contain bidirectional edges, i.e., if (x, y) ∈ E, then (y, x) 6∈ E. The underlying graph of an
oriented graph G is the graph that is obtained by removing the orientations of the directed
edges in G. We shall write n = |V(G)| and m = |E(G)|.

2.2. Partitions

The ability to partition the integers into sets with equal sums is a critical component of
creating magic-type labelings of graphs. Hence, we include a definition and useful result
related to integer partitions here.

Definition 2 ([17]). An (s− t)-partition of Zn = {1, 2, . . . , n} is a partition of Zn into s subsets,
each with sum t.

Theorem 1 ([17]). If n(n + 1) = 2st, t ≥ n, then there exists an (s− t)-partition of Zn.

2.3. D-Magic Oriented Graphs

Motivated by the previously mentioned definitions, we now introduce a definition for
D-magic oriented graphs.

Definition 3. Let G be an oriented graph with n vertices and diameter diam(G). Let D ⊆
{0, 1, . . . , diam(G)} be a set of distances in G. An oriented graph G has a D-magic labeling if there
is a bijection f : V(G)→ {1, 2, . . . , n} and a magic constant k such that at any vertex x ∈ V(G)

w(x) = ∑
y∈ND(x)

f (y) = k,

where
ND(x) = {y|d(x, y) ∈ D}.

If G admits a D-magic labeling, then G is D-magic. The sum, w(x), at each vertex is
the weight.

The smallest example of a D-magic oriented graph is K1, which is {0}-magic. This is
the only oriented graph that is {0}-magic as any graph with two or more vertices would
produce distinct weights at each vertex. As we will see in Section 4, there are no D-magic
oriented graphs of order 2. For graphs of order 3, there is a {0, 1, 2}-magic labeling of

−→
C3.

The smallest non-trivial example is
−→
C4, which is {0, 2}, {1, 3}, and {0, 1, 2, 3}-magic.

3. Properties of D-Magic Oriented Graphs

In this section, we prove some general properties of D-magic oriented graphs. We start
with an observation that is a direct consequence of Definition 3.

Remark 1. Let D1 and D2 be two disjoint sets of distances. If a labeling is both D1-magic and
D2-magic then it is also (D1 ∪ D2)-magic.

In the next lemma we show that a D-magic oriented graph consists of at most one
sink, i.e., a vertex of outdegree zero.

Lemma 1. If G is D-magic, then G contains at most one vertex of outdegree zero. If there is such a
vertex, 0 ∈ D and the magic constant is n.
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Proof. If a vertex has outdegree zero, then it has no vertices of distance d > 0 away from it.
Hence, the only label that could contribute to the sink’s weight would be the label on the
vertex itself. Thus, 0 ∈ D. In addition, if two or more vertices were of outdegree zero, then
their weights would not be equal as the only contributing values would be the label on
that vertex and vertex labels are not repeated. Finally, if any vertex other than the sink had
label n, then the weight at that vertex would be at least n, while the sink’s weight would be
no larger than n− 1. This is a contradiction as all the weights must be equal. Hence, the
sink must have label n and thus, the magic constant of any graph with a sink is n.

There is an infinite family of graphs with a single vertex of outdegree zero that permit
an orientation that is D-magic. Consider the graph G with 4k + 2 vertices with k ≥ 2.
G consists of two distinct cycles of length 2k with vertex sets {x1, . . . , x2k} and {y1, . . . , y2k},
a vertex v that is connected to exactly one vertex in each cycle and a vertex w that is only con-
nected to vertex v. The oriented edges are as follows: {x2kx1, y2ky1, vx1, vy1, vw, xixi+1, yiyi+1
for 1 ≤ i ≤ 2k− 1}. Then, we can create the bijection f : V(G)→ {1, . . . , 4k + 2} such that

f (v) = 2k + 1

f (w) = 4k + 2

f (xi) = k + i 1 ≤ i ≤ k

f (xi) = 4k + 2− i k + 1 ≤ i ≤ 2k

f (yi) = k− i + 1 1 ≤ i ≤ k

f (yi) = 2k + 1 + i k + 1 ≤ i ≤ 2k.

Then, f is a {0, k}-magic labeling of G with magic constant 4k + 2 and vertex w has
outdegree zero. Figure 1 provides an example of this construction when k = 2.

10

5

21

8 9

3 4

76

Figure 1. A {0, 2}-magic graph with magic constant 10 and a vertex of outdegree zero.

In the remainder of this section, we discuss properties of the magic constants. Contrary
to the fact that the magic constant for an undirected graph is unique, the D-magic constant
does not have to be the same for any given oriented graph. The proof of the uniqueness
in [15] relies on the fact that the graph’s adjacency matrix is the same as its transpose which
does not occur for oriented graphs. The example in Figure 2 shows two different magic
constants for the same oriented graph.
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Figure 2. {1}-magic oriented graphs with different magic constants.

In the next theorem, we provide tight lower and upper bounds for the magic constants
of an oriented graph.

Theorem 2. If G is a D-magic oriented graph with magic constant k and n ≥ 3, then 5 ≤ k ≤
n(n+1)

2 . Furthermore, k = n(n+1)
2 iff diam(G) < ∞ and D = {0, 1, . . . , diam(G)}.

Proof. First, we will show the magic constant cannot be less than 5. Suppose k < 5. Let vi
be the vertex with label i.

• If k = 1 and 0 ∈ D then w(v2) ≥ 2 and thus v2 would not have the magic constant as
its weight. Thus, 0 6∈ D, but then there is no way for w(v1) = 1.

• If k = 2 and 0 ∈ D, w(v1) 6= 2. Thus, 0 6∈ D, but then w(v2) 6= 2 as there are no sums
of the remaining vertex labels that would total to two.

• If k = 3 and 0 ∈ D, then in order for w(v1) = w(v2) = 3 we would need both v1 → v2
and v2 → v1, creating a bidirectional edge. Since 0 6∈ D, we would have that v3 would
need to be some distance d1 ∈ D away from v1. However, v1 would also have to
be distance d2 ∈ D away from v3 (as this is the only way for w(v1) = 3). Suppose
without loss of generality that d2 ≤ d1. If d1 = d2, then d1 > 1 and we would have a
vertex x on the path from v1 to v3 that would be distance d1 away from something
larger than three, and thus w(x) > 3. If d2 < d1, then v1 would also be distance d1
away from something other than v3, giving w(v1) > 3. Thus, in all cases, we arrive at
a contradiction.

• A similar argument holds if k = 4 using v1 and v3 (instead of v1 and v2).

Thus, k must be at least 5 and the construction in Theorem 3 shows that k = 5 is
possible. If D = {0, 1, . . . , diam(G)}, then every label is counted at each vertex giving
k = n(n+1)

2 . Conversely, we know that if k = n(n+1)
2 , the sum at every vertex is equal to

the sum of the first n positive integers which would only happen if every vertex label was
included. Hence, D = {0, 1, . . . , diam(G)} and diam(G) < ∞.

OpenQuestion 1. Characterize all oriented graphs with k = 5.

OpenQuestion 2. Find a better upper bound for k if D 6= {0, 1, . . . , diam(G)}.

In the following theorem, we construct a {1}-magic oriented graph of order n for each
value of k from 5 up to n.

Theorem 3. For 5 ≤ k ≤ n, n ≥ 5, there exists an oriented graph G of order n which is {1}-magic
with magic constant k.

Proof. Figure 3 gives the construction technique for any n. All vertices with labels between
2 and k − 2 are directed towards the vertex labeled k. All vertices with labels between
k + 1 and n are also directed towards the vertex labeled k. The vertex with label k can
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be directed towards the vertices labeled 1 and k− 1. Finally, the vertices 1 and k− 1 are
directed towards the vertices labeled 2 and k− 2.

k

. . .21 k− 2 k− 1

. . .k + 1 n

Figure 3. Construction technique for magic constant k.

OpenQuestion 3. For n < k ≤ n(n+1)
2 , construct an oriented graph of order n which is {1}-

magic with magic constant k.

OpenQuestion 4. For 5 ≤ k ≤ n(n+1)
2 and D 6= {1}, construct an oriented graph G of order n

which is D-magic with magic constant k.

4. Classes of D-Magic Oriented Graphs
4.1. Trees

Lemma 2. Any tree with only one sink (vertex of outdegree zero) must have all edges directed
towards the sink.

Proof. Suppose a tree has a least one edge directed away from the sink. Suppose this edge
goes from vertex v to vertex u. Then, vertex u must have at least one edge that is directed
outward (otherwise u would also be a sink) and away from the sink, to some new vertex w.
This new vertex, w, would also have an edge directed outward and away from the sink.
This would continue at each new vertex in this outward directed path until we reach a leaf.
However, then this leaf would have outdegree zero, a contradiction. Thus, all edges must
be directed toward the sink.

Theorem 4. Trees with n ≥ 2 are not D-magic for any distance set D.

Proof. Suppose there is an oriented tree that is D-magic. By Lemma 1, any D-magic tree
can have at most one vertex of outdegree zero, and since any oriented tree has at least one
vertex of outdegree zero, we know the tree will have exactly one vertex of outdegree zero,
say vertex v. If the tree contains only one vertex of outdegree zero, than all edges must be
directed towards that vertex by Lemma 2. This oriented tree will have a path of longest
length, say length d. We know 0 ∈ D, but we also know d 6∈ D as this would cause the
weight of some vertex to be greater than n. In addition, no value less than d can be in D
as this would allow a vertex on that longest path to have a weight greater than n. Finally,
there are no paths of length greater than d, so no other values can be added to D. Hence,
the only possible element in D is 0, but that does not create a D-magic graph. Thus, no
orientation of trees are D-magic for any set D.
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4.2. Cycles

Lemma 3. If an oriented cycle is D-magic, then the orientation must be unidirectional.

Proof. By Lemma 1, any oriented cycle can have at most one vertex of outdegree zero.
Hence, the only orientations which would satisfy this would be the unidirectional cycle
(with no vertices of outdegree zero) or the cycle where there is a source and a sink with
two unidirectional paths leaving the source and leading to the sink. However, this second
orientation is not possible. The vertex of outdegree zero must have label n. Furthermore, at
least one of the two vertices coming into that vertex must have outdegree one (otherwise
we would have two vertices of outdegree zero); let that vertex be v. Then, v is at distance
one from the vertex with label n and that is its only out-neighbor. Hence, any contributions
to the weight of that vertex will come from values that are at distance zero or one away.
However, this is a problem as the magic constant must be n, 0 ∈ D, and we know at least
one other number must be in D in order for vertex v to have a sum equal to n, but the only
other possibility to add to D to increase the weight of v is to add one to D, but this makes
the weight of v greater than n. Hence a D-magic labeling of this orientation is not possible
and thus the only orientations of a cycle that are D-magic are unidirectional.

Theorem 5. There exist D such that
−→
Cn is D-magic for all n ≥ 3. In particular, let d1, d2, . . . , dr

be the divisors of n. If ∃ k ∈ N such that n(n + 1) = 2dik and k ≥ n, then
−→
Cn is D-magic with

D = {0, di, 2di, . . . , ( n
di
− 1)di} and |D| = n/di.

Proof. For any cycle,
−→
Cn, D = {0, 1, . . . , n − 1} will give a D-magic graph with magic

constant n(n + 1)/2 as at any vertex, all labels will be counted in the sum.
Let di be a divisor of n. Let D = {0, di, 2di, (n/di − 1)di}. Then, if v0, v2, . . . , vn−1 is

the vertex set of Cn, we can partition this set into di sets, P1, P2, . . . , Pdi
, each of size n/di,

where P1 = {v0, vdi
, v2di

, . . . , v(n/di−1)di
} and Pj is formed by adding j− 1 (modulo n) to

each of the subscripts of the entries of P1. Since this partitions the set n into di sets and
n(n + 1) = 2dik for some k ≥ n ∈ N, by Theorem 1, we know there is a way to label the
vertices with values from {1, . . . , n} so that the sum of the labels of each of these vertex
sets is the same.

By construction of these D-magic labelings, if
−→
Cn is D-magic, it is also D + c-magic

where D + c consists of the elements of D that have each been increased by c (mod n)
and c ∈ {1, 2, . . . , n− 1}. So, for example,

−→
C6 is {0, 3}-magic and thus also {1, 4}-magic

and {2, 5}-magic. Combining this with Remark 1, we also know
−→
C6 is {0, 1, 3, 4}-magic,

{0, 2, 3, 5}-magic, {1, 2, 4, 5}-magic, and of course {0, 1, 2, 3, 4, 5}-magic.

OpenQuestion 5. Find all Ds s.t.
−→
Cn is D-magic.

4.3. Multipartite Graphs

Theorem 6. For m ≡ 0 (mod 4), there is an orientation of Km,m that is D-magic for D ∈
{{0, 4}, {1}, {2}, {3}} or any D that is a union of these sets.

Proof. Let Km,m be the complete bipartite graph with partite sets A = {a1, . . . , am} and
B = {b1, . . . , bm}. Note that Km,m has n = 2m vertices. First, we group the vertices within
each partite set into pairs. In A, this would give sets α1 = {a1, a2}, . . . , αm/2 = {am−1, am}
and β1 = {b1, b2}, . . . , βm/2 = {bm−1, bm}. Within each set of two, label one vertex s and
the other vertex 2m + 1− s for 1 ≤ s ≤ m. This would give a sum of 2m + 1 for each
set of pairs. Then, orient the edges in the following way: vertices in αi will be oriented
to vertices in the sets βi, βi+1, . . . , β m

4 +i−1 and vertices in βi will be oriented to vertices
in the sets αi+1, . . . , α m

4 +i where all additions are done modulo m/2. Thus, each vertex is
oriented towards m/4 pairs of vertices and hence each vertex is oriented towards m/2
vertices. This gives a total of 2 · m

4 · 2m = m2 edges and thus each edge is accounted
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for and has only one orientation. This gives a magic constant of k = m
4 (2m + 1) for any

D ∈ {{0, 4}, {1}, {2}, {3}}. The magic constant would be 2k for any union of two sets, 3k
for any union of three sets, and 4k = m(2m + 1) = n(n + 1)/2 for the union of all four sets.
Figure 4 gives an example of this labeling when m = 4.

1

8

2

7

3

6

4

5

Figure 4. An orientation of K4,4 that is D-magic.

OpenQuestion 6. Is Km,m D-magic for m 6≡ 0 (mod 4)?

Theorem 7. (a) Let s ≥ 3 be odd and n ≥ 5. If n(n + 1) = 2st and t ≥ n, then there exists a
partition of n into s parts such that n = n1 + n2 + · · ·+ ns and Kn1,n2,...,ns has an orientation that
is {1}-magic with magic constant (s−1)t

2 , {2}-magic with magic constant (s−1)t
2 , and {1, 2}-magic

with magic constant (s− 1)t.

(b) Let s ≥ 4 be even and n ≥ 7. If n(n + 1) = 2st and t ≥ n, then there is a partition of
n into s parts with n = n1 + n2 + · · · + ns and Kn1,n2,...,ns − I (where I is a 1-factor) has an
orientation that is {1}-magic with magic constant (s−2)t

2 , {2}-magic with magic constant st
2 , and

{1, 2}-magic with magic constant (s− 1)t.

Proof. Let uo, u1, . . . , us be the vertices of Ks. We decompose Ks into Hamiltonian cycles
using Walecki’s construction where each cycle starts at u0 [18]. Then, orient each cycle in
a clockwise direction starting at the vertex u0. This will give each vertex (s− 1)/2 edges
directed outward and (s− 1)/2 edges directed inward. Then, we replace each vertex of Ks
with ni vertices for 1 ≤ i ≤ s and maintain all the original connections. For example, in
Ks, u0 would be connected to u1 and so in our newly constructed graph, all the vertices
now at u0 would be connected to all the vertices now at u1. Using Theorem 1, we label the
vertices of each new set of replaced vertices with values so that each new set of vertices has
the same sum, t.

Thus, every vertex will be at distance one away from (s− 1)/2 sets of vertices and
each set sums to t, giving a {1}-magic constant of (s− 1)t/2. Similarly, since every vertex
in a oriented complete graph is at distance one or two away from any other vertex, we also
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have that every vertex will be at distance two away from (s− 1)/2 sets of vertices and
each set sums to t, giving a {2}-magic constant of (s− 1)t/2. Finally, since all vertices are
at distance one or two away from each other, the {1, 2}-magic constant is (s− 1)t.

In a similar way, we can decompose Ks − I into s
2 − 1 Hamiltonian cycles using

Walecki’s construction where each cycle starts at u0 [18]. Then, orient each cycle in a
clockwise direction starting at the vertex u0. This gives each vertex s

2 − 1 edges directed
outward. Then, we replace each vertex of Ks with ni vertices for 1 ≤ i ≤ s and maintain all
the original connections. In this case, every vertex will be at distance one away from s

2 − 1
sets of vertices and each set sums to t, giving a {1}-magic constant of (s− 2)t/2. Similarly,
since every vertex in this orientation of Ks− I is at distance one or two away from any other
vertex, we also have that every vertex is at distance two away from s/2 sets of vertices
and each set sums to t, giving a {2}-magic constant of (st)/2. Finally, since all vertices are
distance one or two away from each other, the {1, 2}-magic constant is (s− 1)t.

OpenQuestion 7. Let s ≥ 2, s even, n ≥ s and n1 + · · ·+ ns = n. Is Kn1,...,ns D-magic for some
nontrivial D-set?

5. Conclusions

As can be seen by the questions posed, the study of D-magic oriented graphs is rich
with future directions. One possible avenue of additional research is to determine for a
given arbitrary oriented graph which D sets make the graph D-magic. Conversely, one
could start with a given D set and ask which oriented graphs are D-magic.

Exploring the symmetries between oriented D-magic graphs and D-magic graphs,
we see that both have trivial D sets that produce a D-magic labeling (when diam(G) < ∞
and D = {0, 1, 2, . . . , diam(G)}). While trees, cycles, and multipartite graphs have been
studied in both cases, the results are quite different. For example, a complete multipartite
graph is not {2}-magic, but we have shown there is an orientation of various complete
multipartite graphs with a {2}-magic labeling. We also know that P3 is {1}-magic, but
there is no orientation that makes it a {1}-magic oriented graph. Hence, it would be worth
knowing under what conditions a D-magic graph has an orientation that is also D-magic.

Similarly, while the magic constant is unique in the unoriented case, the magic constant
does not have to be unique in the oriented case. While we did not allow for bidirectional
edges, if bidirectional edges were allowed, any D-magic graph could be oriented to be
D-magic by replacing each edge with a bidirectional edge. Exploring these symmetries
further is also an interesting line of future work.
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