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Abstract: In this study, we consider regular eigenvalue problems formulated by using the left and
right standard fractional derivatives and extend the notion of a fractional Sturm–Liouville problem to
the regular Prabhakar eigenvalue problem, which includes the left and right Prabhakar derivatives. In
both cases, we study the spectral properties of Sturm–Liouville operators on function space restricted
by homogeneous Dirichlet boundary conditions. Fractional and fractional Prabhakar Sturm–Liouville
problems are converted into the equivalent integral ones. Afterwards, the integral Sturm–Liouville
operators are rewritten as Hilbert–Schmidt operators determined by kernels, which are continuous
under the corresponding assumptions. In particular, the range of fractional order is here restricted
to interval (1/2, 1]. Applying the spectral Hilbert–Schmidt theorem, we prove that the spectrum
of integral Sturm–Liouville operators is discrete and the system of eigenfunctions forms a basis in
the corresponding Hilbert space. Then, equivalence results for integral and differential versions of
respective eigenvalue problems lead to the main theorems on the discrete spectrum of differential
fractional and fractional Prabhakar Sturm–Liouville operators.

Keywords: fractional derivatives; fractional Prabhakar derivatives; fractional differential equations;
fractional Sturm–Liouville problems; eigenfunctions and eigenvalues

1. Introduction

The aim of this paper is to study the fundamental properties of fractional eigenvalue
problems developed by the construction of the Sturm–Liouville operator (SLO) with left
and right fractional derivatives. In classical differential equations theory, this is a linear
differential operator of the second order and yields an eigenvalue problem of the form
(here, x ∈ [0, b] in the case when we consider the problem on a finite interval):

Lqy(x) = − d
dx

p(x)
dy(x)

dx
+ q(x)y(x) = λw(x)y(x)

with boundary conditions appearing as follows:

c1y(0) + c2
dy(0)

dx
= 0, d1y(b) + d2

dy(b)
dx

= 0. (1)

Let us point out that, depending on the choice of coefficient functions and boundary
conditions, such problems provide various systems of orthogonal eigenfunctions, orthog-
onal polynomials and families of special functions. Orthogonal systems of the solutions
of classical Sturm–Liouville problems are widely applied in the analysis and solving of
fundamental differential equations of mathematics, physics, mechanics , and economics.

In most of the FSLPs presented at the beginning of fractional Sturm–Liouville the-
ory, first-order derivatives in a standard Sturm–Liouville problem were replaced with
fractional order derivatives. The resulting equations were solved using some numerical
schemes [1–4]. However, in these works, the essential properties, such as the orthogonality
of the eigenfunctions of the fractional operator, were not investigated. In addition, the
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question of whether the associated eigenvalues are real or not is not addressed. Some
results concerning these properties have been obtained in papers [5,6], where the dis-
cussed equations contain a classical SLO extended by including a sum of the left and the
right derivatives. Then, in paper [7], we proposed the construction of a fractional Sturm–
Liouville operator which preserves the orthogonality of the eigenfunctions corresponding
to distinct eigenvalues and provides real eigenvalues. The FSLO contains both the left and
right derivatives and is a symmetric operator on function space restricted by fractional
boundary conditions which generalize conditions (1).

A fractional version of Bessel SLO has been developed and applied to anomalous
diffusion in [8], where the space-fractional differential operator has a form analogous to the
FSLO proposed in a general form in [7]. Some special cases of singular fractional Sturm–
Liouville problems were also studied in [9,10], where exact solutions and eigenvalues
were calculated.

In our earlier works [7,11–14], we focused on the construction of a fractional version
of operator Lq, which includes standard fractional derivatives. The characteristic feature
of the proposed approach is the mixture of the left and right fractional derivatives in
the fractional Sturm–Liouville operator (FSLO). This construction provides eigenvalue
problems with orthogonal eigenfunctions and discrete spectra under the appropriate
homogeneous boundary conditions.

In recent years, fractional eigenvalue problems have also been discussed within the
framework of tempered and conformable fractional calculus. In the papers [15,16], a frac-
tional Sturm–Liouville operator is built by using the left and right tempered derivatives.
Next, in [17,18], an FSLO is constructed as a composition of conformable fractional deriva-
tives. In addition, in paper [19], the authors show how to build an FSLO with composite
fractional derivatives.

Here, we add the generalization of fractional eigenvalue problems to problems with
operators, including Prabhakar derivatives. The regular fractional and fractional Prabhakar
Sturm–Liouville operators considered here include the left and the right derivatives, and
the derived equations are in fact of a variational nature; i.e., they are Euler–Lagrange
equations for respective actions (compare [11,20] and the references therein for FSLE). The
properties of the spectra and eigenfunctions’ systems of FSLP can be studied by applying
the variational method [12,21]. Here, we shall develop the transformation method for
FSLP and PSLP with Dirichlet boundary conditions, which means that we rewrite the
FSLP/PSLP as the equivalent integral eigenvalue problem.

The paper is organized as follows. In the next section, we present the necessary
definitions and properties of fractional and fractional Prabhakar operators, as well as
the formulation of a regular fractional Sturm–Liouville problem with its generalization
to the Prabhakar Sturm–Liouville problem. In Section 3, we define the problems with
homogeneous Dirichlet boundary conditions and derive equivalence results for both types
of fractional eigenvalue problems. It appears that by applying composition rules for
derivatives and integrals, they can be converted into the equivalent integral ones. Spectral
properties of integral versions of fractional and fractional Prabhakar Sturm–Liouville
operators are discussed in Section 4. We shall prove that these operators are Hilbert–
Schmidt integral operators, which are compact and self-adjoint on the L2

w(0, b) space.
Applying the spectral Hilbert–Schmidt theorem, we derive results on discrete spectra
both for fractional and fractional Prabhakar Sturm–Liouville operators. The equivalence
of differential and integral versions of eigenvalue problems leads to the corresponding
spectral results for differential operators.

The paper closes with a brief discussion of results and future investigations. The
Appendix A contains two parts. First, we present results on Hölder continuity of kernels
defining integral Sturm–Liouville operators. Then, we prove a useful theorem on the
convergence of convolutions’ series in a general case, which is applied in the construction
of integral Sturm–Liouville operators.
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2. Preliminaries

We start with a summary of definitions and properties of fractional integrals and
derivatives which shall be applied in the construction of fractional and fractional Prabhakar
eigenvalue problems. First, we recall the left and right Riemann–Liouville fractional
derivatives of order α ∈ (0, 1) [22,23]:

Dα
0+ y(x) :=

d
dx

I1−α
0+ y(x), Dα

b− y(x) := − d
dx

I1−α
b− y(x), (2)

where the operators Iα
0+ and Iα

b− are respectively the left and the right fractional Riemann–
Liouville integrals of order α > 0 defined by the following formulas

Iα
0+y(x) :=

x∫
0

(x− t)α−1y(t)
Γ(α)

dt, x > 0, (3)

Iα
b−y(x) :=

b∫
x

(t− x)α−1y(t)
Γ(α)

dt, x < b. (4)

Next, we have Caputo fractional derivatives:

cDα
0+y(x) = Dα

0+(y(x)− y(0)), cDα
b−y(x) = Dα

b−(y(x)− y(b)) (5)

and we note that when y(0) = y(b) = 0, both types of derivatives coincide, i.e.,

cDα
0+y(x) = Dα

0+y(x), cDα
b−y(x) = Dα

b−y(x).

We also recall some of the composition rules of fractional operators for the case of
order α ∈ (0, 1]; namely, for the left-sided Caputo derivative and left-sided fractional
integral, we have

Iα
0+

cDα
0+y(x) = y(x)− y(0), (6)

cDα
0+ Iα

0+y(x) = y(x), (7)

while for the right-sided Riemann–Liouville derivatives, the following relations are valid

Iα
b−Dα

b−y(x) = y(x)− I1−α
b− y(b) · (b− x)α−1

Γ(α)
, (8)

Dα
b− Iα

b−y(x) = y(x). (9)

All of the above rules are fulfilled for all points x ∈ [0, b] when function y is a
continuous one. Let us note that for the continuous function fulfilling condition y(0) = 0,
rules (6) and (8) look as follows:

Iα
0+

cDα
0+y(x) = y(x), Iα

b−Dα
b−y(x) = y(x). (10)

The fractional operators, described above, are generalized to Prabhakar integrals and
derivatives. They are defined using a three-parameter Mittag–Leffler function [22,24]:

Eγ
ρ,µ(z) :=

1
Γ(γ)

∞

∑
k=0

Γ(γ + k)
Γ(ρk + µ)

· zk

k!
(11)

and Prabhakar function [24,25]:

eγ
ρ,µ(ωzρ) := zµ−1Eγ

ρ,µ(ωzρ), (12)

both defined on the complex space when Re(ρ) > 0 and Re(µ) > 0.
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These functions lead to the left and right Prabhakar derivatives [24]:

Dα
ρ,γ,ω,0+ y(x) :=

d
dx

E1−α
ρ,−γ,ω,0+y(x), Dα

ρ,γ,ω,b− y(x) := − d
dx

E1−α
ρ,−γ,ω,b−y(x), (13)

where operators Eα
ρ,−γ,ω,0+ and Eα

ρ,−γ,ω,b− are respectively the left and the right fractional
Prabhakar integrals:

Eα
ρ,−γ,ω,0+y(x) :=

x∫
0

e−γ
ρ,α (ω(x− t)ρ)y(t)dt, x > 0, (14)

Eα
ρ,−γ,ω,b−y(x) :=

b∫
x

e−γ
ρ,α (ω(x− t)ρ)y(t)dt, x < b. (15)

Similar to Caputo derivatives, given in (5), we have Caputo-type Prabhakar derivatives
defined as follows

cDα
ρ,γ,ω,0+ y(x) = Dα

ρ,γ,ω,0+(y(x)− y(0)), (16)

cDα
ρ,γ,ω,b− y(x) = Dα

ρ,γ,ω,b−(y(x)− y(b)) (17)

coinciding with Prabhakar derivatives (13) when y(0) = 0 or y(b) = 0, respectively.
Restricting function space to continuous functions fulfilling condition y(0) = 0, we arrive
at composition rules of Prabhakar operators analogous to (7), (9), and (10):

cDα
ρ,γ,ω,0+ Eα

ρ,γ,ω,0+y(x) = y(x), (18)

Eα
ρ,γ,ω,0+

cDα
ρ,γ,ω,0+y(x) = y(x), (19)

Dα
ρ,γ,ω,b− Eα

ρ,γ,ω,b−y(x) = y(x), (20)

Eα
ρ,γ,ω,b−Dα

ρ,γ,ω,b−y(x) = y(x). (21)

Now, we shall quote the general formulation of the fractional eigenvalue problem,
introduced and investigated in papers [7,11–14,21].

Definition 1 (compare Definition 5 in [7]). Let α ∈ (0, 1]. With the notation

Lq := Dα
b−p(x) cDα

0+ + q(x), (22)

consider the fractional Sturm–Liouville equation (FSLE)

Lqyλ(x) = λw(x)yλ(x), (23)

where p(x) 6= 0, w(x) > 0 ∀x ∈ [0, b], functions p, q, w are real-valued continuous functions in
[0, b] and boundary conditions are:

c1yλ(0) + c2 I1−α
b− p(x)Dα

0+yλ(x) |x=0= 0, (24)

d1yλ(b) + d2 I1−α
b− p(x)Dα

0+yλ(x) |x=b= 0 (25)

with c2
1 + c2

2 6= 0 and d2
1 + d2

2 6= 0. The problem of finding number λ (eigenvalue) such that the BVP
has a non-trivial solution, yλ (eigenfunction) will be called the regular fractional Sturm–Liouville
eigenvalue problem (FSLP).

We include Prabhakar derivatives into the construction of FSLO and formulate below
the Prabhakar Sturm–Liouville problem.
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Definition 2. Let α ∈ (0, 1]. With the notation

L′q := Dα
ρ,γ,ω,b−p(x) cDα

ρ,γ,ω,0+ + q(x), (26)

consider the fractional Prabhakar Sturm–Liouville equation (PSLE)

L′qyλ(x) = λw(x)yλ(x), (27)

where p(x) 6= 0, w(x) > 0 ∀x ∈ [0, b], functions p, q, w are real-valued continuous functions in
[0, b] and boundary conditions are:

c1yλ(0) + c2E1−α
ρ,−γ,ω,b−p(x)Dα

ρ,γ,ω,0+yλ(x) |x=0= 0, (28)

d1yλ(b) + d2E1−α
ρ,−γ,ω,b−p(x)Dα

ρ,γ,ω,0+yλ(x) |x=b= 0 (29)

with c2
1 + c2

2 6= 0 and d2
1 + d2

2 6= 0. The problem of finding number λ (eigenvalue) such that the
BVP has a non-trivial solution, yλ (eigenfunction) will be called the regular fractional Prabhakar
Sturm–Liouville eigenvalue problem (PSLP).

3. Formulation of the Problem and Methods

In this section, we shall focus on fractional eigenvalue problems subjected to the homo-
geneous Dirichlet boundary conditions. We choose values c2 = d2 = 0 in Definitions 1 and 2
and formulate the corresponding definitions of FSLP and PSLP. First, we have the fractional
Sturm–Liouville problem with Dirichlet boundary conditions.

Definition 3. Let α ∈ (0, 1]. With the notation

Lq := Dα
b−p(x) cDα

0+ + q(x), (30)

consider the fractional Sturm–Liouville Equation (23), where p(x) 6= 0, w(x) > 0 ∀x ∈ [0, b],
functions p, q, w are real-valued continuous functions in [0, b] and the boundary conditions are:

yλ(0) = yλ(b) = 0.

The problem of finding number λ (eigenvalue) such that the BVP has a non-trivial solution,
yλ (eigenfunction) will be called the regular fractional Sturm–Liouville eigenvalue problem (FSLP)
with homogeneous Dirichlet boundary conditions.

Next, we formulate the definition of the Prabhakar Sturm–Liouville problem with
Dirichlet boundary conditions.

Definition 4. Let α ∈ (0, 1]. With the notation

L′q := Dα
ρ,γ,ω,b−p(x) cDα

ρ,γ,ω,0+ + q(x), (31)

consider the fractional Prabhakar Sturm–Liouville Equation (27), where p(x) 6= 0,
w(x) > 0 ∀x ∈ [0, b], functions p, q, w are real-valued continuous functions in [0, b] and
the boundary conditions are:

yλ(0) = yλ(b) = 0.

The problem of finding number λ (eigenvalue) such that the BVP has a non-trivial solution,
yλ (eigenfunction) is the regular fractional Prabhakar Sturm–Liouville eigenvalue problem (PSLP)
with homogeneous Dirichlet boundary conditions.

We shall study the spectral properties of the eigenvalue problems described in the
above definitions. Let us point out that an FSLP with a Dirichlet boundary condition spec-
trum was investigated in papers [12,21] using variational methods. Here, we extend the
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study to the Prabhakar Sturm–Liouville problem and develop the results by transforming
both differential fractional problems into the respective equivalent integral ones. Then, we
analyse properties of the integral versions of fractional Sturm–Liouville operators (22) and
(26) and apply the Hilbert–Schmidt spectral theorem to prove that their spectrum is purely
discrete. Equivalence of the respective differential and integral fractional eigenvalue prob-
lems yields the theorems on spectra of the differential fractional and fractional Prabhakar
eigenvalue problems given by Definitions 3 and 4. We begin our considerations with the
case when q = 0.

3.1. Equivalence Results for Differential and Integral FSLP, PSLP: Case q = 0

Here, we shall prove equivalence results for the FSLP/PSLP with an equation contain-
ing the fractional differential operators (22) and (26) and investigate the properties of the
integral eigenvalue problem connected to the FSLE/PSLE in the case of order α fulfilling
condition 1 ≥ α > 1/2 and solutions’ space restricted by the homogeneous Dirichlet
boundary conditions.

In the first part, we transformed the differential fractional Sturm–Liouville problem
(Definition 3) into the integral one on the subspace of the continuous functions defined below:

CD[0, b] := {y ∈ C[0, b]; y(0) = y(b) = 0}. (32)

Let us note that the composition rules of fractional operators (7) and (9) allow us a to
write a fractional Sturm–Liouville Equation (23) on the CD[0, b] space in the case of q = 0
as follows:

L0

(
1− λIα

0+
1
p

Iα
b−w(x)

)
y(x) = 0

which leads to the integral equation(
1− λIα

0+
1
p

Iα
b−w(x)

)
y(x) = Cw

1 + Cw
2 Iα

0+
(b− x)α−1

p(x)
.

Constants Cw
1 and Cw

2 are determined by the homogeneous Dirichlet boundary
conditions

Cw
1 = 0, Cw

2 = −λ
Iα
0+

1
p Iα

b−w(x)y(x)|x=b

Iα
0+

(b−x)α−1

p(x) |x=b

. (33)

The above calculations lead to the integral form of FSLE (23) with q = 0

1
λ

y(x) = Twy(x), (34)

where linear integral operator Tw is built using the left and right Riemann–Liouville
integrals and acts as follows:

Twy(x) = Iα
0+

1
p

Iα
b−w(x)y(x)−

Iα
0+

1
p Iα

b−w(x)y(x)|x=b

Iα
0+

(b−x)α−1

p(x) |x=b

· Iα
0+

(b− x)α−1

p(x)
. (35)

Similar considerations yield the integral form of PSLE (27) when q = 0

1
λ

y(x) = Twy(x), (36)

where linear integral operator Tw is constructed using the left and right Prabhakar integrals
and acts as follows

Twy(x) = Eα
ρ,γ,ω,0+

1
p

Eα
ρ,γ,ω,b−w(x)y(x) (37)
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−
Eα

ρ,γ,ω,0+
1
p Eα

ρ,γ,ω,b−w(x)y(x)|x=b

Eα
ρ,γ,ω,0+

e−γ
ρ,α (ω(b−x)ρ)

p(x) |x=b

· Eα
ρ,γ,ω,0+

e−γ
ρ,α (ω(b− x)ρ)

p(x)
.

We note that the above integral operators (35) and (37) can be rewritten as operators
indexed by the arbitrary continuous function r (here, r = w) and determined by the
corresponding kernels—G1 for FSLP and G2 for PSLP:

Try(x) :=
∫ b

0
Gj(x, s)r(s)y(s)dx, j = 1, 2, (38)

where kernels are of the form:

G1(x, s) := K1(x, s)− K1(b,x)K1(b,s)
K1(b,b) , (39)

G2(x, s) := KP
1 (x, s)− KP

1 (b,x)KP
1 (b,s)

KP
1 (b,b)

, (40)

K1(x, s) =
∫ min{x,s}

0
(x−t)α−1

Γ(α) · (s−t)α−1

Γ(α)
1

p(t)dt, (41)

KP
1 (x, s) =

∫ min{x,s}
0

e−γ
ρ,α (ω(x−t)ρ)e−γ

ρ,α (ω(s−t)ρ)

p(t) dt. (42)

It is easy to check the following properties of kernels. First, they are symmetric
functions on square ∆ = [0, b]× [0, b]

K1(x, s) = K1(s, x), KP
1 (x, s) = KP

1 (s, x), Gj(x, s) = Gj(s, x) (43)

and, in addition, we have

K1(0, s) = K1(b, 0) = 0, KP
1 (0, s) = KP

1 (b, 0) = 0, Gj(0, s) = Gj(b, s) = 0. (44)

In our results developed in this paper, we apply two types of assumptions.

Hypothesis 1 (H1). 1 ≥ α > 1/2, 1
p ∈ C[0, b] and function 1

p be positive on [0, b] or negative.

Hypothesis 2 (H2). 1 ≥ α > 1/2, 1
p ∈ C[0, b] and function 1

p be positive on [0, b] or negative.
In addition, let the real parameters α, ρ, γ, ω fulfil the conditions:

min{ρ, γ} > 0, ω < 0, α ≥ ργ, ρ < 1.

Proposition 1. If (H1) is fulfilled and function y ∈ L2(0, b), then its image Try ∈ CD[0, b] for
any function r ∈ C[0, b] and operator defined by kernel (39).

If (H2) is fulfilled and function y ∈ L2(0, b), then its image Try ∈ CD[0, b] for any function
r ∈ C[0, b] and operator defined by kernel (40).

Proof. We sketch here the proof of the first part of the discussed proposition and omit the
proof of the second one as it is analogous. By Corollary A1, kernel G1 fulfills the Hölder
condition; therefore, we find

|Try(x′)− Try(x)| ≤
∫ b

0
|G1(x′, s′)− G1(x, s)| · |r(s)y(s)|ds

≤ M1|x′ − x|β
∫ b

0
|r(s)y(s)|ds ≤ M1

√
b · ||r|| · ||y||L2 · |x′ − x|β

and we infer that image Try is a continuous function and is even uniformly continuous on
interval [0, b].
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We check that it obeys the homogeneous Dirichlet boundary conditions as well,
because kernel G1 fulfils the conditions (44):

Try(0) =
∫ b

0
G1(0, s)y(s)r(s)ds = 0,

Try(b) =
∫ b

0
G1(b, s)y(s)r(s)ds = 0.

For functions belonging to the CD[0, b] space, we can prove the equivalence of the
differential and integral form of the FSLP and PSLP, respectively. That is, the following
two propositions are valid when q = 0. The first one concerns differential and integral
fractional Sturm–Liouville problems.

Proposition 2. If (H1) is fulfilled and w ∈ C[0, b], then the following equivalence is valid on the
CD[0, b] space

L0y(x) = λw(x)y(x)⇐⇒ Twy(x) =
1
λ

y(x), (45)

where operator L0 is defined in (22) and operator Tw contains kernel (39).

Proof. Assuming that y ∈ CD[0, b] is an eigenfunction corresponding to eigenvalue λ:

1
w(x)

L0y(x) = λy(x)

we act with the Tw operator on both sides of this equation:

Tw
1

w(x)
L0y(x) = λTwy(x) (46)

and by applying composition rules (10), we obtain the integral eigenvalue equation

1
λ

y(x) = Twy(x). (47)

Next, we assume that function y ∈ L2(0, b) is an eigenfunction of the integral FSLP,
i.e., Equation (47) is fulfilled. According to Proposition 1, eigenfunction y is a continuous
one and belongs to the CD[0, b] space. Then, we calculate composition L0Tw using the
composition rules (7) and (9)

L0Twy(x) = w(x)y(x) (48)

and by applying Equation (47), we arrive at the implication

L0Twy(x) = w(x)y(x) =
1
λ
L0y(x) =⇒ L0y(x) = λw(x)y(x).

Therefore, we conclude that on the CD[0, b] space, the equivalence of the differential
and integral FSLP is valid.

Below, we formulate the extended version of Proposition 2, where we describe the
appropriate equivalence for Prabhakar Sturm–Liouville operators. Its proof is analogous to
that presented above.

Proposition 3. If (H2) is fulfilled and w ∈ C[0, b], then the following equivalence

L′0 f (x) = λw(x) f (x)⇐⇒ Tw f (x) =
1
λ

f (x), (49)
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is valid on the CD[0, b] space, where the L′0 operator is defined in (26) and the Tw operator contains
kernel (40).

Equivalence of the integral and differential fractional and fractional Prabhakar eigen-
value problems is an important step in deriving results on the spectrum for the problems
described in Definitions 3 and 4. In the next section, we shall extend the equivalence results
to the case where q 6= 0.

3.2. Equivalence Results for Differential and Integral FSLP, PSLP: General Case q 6= 0

We begin our discussion with the fractional Sturm–Liouville problem. We write
Equation (23) in the following form(

1
w
Lq − λ

)
y(x) = 0

and apply composition rules for fractional operators (7) and (9)

1
w
L0

(
1 + Iα

0+
1
p

Iα
b−q(x)− λIα

0+
1
p

Iα
b−w(x)

)
y(x) = 0.

The fractional differential Sturm–Liouville Equation (23) now takes the form of integral
equation

y(x) + Iα
0+

1
p

Iα
b−q(x) + Cq

1 + Cq
2 Iα

0+
(b− x)α−1

p(x)

= λIα
0+

1
p

Iα
b−w(x)y(x) + Cw

1 + Cw
2 Iα

0+
(b− x)α−1

p(x)
,

where constants are determined by the homogeneous Dirichlet boundary conditions;
namely, Cw

1 , Cw
2 are given by (33) and for Cq

1 , Cq
2 , we have

Cq
1 = 0, Cq

2 = −
Iα
0+

1
p Iα

b−q(x)y(x)|x=b

Iα
0+

(b−x)α−1

p(x) |x=b

.

To conclude, Equation (23) is now an integral equation

(1 + Tq)y(x) = λTwy(x), (50)

where the Tw operator is given in (35) and the Tq operator is given by the formula below

Tqy(x) = Iα
0+

1
p

Iα
b−q(x)y(x)−

Iα
0+

1
p Iα

b−q(x)y(x)|x=b

Iα
0+

(b−x)α−1

p(x) |x=b

· Iα
0+

(b− x)α−1

p(x)
. (51)

Let us point out that, similar to the calculations presented in the previous part, both of
the above integral operators can also be rewritten as integral operators (38) with kernel (39)
for r = w and r = q, respectively.

Our aim is to reformulate the intermediate integral Equation (50) to the form of an
eigenvalue equation. We apply Theorem A1 to invert the operator on the left-hand side.
First, we check the assumption of Theorem A1, particularly when condition (H1) is fulfilled
and w ∈ C[0, b]. We then apply Corollary A1, denoting K(x, s) = G1(x, s), and obtain:

||Gw(·, s))|| = sup
v∈[0,b]

|Gw(v, s)|

= sup
v∈[0,b]

|G1(v, s)w(s)| ≤ ||w|| sup
v∈[0,b]

|G1(v, s)|
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≤ ||w|| sup
v∈[0,b]

(
|G1(v, s)− G1(0, s)|+ |G1(0, s)|

)
≤ ||w|| ·M1 sup

v∈[0,b]
vα−1/2 = ||w|| ·M1 · bα−1/2 < ∞.

Next, we write condition (A8) in the explicit form:

ξ = sup
x∈[0,b]

∫ b

0
|q(s)G1(x, s)|ds (52)

= sup
x∈[0,b]

∫ b

0
|q(s)| ·

∣∣∣∣K1(x, s)− K1(b, x)K1(b, s)
K1(b, b)

∣∣∣∣ds < 1.

All the above considerations lead to the proposition on convergence of the series
associated with the intermediate fractional integral eigenvalue problem given in (50)
and (A5). Analogous convolutions’ series were also studied on the C[a, b] and L2(a, b)
function spaces for FSLPs with homogeneous mixed and Robin boundary conditions,
respectively [13,14].

Proposition 4. Let (H1) be fulfilled, w, q ∈ C[0, b] and function w be positive. If condition (52) is
fulfilled, then for any function y ∈ L2(0, b) series on the right-hand side of the formula below is
uniformly convergent on interval [0, b]:

Ty(x) := (1 + Tq)
−1Twy(x) = Twy(x) +

∞

∑
n=1

(−Tq)
nTwy(x), (53)

where operators Tq, Tw are defined in (A6) and (A7) with K(x, s) = G1(x, s). In addition,
series (A9) determining the kernel of integral operator T in (53) is uniformly convergent on square
∆ and kernel G is continuous on ∆.

Proof. Let us observe that the composition of operators TqTw is an integral operator

TqTwy(x) =
∫ b

0
ds
(

Gq(x, s)
∫ b

0
Gw(s, u)y(u)du

)

=
∫ b

0
du y(u)

(∫ b

0
Gq(x, s)Gw(s, u)ds

)
=
∫ b

0
Gq ∗ Gw(x, u)y(u)du,

where the kernel is defined by the following convolution:

A ∗ B(x, u) :=
∫ b

0
A(x, s)B(s, u)ds.

We shall prove that the compositions (Tq)nTw are also defined by convolutions of
kernels Gq and Gw. We start with the induction hypothesis:

(Tq)
nTwy(x) =

∫ b

0
(G∗nq ) ∗ Gw(x, u)y(u)du (54)

and we prove that this formula is valid for the next step n + 1 as well:

(Tq)
n+1Twy(x) =

∫ b

0
(G∗(n+1)

q ) ∗ Gw(x, u)y(u)du.
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We begin with the left-hand side, applying the induction hypothesis and associativity
property of the convolutions of continuous functions:

(Tq)
n+1Twy(x) =

∫ b

0
dsGq(x, s)(Tq)

nTwy(s)

=
∫ b

0
dsGq(x, s)

(∫ b

0
G∗nq ∗ Gw(s, u)y(u)du

)
=
∫ b

0
du y(u)

(
Gq ∗ G∗nq ∗ Gw(x, u)

)
=
∫ b

0
G∗(n+1)

q ∗ Gw(x, u)y(u)du.

As inductive hypothesis (54) leads to the validity of the next step n + 1; we infer that
formula (54) holds for any natural number n ≥ 1.

Now, we apply Theorem A1 and calculate kernel G for integral operator
T := (1 + Tq)−1Tw:

Ty(x) = Twy(x) +
∞

∑
n=1

(−Tq)
nTwy(x)

=
∫ b

0
Gw(x, s)y(s)ds +

∞

∑
n=1

(−1)n
∫ b

0
G∗nq ∗ Gw(x, s)y(s)ds

=
∫ b

0

(
Gw(x, s) +

∞

∑
n=1

(−1)nG∗nq ∗ Gw(x, s)

)
y(s)ds =

∫ b

0
G(x, s)y(s)ds.

The above calculations lead to the thesis of Proposition 4; namely, operator T, defined
by series (53), is correctly defined on space L2

w(0, b) = L2(0, b) as an integral operator with
a continuous kernel G:

Ty(x) =
∫ b

0
G(x, s)y(s)ds.

Having constructed operator T, we now prove the equivalence result, connecting the
differential and integral fractional Sturm–Liouville problems in the general case.

Proposition 5. If (H1) and condition (52) are fulfilled, w, q ∈ C[0, b] and function w is positive,
then the following equivalence is valid on the CD[0, b] space

Lqy(x) = λw(x)y(x)⇐⇒ Ty(x) =
1
λ

y(x), (55)

where the Lq operator is defined in (22) and the T operator is given in (53) with a kernel determined
by series (A9) with K(x, s) = G1(x, s) .

Proof. We recall that for any function y ∈ CD[0, b], we have (proof of Proposition 2)

Tw
1

w(x)
L0y(x) = y(x),

and we extend this equality to the analogous formula for operators T and Lq

T
1

w(x)
Lqy(x) = T

1
w(x)

L0y(x) + T
q(x)
w(x)

y(x)

=

(
Tw +

∞

∑
n=1

(−Tq)
nTw

)
1

w(x)
L0y(x) + Tqy(x) +

∞

∑
n=1

(−Tq)
nTqy(x)
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= y(x) +
∞

∑
n=1

(−Tq)
ny(x) + Tqy(x) +

∞

∑
n=1

(−Tq)
nTqy(x)

= y(x),

where we calculate the corresponding formulas for series by using the fact that operator
T is a uniformly convergent series (Proposition 4) when acting on the CD[0, b] space. For
differential FSLE,

1
w(x)

Lqy(x) = λy(x)

after calculating the image of the T operator of functions on both sides of FSLE

T
1

w(x)
Lqy(x) = y(x) = λTy(x),

we obtain the integral fractional Sturm–Liouville equation in the form of

Ty(x) =
1
λ

y(x).

In the next step, we assume that the above integral FSLE is fulfilled. Then, function
y ∈ CD[0, b]. We apply the differential operator Lq to both sides of the integral FSLE

LqTy(x) =
1
λ
Lqy(x).

For the composition of operators on the left-hand side, we get for continuous functions
f , y ∈ CD[0, b]

L0Tw f (x) = w(x) f (x), L0Tq f (x) = q(x) f (x),

L0(−Tq)
nTwy(x) = −q(x)(−Tq)

n−1Twy(x).

Applying Proposition 4 again, we obtain the following result for the composition of
the Lq and T operators

LqTy(x) = (q(x) + L0)

(
Twy(x) +

∞

∑
n=1

(−Tq)
nTwy(x)

)

= q(x)Twy(x) + q(x)
∞

∑
n=1

(−Tq)
nTwy(x) + w(x)y(x)− q(x)

∞

∑
n=1

(−Tq)
n−1Twy(x)

= w(x)y(x).

From this relation, we derive the differential fractional eigenvalue equation

w(x)y(x) =
1
λ
Lqy(x)

which leads to the differential fractional Sturm–Liouville equation:

Lqy(x) = λw(x)y(x)

and this ends the proof of equivalence (55).

Now, we generalize the Sturm–Liouville operator Lq by introducing Prabhakar deriva-
tives and we move on to the Prabhakar Sturm–Liouville problem (PSLP) determined in
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Definitions 2 and 4 and discussed in [26] in the case when the solutions’ space is restricted
by the mixed homogeneous boundary conditions.(

1
w
L′q − λ

)
y(x) = 0

We obtain the intermediate form of the integral fractional Prabhakar eigenvalue
equation applying composition rules (18)–(21)

(1 + Tq)y(x) = Twy(x), (56)

where integral operator Tw is given in Formula (37) and operator Tq looks as follows:

Tqy(x) = Eα
ρ,γ,ω,0+

1
p

Eα
ρ,γ,ω,b−q(x)y(x) (57)

−
Eα

ρ,γ,ω,0+
1
p Eα

ρ,γ,ω,b−q(x)y(x)|x=b

Eα
ρ,γ,ω,0+

e−γ
ρ,α (ω(b−x)ρ)

p(x) |x=b

· Eα
ρ,γ,ω,0+

e−γ
ρ,α (ω(b− x)ρ)

p(x)
.

Similar to the previous calculations for FSLP, operators (37) and (57) can be rewritten
as integral operators (38), with kernel G2 given in (40) for r = w and r = q, respec-
tively. Again, we apply Theorem A1 to invert operator 1 + Tq. First, we check the as-
sumption of Theorem A1, assuming that (H2) is fulfilled and applying Corollary A1 with
K(x, s) = G2(x, s):

||Gw(·, s))|| = sup
v∈[0,b]

|Gw(v, s)|

= sup
v∈[0,b]

|G2(v, s)w(s)| ≤ ||w|| sup
v∈[0,b]

|G2(v, s)|

≤ ||w|| sup
v∈[0,b]

(
|G2(v, s)− G2(0, s)|+ |G2(0, s)|

)
≤ ||w|| ·M2 sup

v∈[0,b]
|v|β = ||w|| ·M2 · bβ < ∞.

Next, we write condition (A8) in the explicit form:

ξ = sup
x∈[0,b]

∫ b

0
|q(s)G2(x, s)|ds (58)

= sup
x∈[0,b]

∫ b

0
|q(s)| ·

∣∣∣∣∣KP
1 (x, s)−

KP
1 (b, x)KP

1 (b, s)
KP

1 (b, b)

∣∣∣∣∣ds < 1.

In the proposition below, we describe the inverse operator (1 + Tq)−1 connected to
the intermediate Equation (56). We omit the proof as it is a straightforward corollary of
Theorem A1, and the full proof is analogous to that of Proposition 4.

Proposition 6. Let (H2) be fulfilled, w, q ∈ C[0, b] and function w be positive. If condition (58) is
fulfilled, then for any function y ∈ L2(0, b) series on the right-hand side of the formula below is
uniformly convergent on interval [0, b]:

Ty(x) := (1 + Tq)
−1Twy(x) = Twy(x) +

∞

∑
n=1

(−Tq)
nTwy(x), (59)

where operators Tq, Tw are defined in (A6) and (A7) with K(x, s) = G2(x, s). In addition, se-
ries (A9) determining kernel of integral operator T in (59) is uniformly convergent on square ∆ and
kernel G is continuous on ∆.
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Similar to Proposition 5, we formulate the equivalence result for integral and differ-
ential version of eigenvalue equations corresponding to PSLP. The proof is based on the
composition rules (18) and (19) and on Proposition 6, which describes inverse integral
operator (1 + Tq)−1. We omit the proof as it is analogous to the proof of Proposition 5.

Proposition 7. If (H2) and condition (58) are fulfilled, w, q ∈ C[0, b] and function w is positive,
then the following equivalence is valid on the CD[0, b] space

L′qy(x) = λw(x)y(x)⇐⇒ Ty(x) =
1
λ

y(x), (60)

where the L′q operator is defined in (26), T operator is given in (59) with the kernel determined by
the series (A9) and K(x, s) = G2(x, s) .

4. Results on the Spectrum of Integral and Differential Fractional and Fractional
Prabhakar Sturm–Liouville Problems

In the previous section, we discussed and proved the results on the equivalence of
differential and integral forms of fractional eigenvalue problems. First, Propositions 2 and 3
describe the equivalence for fractional and fractional Prabhakar Sturm–Liouville problems
when fractional differential operators are respectively L0 and L′0, i.e., q = 0. In this case,
the corresponding integral operators are Tw with kernels G1 and G2. We prove the spectral
results for these operators by applying the Hilbert–Schmidt theorem.

4.1. Case: q = 0

Theorem 1. If (H1) is fulfilled and w ∈ C[0, b] is a positive function, then the spectrum of operator
Tw defined by (38) and (39) is a discrete one, enclosed in the interval (−1, 1), with 0 being its
only limit point. Eigenfunctions belong to the CD[0, b] space and form an orthogonal basis in the
L2

w(0, b) space.
If (H2) is fulfilled and w ∈ C[0, b] is a positive function, then the spectrum of operator

Tw defined by (38) and (40) is a discrete one, enclosed in the interval (−1, 1), with 0 being its
only limit point. Eigenfunctions belong to the CD[0, b] space and form an orthogonal basis in the
L2

w(0, b) space.

Proof. Let us observe that when weight function fulfils the assumptions of the theorem,
we have for functions spaces

L2(0, b) = L2
w(0, b), L2(∆) = L2

w⊗w(∆).

The integral Hilbert–Schmidt operator Tw, defined by kernel G1, is a compact one, as
this kernel is a function continuous on square ∆ and G1 ∈ L2

w⊗w(∆).
It is also a self-adjoint operator on L2

w(0, b), because kernel G1 is a symmetric function
on square ∆, and for an arbitrary pair of functions f , g ∈ L2

w(0, b), we obtain:

〈g, Tw f 〉w =
∫ b

0
dx
(

w(x)g(x)
∫ b

0
G1(x, s) f (s)w(s)ds

)

=
∫ b

0
ds
(

w(s) f (s)
∫ b

0
G1(s, x)g(x)w(x)dx

)
= 〈 f , Twg〉w = 〈Twg, f 〉w.

The thesis is a straightforward result of the Hilbert–Schmidt spectral theorem. We
omit the proof of the second part as it is analogous to the one presented above.

The spectral theorem for integral fractional and Prabhakar Sturm–Liouville opera-
tors together with the equivalence results, included in Propositions 2 and 3, lead to the
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theorem on the spectrum of differential fractional eigenvalue problems subjected to the
homogeneous Dirichlet boundary conditions in the case when q = 0.

Theorem 2. If (H1) is fulfilled and w ∈ C[0, b] is a positive function, then the spectrum of
operator L0 defined by (22) and considered on the CD[0, b] space is a discrete one, and |λn| → ∞.
Eigenfunctions belonging to the CD[0, b] space form an orthogonal basis in the L2

w(0, b) space.
If (H2) is fulfilled and w ∈ C[0, b] is a positive function, then the spectrum of operator L′0,

defined by (26) and considered on the CD[0, b] space is a discrete one and |λn| → ∞. Eigenfunctions
belonging to the CD[0, b] space form an orthogonal basis in the L2

w(0, b) space.

4.2. General Case q 6= 0

We observe that the analogous equivalence of differential and integral FSLP holds
in the general case q 6= 0 as well. This result is given by Proposition 5. Analogously,
Proposition 7 gives the equivalence relation of both versions of the fractional Prabhakar
Sturm–Liouville problem. The results, included in the mentioned propositions, allow
us to rewrite eigenvalue equations, replacing the differential FSLO and PSLO with the
corresponding integral operators T. These operators, first determined as operator series
with convergence described in Propositions 4 and 6, are in fact integral Hilbert–Schmidt
operators. Their kernels—sums of a uniformly convergent series of convolutions—are
continuous functions on square ∆. The theorem below describes the spectrum of fractional
integral operators T with kernel G, determined by kernels G1 and G2, respectively.

Theorem 3. If (H1) and condition (52) are fulfilled, w, q ∈ C[0, b] and w is a positive function;
then the spectrum of operator T defined by (53) with kernel G given in (A9) with K(x, s) = G1(x, s)
is a discrete one, enclosed in interval (−1, 1), with 0 being its only limit point. Eigenfunctions
belong to the CD[0, b] space and form an orthogonal basis in the L2

w(0, b) space.
If (H2) and condition (58) are fulfilled, w, q ∈ C[0, b] and w is a positive function, then the

spectrum of operator T is defined by (59), with kernel G given in (A9) and with K(x, s) = G2(x, s)
is a discrete one, enclosed in interval (−1, 1), with 0 being its only limit point. Eigenfunctions
belong to the CD[0, b] space and form an orthogonal basis in the L2

w(0, b) space.

Proof. Let us again observe that when the weight function fulfils assumptions of the
theorem; we have for spaces considered as sets of functions

L2(0, b) = L2
w(0, b), L2(∆) = L2

w⊗w(∆).

Integral Hilbert–Schmidt operator T, defined by kernel G, is a compact one as this
kernel is a continuous function on square ∆ and G ∈ L2

w⊗w(∆).
We recall (proof of Theorem 1) that on the L2

w(0, b) space, the following equality holds
for the arbitrary pair of functions f , g ∈ L2

w(0, b):

〈g, Tw f 〉w = 〈Twg, f 〉w

because kernel G1 is a symmetric function on square ∆. Next, for the composition of
operators TqTw, we obtain the relation

〈g, TqTw f 〉w = 〈g, Tw
q
w

Tw f 〉w = 〈 q
w

Twg, Tw f 〉w = 〈TqTwg, f 〉w.

Now, we apply the mathematical induction principle to prove that such relations hold
for arbitrary n > 1 natural. We formulate an induction hypothesis in the form of

〈g, (Tq)
nTw f 〉w = 〈(Tq)

nTwg, f 〉w (61)

and for step n + 1, we achieve
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〈g, (Tq)
n+1Tw f 〉w = 〈g, Tq(Tq)

nTw f 〉w = 〈 q
w

Twg, (Tq)
nTw f 〉w

= 〈(Tq)
nTw

q
w

Twg, f 〉w = 〈(Tq)
n+1Twg, f 〉w.

Applying the mathematical induction principle, we infer that Formula (61) is valid for
all natural numbers n ≥ 1. We use this formula in the proof of the fact that integral operator
T is a self-adjoint one. Remembering that it is represented by a series, uniformly convergent
on the Hilbert space (Proposition 4), we calculate the scalar product term by term

〈g, T f 〉w =

〈
g,

(
Tw +

∞

∑
n=1

(−Tq)
nTw

)
f

〉
w

= 〈Twg, f 〉w +
∞

∑
n=1

(−1)n〈(Tq)
nTwg, f 〉w

=

〈(
Tw +

∞

∑
n=1

(−Tq)
nTw

)
g, f

〉
w

= 〈Tg, f 〉w.

To conclude, the integral operator T with a kernel G given in (A9) with K(x, s) =
G1(x, s) is a compact and self-adjoint operator on Hilbert space L2

w(0, b). Therefore, the
thesis of the first part of the theorem holds by the Hilbert–Schmidt spectral theorem.

Proof of the second part for operator T, associated with the integral PSLP with homo-
geneous Dirichlet boundary conditions, is analogous.

Now, we apply the above spectral theorem for integral fractional eigenvalue problems,
with equivalence results enclosed in Propositions 5 and 7 to formulate a theorem on discrete
spectra for differential fractional and fractional Prabhakar Sturm–Liouville problems.

Theorem 4. If (H1) and condition (52 ) are fulfilled, w, q ∈ C[0, b] and w is a positive function,
then the spectrum of operator Lq defined by (22) and considered on the CD[0, b] space is a discrete
one, and |λn| → ∞. Eigenfunctions, belonging to the CD[0, b] space, form an orthogonal basis in
the L2

w(0, b) space.
If (H2) and condition (58) are fulfilled, w, q ∈ C[0, b] and w is a positive function; then the

spectrum of operator L′q defined by (26) and considered on the CD[0, b] space, is a discrete one
and |λn| → ∞. Eigenfunctions, belonging to the CD[0, b] space, form an orthogonal basis in the
L2

w(0, b) space.

5. Discussion

In this paper, we presented results on the discrete spectrum of fractional and fractional
Prabhakar Sturm–Liouville problems in a case when eigenfunctions’ space is subjected
to the homogenous Dirichlet boundary conditions. First, we extended the idea of the
fractional to the fractional Prabhakar eigenvalue problem, where the Sturm–Liouville
operator was constructed by using the left and right Prabhakar derivatives.

Prabhakar derivatives, with respect to time, were recently applied in anomalous diffu-
sion models [27,28]. The derived spectral results for regular PSLP with Dirichlet boundary
conditions will be used in developing equations with fractional partial derivatives with
respect to the space–variable.

It appears that the method of converting the differential eigenvalue problem into
the equivalent integral one can be applied to both types of Sturm–Liouville operator.
This approach, developed in [13,14] for fractional eigenvalue problems subject to the
homogeneous mixed and Robin boundary conditions, is extended to the case of FSLP with
Dirichlet boundary conditions and generalized to PSLP with the same type of conditions.
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Let us point out that the spectrum and eigenfunctions of fractional eigenvalue prob-
lems with Dirichlet boundary conditions were also studied in [11,16] by applying varia-
tional methods. The first of these papers describes the spectrum of FSLP for a fractional
order in the range (1/2, 1], and the spectral result was extended to range (0, 1/2] in [16].
Comparing both of the methods—the variational one and the transformation into integral
FSLP/PSLP—we observe that in the case of Dirichlet boundary conditions, the range of
order is wider in the variational method. Nevertheless, the approach proposed here has
an advantage of providing the spectral results for regular PSLP as well. Simultaneously,
we obtain eigenfunctions’ systems for both types of eigenvalue problems, which provide
orthogonal bases in the corresponding Hilbert spaces. Such bases are a meaningful tool
in applications in constructing and solving partial differential fractional equations, for
example, space-fractional diffusion equations in the finite domain, as well as fractional
equations governing control systems (compare references and examples in [29]).

6. Conclusions

The results developed in this paper describe the spectrum and eigenfunctions proper-
ties for FSLP and PSLP subjected to homogeneous Dirichlet boundary conditions. It seems
that the conversion method can also be easily applied to other Prabhakar Sturm–Liouville
problems; in particular, we shall construct the corresponding mixed, Robin, and Neumann
boundary conditions and develop the equivalence results. Then, we will construct the inte-
gral PSLO with kernels analogous to those from the papers [13,14] and study the spectral
properties, both for the integral and differential PSLPs.

Regarding the extension of the range of fractional order for the conversion method,
we observe that so far we proved equivalence results on the space of continuous solutions.
This restriction is connected to the version of Hölder condition for kernels, as discussed
in Lemma A1 and Corollary A1. Thus, the aim of our future work will be to weaken this
condition and to extend the range of fractional order.

Further, our investigations will include numerical simulations in order to derive
approximate values of eigenvalues and eigenfunctions. As was shown in the papers [13,14],
the integral form of the fractional Sturm–Liouville eigenvalue equation is particularly
useful as a first step of the numerical method of solving FSLP. Thus, our aim will be to
discretize integral eigenvalue problems and apply the equivalence results, enclosed in
Propositions 2 and 3 for the case q = 0, and in Propositions 5 and 7, when q 6= 0. In this
way, we shall arrive at numerical solutions of differential FSLP and PSLP with Dirichlet
boundary conditions.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Appendix A.1

Let us point out that the three-parameter Mittag–Leffler function (11), which appears
in the definition of the Prabhakar function (12), is a completely monotone function [30],
and this property leads to the following two inequalities. First, when parameters α, ρ, γ, ω
are real and obey conditions

α ∈ (0, 1], min{ρ, γ} > 0, ω < 0, α ≥ ργ, ρ ≤ 1,
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the three-parameter Mittag–Leffler function is bounded on any interval [0, b] (Me is a
constant)

|Eγ
ρ,α(ωxρ)| ≤ Me

and it fulfills the Lipschitz condition on this interval (ML is a constant)

|Eγ
ρ,α(ω(x′)ρ)− Eγ

ρ,α(ωxρ)| ≤ ML|(x′)ρ − xρ|.

In addition, we remember that the power function obeys the Hölder condition on
interval [0, 1] when ρ ≤ 1 (Mρ is a constant)

|(y′)ρ − yρ| ≤ Mρ|y′ − y|ρ, y′, y ∈ [0, 1].

All the above inequalities will be applied to derive properties of a fractional integral
operator associated to the differential Prabhakar Sturm–Liouville operator (PSLO). In
particular, they are important in the study of Hölder continuity and the continuity of
kernels of integral versions of Prabhakar Sturm–Liouville operators. The lemma below
summarizes the Hölder continuity properties of kernels K1, KP

1 and was proven in [26]
(compare Properties 3.2 and 3.3).

Lemma A1. If (H1) is fulfilled, then kernel K1, given by (41), obeys the Hölder-type condition, i.e.,
there exists coefficient β ∈ (0, 1] and function m ∈ L2(0, b) such that

|K1(x′, s)− K1(x, s)| ≤ m(s)|x′ − x|β, (A1)

where β = α− 1/2 and

m(s) =
2bα−1/2||1/p||

(Γ(α))2(α− 1/2)

is a constant function.
If (H2) is fulfilled, then kernel KP

1 , given by (42), obeys the Hölder-type condition, i.e., there
exists coefficient β ∈ (0, 1] and function m ∈ L2(0, b) such that

|KP
1 (x′, s)− KP

1 (x, s)| ≤ m(s)|x′ − x|β, (A2)

where β = min{α− 1/2, ρ} and

m(s) = max{bα−1/2, b2α−1−ρ} · ||1/p|| ·Me

α− 1/2
· (2Me + ML Mρbρ)

is a constant function.

Analyzing the construction of kernels G1 and G2, we obtain the following corollary.

Corollary A1. If (H1) is fulfilled, then kernel G1, defined by Formulas (39) and (41), obeys the
Hölder-type condition, i.e., there exists coefficient β ∈ (0, 1] and constant M1 such that

|G1(x′, s)− G1(x, s)| ≤ M1|x′ − x|β, (A3)

where β = α− 1/2 and

M1 =
2bα−1/2||1/p||(1 + ||1/p|| · ||p||)

(Γ(α))2(α− 1/2)
.

If (H2) is fulfilled, then kernel G2, defined by Formulas (40) and (42), obeys the Hölder-type
condition, i.e., there exists coefficient β ∈ (0, 1] and constant M2 such that

|G2(x′, s)− G2(x, s)| ≤ M2|x′ − x|β, (A4)
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where β = min{α− 1/2, ρ} and

M2 = max{bα−1/2, b2α−1−ρ} · ||1/p||(1 + ||1/p|| · ||p||) ·Me

α− 1/2
· (2Me + ML Mρbρ).

Proof. We prove the Hölder-type condition for kernel G1 by applying Lemma A1 and the
symmetry property of kernel K1 given in (43). We begin by estimating values K1(b, b) and
K1(b, s):

|K1(b, b)| =
∣∣∣∣∫ b

a

(b− t)2α−2

(Γ(α))2 p(t)
dt
∣∣∣∣ = ∫ b

a

(b− t)2α−2

(Γ(α))2|p(t)|dt

≥ (b− a)2α−1

(Γ(α))2(2α− 1)||p|| ,

|K1(b, s)| =
∣∣∣∣∫ s

a

(b− t)α−1

Γ(α)
· (s− t)α−1

Γ(α)
1

p(t)
dt
∣∣∣∣

≤
∣∣∣∣∣∣∣∣ 1p
∣∣∣∣∣∣∣∣ · (b− a)2α−1

(Γ(α))2(2α− 1)
.

Now, we apply the derived inequalities and condition (A1)

|G1(x′, s)− G1(x, s)| =

=

∣∣∣∣K1(x′, s)− K1(b, x′)K1(b, s)
K1(b, b)

− K1(x, s) +
K1(b, x)K1(b, s)

K1(b, b)

∣∣∣∣
≤ |K1(x′, s)− K1(x, s)|+ |K1(x′, b)− K1(x, b)| ·

∣∣∣∣K1(b, s)
K1(b, b)

∣∣∣∣
≤ |x′ − x|βm(s)

(
1 +

∣∣∣∣K1(b, s)
K1(b, b)

∣∣∣∣)
≤ m(s)(1 + ||1/p|| · ||p||)|x′ − x|β

= M1|x′ − x|β,

where

M1 =
2bα−1/2||1/p||(1 + ||1/p|| · ||p||)

(Γ(α))2(α− 1/2)
.

The proof of the Hölder condition for kernel G2 is analogous.

The next corollary results from the Hölder conditions (A3) and (A4) and symmetry
properties of kernels G1, G2 given in (43) and yields continuity of both kernels on square
∆ = [0, b]× [0, b].

Corollary A2. If (H1) is fulfilled, then kernel G1, defined by Formulas (39) and (41), is continuous
on square ∆ = [0, b]× [0, b].

If (H2) is fulfilled, then kernel G2, defined by Formulas (40) and (42) is continuous on square
∆ = [0, b]× [0, b].

Proof. Let us note that the symmetry of kernel G1 allows us to write condition (A3) in the
following form

|G1(x′, s′)− G1(x, s)| ≤ M1

(
|x′ − x|β + |s′ − s|β

)
.

To prove continuity of the kernel, we apply the Cauchy definition of continuous func-
tion, i.e., we take arbitrary ε > 0 and assume that the distance between points (x′, s′), (x, s)

is smaller than δ(ε) =
(

ε
2M1

)1/β
, which means
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|(x′, s′)− (x, s)| =
√
(x′ − x)2 + (s′ − s)2 < δ(ε).

We observe that the following inequalities are then valid

|x′ − x| < δ(ε), |s′ − s| < δ(ε).

Now, we check the distance between the values of function G1:

|G1(x′, s′)− G1(x, s)| ≤ M1

(
|x′ − x|β + |s′ − s|β

)
≤ M1 · 2(δ(ε))β = ε.

We see that for arbitrary ε > 0, bound δ(ε) for the distance of points exists, such that
the implication below is valid

|(x′, s′)− (x, s)| < δ(ε) =⇒ |G1(x′, s′)− G1(x, s)| < ε.

Thus, kernel G1 is a continuous function on square ∆ by the Cauchy definition of
continuity.

Proof for kernel G2 is analogous.

Appendix A.2

We shall study properties of integral equations of the form:

(1 + Tq)y(x) = λTwy(x) (A5)

determined on the L2
w(a, b) function space. Such an equation is the intermediate stage

of transformation of the fractional differential eigenvalue problems into the equivalent
integral ones (see examples in papers [13,14]). In cases where the integral operator on the
left-hand side of (A5) is invertible, we can convert fractional differential Sturm–Liouville
operator into an integral one. Then, we can study spectral properties of the integral operator
and derive results for the spectrum and eigenfunctions of the fractional differential Sturm–
Liouville problems connected to various homogeneous boundary conditions.

Operators Tq and Tw are integral ones, with kernels given in the form of

Tqy(x) :=
∫ b

a Gq(x, s)y(s)ds, Gq(x, s) = K(x, s)q(s), (A6)

Twy(x) :=
∫ b

a Gw(x, s)y(s)ds, Gw(x, s) = K(x, s)w(s). (A7)

We formulate below a theorem which we shall apply to analyse integral eigenvalue
problems associated with the fractional differential ones.

Theorem A1. Let function q ∈ C[a, b] and function ||Gw(·, s)|| := supv∈[a,b] |Gw(v, s)| be
bounded on interval [a, b]. If condition

ξ := sup
x∈[a,b]

∫ b

a
|Gq(x, v)|dv < 1 (A8)

is fulfilled, then the series

G(x, s) := Gw(x, s) +
∞

∑
n=1

(−1)nG∗nq ∗ Gw(x, s) (A9)

is uniformly convergent on square ∆; i.e., the sum of this series G is determined for all points
(x, s) ∈ ∆.

If, in addition, kernels Gq, Gw ∈ C(∆), then sum G ∈ C(∆).
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Proof. We shall apply the mathematical induction principle to estimate all terms of series
(A9). First, we estimate the absolute value of the first convolution term:

|Gq ∗ Gw(x, s)| =
∣∣∣∣∫ b

a
Gq(x, v)Gw(v, s)dv

∣∣∣∣ (A10)

≤
∫ b

a
|Gq(x, v)Gw(v, s)|dv ≤ ||Gw(·, s)|| · sup

x∈[a,b]

∫ b

a
|Gq(x, v)|dv = ξ · ||Gw(·, s)||

and for the second term, we obtain

|Gq ∗ Gq ∗ Gw(x, s)| ≤ ξ sup
v∈[a,b]

|Gq ∗ Gw(v, s)| (A11)

≤ ξ2 · ||Gw(·, s)||.

Now, we formulate the induction hypothesis (here, n > 2 is a natural number):

|G∗nq ∗ Gw(x, s)| ≤ ξn · ||Gw(·, s)|| (A12)

and we shall prove that it holds for the next step n + 1

|G∗(n+1)
q ∗ Gw(x, s)| ≤ ξn+1 · ||Gw(·, s)||.

We begin from the left-hand side of the above inequality and we find

|G∗(n+1)
q ∗ Gw(x, s)| = |Gq ∗

(
G∗nq ∗ Gw

)
(x, s)|

≤ ξ sup
v∈[a,b]

|
(

G∗nq ∗ Gw

)
(v, s)|

≤ ξn+1 sup
v∈[a,b]

|Gw(v, s)| ≤ ξn+1 · ||Gw(·, s)||.

The induction hypothesis (A12) implies the validity of the next step for n+ 1; therefore,
we infer that estimation (A12) is valid for all terms indexed by n ≥ 1. Now, we are ready to
consider the convergence of the function series (A9) by using the Weierstrass convergence
test and inequality (A12). We observe that the majorant number series (a geometric one)
is absolutely convergent under the assumption (A8). Thence, the function series (A9) is
absolutely and uniformly convergent, as we achieve for any point (x, s) ∈ ∆∣∣∣∣∣Gw(x, s) +

∞

∑
n=1

(−1)nG∗nq ∗ Gw(x, s)

∣∣∣∣∣
≤ |Gw(x, s)|+

∞

∑
n=1

ξn||Gw(·, s)|| = |Gw(x, s)|+ ||Gw(·, s)|| · ξ
1− ξ

.

In the second part of Theorem 2, we note that continuity of kernels Gq, Gw implies that
all terms of the series (A9) are continuous as convolutions of continuous functions. The
absolutely and uniformly convergent series (A9) leads to sum G, which is also continuous
on ∆.
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