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Abstract: High-performance computing comprises thousands of processing powers in order to
deliver higher performance computation than a typical desktop computer or workstation in order
to solve large problems in science, engineering, or business. The scheduling of these machines
has an important impact on their performance. HPC’s job scheduling is intended to develop an
operational strategy which utilises resources efficiently and avoids delays. An optimised schedule
results in greater efficiency of the parallel machine. In addition, processes and network heterogeneity
is another difficulty for the scheduling algorithm. Another problem for parallel job scheduling is
user fairness. One of the issues in this field of study is providing a balanced schedule that enhances
efficiency and user fairness. ROA-CONS is a new job scheduling method proposed in this paper. It
describes a new scheduling approach, which is a combination of an updated conservative backfilling
approach further optimised by the raccoon optimisation algorithm. This algorithm also proposes a
technique of selection that combines job waiting and response time optimisation with user fairness.
It contributes to the development of a symmetrical schedule that increases user satisfaction and
performance. In comparison with other well-known job scheduling algorithms, the simulation
assesses the effectiveness of the proposed method. The results demonstrate that the proposed
strategy offers improved schedules that reduce the overall system’s job waiting and response times.

Keywords: conservative backfilling; job scheduling; optimization; parallel computer; raccoon opti-
mization algorithm

1. Introduction

The high-performance computers (HPCs) commonly comprise hundreds or thousands
of computer servers that are in a network together and each server is called a node. These
nodes will be access by the user with the assistance of middleware commonly referred to
as a scheduler. The middleware is responsible for allocating resources to users, providing
a framework for starting, executing, and monitoring work on allocated resources and
scheduling work for future execution. Job scheduling on these machines has a major impact
on the machines’ overall performance. In general, these systems use many resources and
a great deal of energy. Optimized job schedules on HPCs reduce the consumption of
resources and energy.

The purpose of HPC job planning is to design an operational strategy that makes
effective use of resources and eliminates idle time. The machine can therefore complete the
necessary procedures and produce the result in a quicker time. In addition, user fairness is
an important issue to consider while developing a plan. Jobs are allocated to HPCs by a
variety of users, and ensuring fairness among these users is a critical part of job scheduling.
A balanced or symmetrical plan strikes a balance between resource usage effectiveness and
user satisfaction.
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An HPC is made up of a number of discrete servers (computers), known as nodes,
that are linked together by a fast interconnect or network. These machines typically use
different types of network media for distinct communication features. Furthermore, these
supercomputers use numerous processors that have various processing capacities and
make the job scheduling more challenging. Generally speaking, a large network, various
processors, and non-uniform submitted jobs are the key challenges in dealing with job
schedulers in parallel computers.

Many researchers have investigated the impact of job schedules on parallel computer
performance [1-4]. These experiments have demonstrated that the superior job planning
algorithm improves efficiency and performance.

Two types of job scheduling algorithms are generally available, fixed, and flexible.
Fixed methods seek the optimal spot in the existing schedule for the arrived job. These
methods do not modify existing schedules and just obtain the appropriate position for the
job. Instead, when the new jobs are assigned a spot, the flexible techniques aim to adjust
the existing schedule.

Any scheduling algorithm’s principal objective is to gain a high-quality symmetrical
parallel machine schedule. The planning algorithm should be quick, accurate, and fair,
however. A sluggish programming algorithm can waste system resources and add addi-
tional overhead. These are our key reasons for proposing a new algorithm for scheduling
jobs. The proposed method is a high-level hybridization of fixed and flexible methods. It
combines the advantages of each method while overcoming their flaws. The suggested
method’s quality and performance are compared to three well-known task scheduling
algorithms: CONS, BF-EASY, and CONS-Tabu. The findings show that the suggested
scheduling method produces optimal execution plans, which improves overall system
performance and user satisfaction, symmetrically.

This paper is arranged as follows. Section 2 provides a background for job program-
ming. Section 3 goes through the proposed scheduling algorithm in detail. Section 4
displays the algorithm’s simulation pattern as well as the simulation results. The outcome
is also discussed in this section. Section 5 brings the study to a conclusion.

2. Related Work

The job scheduling method has been found to have a strong impact on the overall
performance of high-performance parallel computers [5,6]. An optimised algorithm con-
tributes to increasing the performance that reduces user waiting time and saves resources
and electricity usage.

The efficiency of the scheduling methods is increased by an optimum meta-heuristic
algorithm together with an effective hypergraph partitioning process. First Come First
Serve (FCFS) [7] is one of the classic methods for parallel job scheduling. This approach
delivers sufficient solutions for situations of small-scale systems but is not good at medium
and big scale. To cope with this issue, two basic approaches, the queue based and schedule
based methods, have been presented.

Queue methods (often referred to as priority algorithms) [8,9] feature several ap-
proaches such as Shortest Job First (SJF) [10,11], Minimum Due Date Time (MTTD) [12],
and Extensible Argonne Scheduling System (EASY) [13]. These types of planners are good
for modest high performance architectures (HPAs). However, they exhibit their bottlenecks
in the large-scale machines. The long waiting times for a large number of submitted jobs
are among the major problems with these schedulers [14,15].

The schedule-based algorithms are shown to be more flexible and designed to work
more efficiently [9,16,17]. Conservative backfilling algorithms (CONS) [18], a sort of
backfilling schedule, are one of the most famous schedule-based algorithms. Various
studies have shown their efficiency in static job scheduling for HPAs [19-21].

The backfilling uses a fixed scheduling order. Every submitted job is given room in
this way. Thus, the order of executions can be predicted. When the system receives a new
job, the algorithm creates a new place for it in an ad hoc manner. However, CONS avoids
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backfilling short jobs if it means slowing down the entire process, which has limited the
CONS. The findings in the prior literature indicate that the conservation algorithm for
backfilling is not adequately performed with regard to waiting time [18,22-24]. The key
cause for this low efficiency is the use of a fixed procedure in the schedule that does not
take into account other jobs in securing a gap [25].

In most cases, BF-EASY [26] and CONS-Tabu [27] outperformed other algorithms
such as the CONS algorithm. This result is almost trivial, as most of the other experiments
reported [20,28,29]. CONS'’s reservation approach is less efficient than the aggressive and
meta-heuristic methods employed in the BF-EASY and CONS-Tabu methods. BF-EASY
employs a locking system, which has a significant impact on reserving jobs and reduces
the opportunities for backfilling [19,20]. Other studies attempt to improve on this strategy
by employing meta-heuristics. In general, the scheduling in these algorithms is a fixed
technique, which means that this reservation has no effect on the prior schedule. However,
in terms of job waiting and response time, the fixed technique cannot ensure the best
performance of the system [27].

The flexible methods attempt to solve problems with fixed approaches. These solutions
employ a heuristic algorithm to reorganise the plan every time a new job enters the system.
These strategies enhance scheduling, but they are insufficient for real problems that will be
running for a long time [27,30].

This paper provides a hybrid approach for using the benefits of both approaches. It
consists of an improved conservative backfilling method (fixed method) as well as a flexible
method that employs a meta-heuristic algorithm to create an execution plan that reduces
job waiting and response time.

3. ROA-CONS Scheduling Algorithm

The ROA-CONS approach is proposed in this paper for scheduling jobs in heteroge-
neous high-performance parallel computers. This approach is an extension of the conserva-
tive backfilling method, in which an execution plan is devised using both fixed and flexible
approaches. The Raccoon Optimization Algorithm (ROA) is combined with conservative
backfilling fixed ordering to create ROA-CONS.

Algorithm hybridization is divided into two categories: high-level and low-level.
Low-level hybridization is a closely coupled set of algorithms that are interdependent.
High-level hybridization, on the other hand, is a loose coupling of algorithms that run
independently and the results are used after the algorithms are completed [31]. ROA-CONS
is a hybridization of the ROA and CONS at a high stage.

When a job arrives in the system, ROA-CONS uses a fixed method to reserve room for
it and produces a fixed schedule. After that, the ROA receives the schedule and tries to
improve it. To overcome the overhead bottleneck, this heuristic algorithm has two stop
conditions: the number of iterations and the time limit. The ROA creates a plan that is
flexible. Finally, a selection algorithm is used to choose the best schedule from the fixed
and flexible schedule options. A flowchart of this method is shown in Figure 1.

In order to gauge jobs, the specifications and details of these jobs should be mathe-
matically summarised. Modelling is the way in which the properties of applications are
collected. It refers to a mathematical data structure that can be used to describe processes
and jobs. The models also contain measures or metrics to evaluate the quality of the
schedule. These metrics contribute to the maximisation of the results of scheduling.

To account for the heterogeneity concept, the jobs must be modelled with the topology
of the super computer that will do these jobs. In current super computers, different sorts of
heterogeneity arise: heterogeneity of the processor and heterogeneity of the network. In
order to boost the schedule, both forms of heterogeneity must be considered.
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Figure 1. A general flowchart of ROA-CONS (the numbers above each arrow indicate its time sequence).

This article employs the MEMPHA modelling approach. This approach of modelling
provides a graph of the topology model (G = (V, €, wg,, wg,, cg,,cg,)) and a hyper-graphic
job model (H = (T, D, wy,cy)).

MEMPHA'’s topology model abstracts the parallel machine characters into a graph. In
a mathematical graph, it summarises the machine’s details, such as the processors, their
execution capacity, and the network media that connect processors. MEMPHA's topology
model is a graph G = (V, £, wg,, wg,, cg,, cg,) in which:

¢  The graph’s nodes are represented by V. Physical nodes in the target distributed
computer are represented by nodes in this model. The physical nodes in this graph
are processors and network switches;

e £ is the graph’s set of edges. The connections between processors and switches
(physical nodes) via network media are represented as graph edges;

¢  Each node in this graph has a positive weight, wg,_. It denotes the number of pro-
cessor cores represented by each node. This weight is 0 if the node represents a
network switch;

*  wg, is another weight assigned to each node that reflects the processor’s base clock
speed in gigahertz (GHz) if the node represents a processor, unless it is zero;

* g, is the cost assigned to each edge, and it indicates the connection delay for each
network media when transferring one kilobyte of data;

*  cg, is the additional cost associated with each edge, representing the bandwidth of
the respective network media.

The job model in MEMPHA records the features of the parallel application. In MEM-
PHA, ajob model is a hyper-graph 1 = (T, D, wy, ¢3;) in which:

e 7T denotes the hyper-graph’s set of nodes. Each task in the parallel application is
translated into a hyper-graph node;

* D denotes the hyper-graph’s set of hyper-arcs. Each data exchange between tasks in
the parallel application is translated into a hyper-arc;

*  wy is a positive weight applied to each node in the hyper-graph that represents the
task’s execution time on a single-core processor running at 1GHz;

®  The volume of the exchanged data element in kilobytes is denoted by ¢y, a positive
cost assigned to each hyper-arc.

MEMPHA also gives a set of metrics to help with scheduling. MEMPHA'’s metrics are
listed in Table 1.

MEMPHA'’s modelling technique covers heterogeneous architectures and collects
details on the heterogeneity of the networks and processors. For more specifics on the
MEMPHA modelling approach, please refer to [32].
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Table 1. Metrics provided by MEMPHA.

# Metric Description

1 Dilation(t,q) Delay of data transmission between two jobs t and g

2 Traf fic(u,v) The amount of data that transfers between two processors 1 and v.

3 Congestion(u,v) The ratio of traffic travelling across a link (between processors u and v) to its capacity.
4 Congestion(T') A lower bound on the total amount of time required for all communications
5 DVS(v) The total amount of data sent by a processor (v).

6 DVR(v) The total amount of data received by a processor (v).

7 TCV(T) Total communication volume.

8 DVSR(v) Data volume sent or received by a processor

9 MVSR(T) Maximum volume of data exchange in application

10 NM(v) Number of messages sent by a processor (v)

11 TM(T) Total number of messages exchanged in the application

As previously stated, a parallel machine receives a large number of jobs. Any of these
jobs are parallel applications that are made up of many tasks that will be run on the parallel
machine. These tasks, unlike jobs given to the machine, are interdependent. In addition to
scheduling jobs, tasks inside each job should be scheduled based on the resources that have
been allocated. This study employs the HATS task scheduling method. This strategy has
been found to be more efficient and accurate than competitors, resulting in schedules with
superior performance [33]. For further detail on the HATS scheduling algorithm, please
see [33].

Conservative Backfilling, ROA Ordering, and Selection are the three phases of the
scheduling process, as shown in Figure 1. These steps are described in detail in the
following sections.

3.1. Conservative Backfilling

The first phase in scheduling is the backfilling. It assigns a position to each job that
is submitted and predicts the order in which they will be executed. When a new job
is added to the system, the backfilling method introduces a new place for it. However,
since the proposed scheduling approach employs topology-aware multilevel hypergraph
partitioning, the backfilling process’s parameters and metrics must be redefined to meet the
topology-awareness objectives. When a new job is received by the scheduler, the backfilling
process places it in the fixed order.

The schedule is empty at the start of the scheduling process. The empty schedule has
been regarded as an endless gap. As a result, every new assignment would be allocated
promptly. It has also taken into account the fact that there is always an infinite gap at the
end of the schedule. As a result, if the backfilling cannot locate an appropriate place for the
job, it will be added to the end of the order.

There are various arrival times for the jobs submitted to the parallel machine. This
creates some gaps between jobs where the parallel machine is idle. The primary goal of
scheduling is to optimise job execution and resource management. In order to achieve this
objective, a conservative backfilling approach applies when a new job requires a gap in
order. Consider a job with several suitable gaps in order. Backfilling should choose which
gap to fill. This choice affects the system’s efficiency. Effective decision making results in
an optimised order.

To optimise, any optimisation technique requires one or more parameters. In the event
of a job scheduling challenge, the essential factors to optimise are job waiting time and
response time. The backfilling approach in this study takes these two primary criteria into
account while identifying the optimal gap for the incoming job. These items are defined in
the definitions that follow.
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Definition 1 (Job Waiting Time (Jwt)). The waiting time of a job, denoted as Jwtj,, is the
amount of time that the job must wait until the requested resources are assigned. The waiting time
for a job is determined by its location in the order.

Any job is made up of various tasks, which are modelled in hypergraph H. This
hypergraph is partitioned by the scheduling algorithm to formulate an execution schedule.
Multiple partitions make up an execution schedule. IT refers to the collection of all parti-
tions defined in the schedule. Each element in Il (I;) is executed by a single HPC processor.
As a result, the cumulative execution time of the tasks in partition (}_ wy,) divided by the
power of a processor (wg,(;)) reflects the partition’s execution time on that processor. The
job execution time is formally defined in Definition 2.

Definition 2 (Job Execution Time). Consider a parallel application submitted to the scheduler
Ji, its application model hypergraph Hj, = (T, D, wy, c3), the partitioning of this hypergraph
Iy I and the topology model of the parallel machine G = (V, &, wg,, wg,, cg " ch). The execution
time of this job Jet is as follows:

2 Y, e, W (tg)

Jet), = Z

i— wg, (i) @

Any task’s response time is the time it takes between the job submission and the
execution ends. The job will wait after submission until access to resources is obtained (Job
Waiting Time, as defines in Definition 1). Equation (1) shows the time required for any job
to be executed after gaining access to resources. The response time for any job is therefore
equal to its waiting time plus execution time. The formal response time is described in
Definition 3.

Definition 3 (Job Response Time). A job’s response time is the time between when the job is
submitted and when it is completed, i.e.,:

Jrty, = Jwty, + Jet;, (2)

When the backfilling receives a job, it creates a list of available gaps that could be
used to host the job. Afterwards, for each gap, the response time of the received job is
determined. The job is assigned to the gap with the shortest response time, and the order is
updated. The backfilling procedure is depicted in Pseudocode 1.

Pseudocode 1 Conservative Backfilling

Input: Current Schedule S, Incoming Job ], Application Model Hypergraph H =
(T, D, wy, cy ), Topology Model Graph G = (V, €&, WG, ;0 Coyy ), the partitioning
of this hypergraph Iy I
Output: Fixed Order order fixeq
1: procedure CONSERVATIVEBACKFILLING(S, J, H, G, IT)
2: availableGaps findGaps(S, ]), # Find all gaps which can host the job
for all ag € availableGaps do
A ety 21\1;[\1 ZWEEE;H(W;
5 Jrtjlag] < Jwty,, + Jet);
6: end for
7
8
9

w

selectedGap <— MIN(]Jrty);
order fixeq < place]ob(S, ], selectedGap); # Place | in selectedGap inside S
: end procedure
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3.2. ROA Ordering

The conservative backfilling method places the new job in the appropriate open slot.
It tries to discover the ideal opening for it, but it is unconcerned about the other jobs in the
order. However, if the scheduler re-sorts the position of the jobs in the order after adding a
job in a gap, it is feasible to achieve higher performance. By re-sorting the jobs, the ROA
ordering attempts to produce a superior order.

The Raccoon Optimization Algorithm is being used to optimise the fixed order gen-
erated by Conservative Backfilling. The Raccoon Optimization Technique (ROA) is a
multi-population optimization algorithm proposed in [34]. This algorithm has been proved
to be accurate and fast [35-37].

The ROA study demonstrated that this algorithm is both faster and more accurate than
its competitors. However, two stop criteria have been set for this optimization technique
to minimise any additional burden on the scheduler. The number of iterations (itr) is the
initial stop condition. This is a user-defined parameter that can be changed during runtime.
The time limit (reoffered as limit) is the second stop criterion. When the ROA optimization
iterates for (itr) times or when the running duration surpasses the (limit), it stops.

A fitness function is required for ROA, as it is for any other optimization process.
According to its fitness function, this algorithm optimises the order. The average response
time of the order is the fitness function for ROA to optimise the fixed order.

ROA ordering attempts to optimise an order (S) generated by the conservative back-
filling approach. Order S is a collection of jobs. The response time of any job in S was
determined using Equation (2). As a result, the average order response time (ART) is the
sum of the job response times divided by the number of jobs in S. Definition 4 provides a
formal description of the ART.

Definition 4 (Order Average Response Time). An order’s average response time is the average
of all tasks in that order’s response time. Consider the order S, wherein average response time is

determined as: ,
vjes

The ROA algorithm is a meta-population optimization method. By re-ordering the
order fiyeq, it is used to optimise (minimise) the average response time. ARTs, as defined
above, is the fitness function used in this optimization. ROA calculates the ARTs value
for various combinations of orders in order iy, and chooses the order with the shortest
average response time. As a result, a new order called order fjyp. has been formed.

3.3. Selection

All of the criteria utilised in the preceding phases were based on the system’s or jobs’
performance. However, a scheduler’s primary goal is not only to perform well from the
system’s point of view. A competent scheduler should be impartial. A scheduler’s fairness
refers to how it divides the parallel machine’s resources among the users.

There were two types of orders in the previous phases: fixed and flexible. One of these
orders is chosen as the system’s principal schedule during the selection phase. To determine
the final order, this selection method employs a variety of metrics. The selection approach
suggested in this paper is an extension of previous works [38—40] that also considers the
fairness criterion.

The fair-share principle [40] is one of the indicators utilised by the selection technique.
Ref. [27] develops a fair factor for parallel job scheduling algorithms. This factor seeks
to provide criteria for evaluating the system’s fairness to all users. This paper extends
it to match the characteristics of the ROA-CONS, taking into account more aspects of
the parallel application and parallel machine. The definition of the fairness factor in
ROA-CONS is as follows. This factor was employed as a decision criterion during the
ROA-CONS selection phase.
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(

weightselection =

Multiple jobs can be submitted to a machine by any user. The waiting time required
for any job was defined in Definition 1. As a result, a user’s overall waiting time is equal to
the sum of the waiting times for all of his jobs.

Definition 5 (User Total Waiting Time). Assume user; is a system user (job owner), and
Jjobsyser, is the collection of all jobs this user owns. Consider the waiting time for all jobs in jobsyser,
as described in Definition 1. The cumulative waiting time for this user, labelled as twt,se,, is
computed as follows:

twtyser; = Z ]ZUt]i 4)
Vjejobsusg,i

It is preferable in common parallel and distributed systems to prioritise less active
users over those who have frequent requests and numerous resources [40]. Many real-world
distributed systems, such as the Czech National Grid Infrastructure MetaCentrum [41],
have implemented this logic. When the user waiting time is normalised, this prioritisation
is applied to the users. The normalised waiting time for the user (nwt,s.,) is therefore
defined as follows.

twiyser;

©)

NWtyser; =

”buseri

The normalised waiting time for a user is defined by Equation (5). A parallel machine,
on the other hand, is used by several users. The average of waiting times (awt) provides a
global view of all users’” waiting times.

Definition 6 (Average Normal Waiting Time). Let Users represent the collection of all system
users. According to the preceding definitions, the average normal waiting time of system users awt

is calculated as follows:
1 |Users|

= — nwtyser, 6
|Users| l; e ©)
The average waiting time for all users should be reduced through a fair scheduling
method. Furthermore, users who request fewer resources should obtain the service faster.
The Common Least Squares approach [42] aids in the creation of a single factor that reflects
the system’s average waiting time as well as the users’ normalised waiting time.

Definition 7 (Fairness Factor). Inspiring the common Least Square method [42], the fairness
factor FF is defined as:
FF = 2 (awt — nwtyser, ) 7)

Yucusers

The fairness aspect (FF) contributes to increased user satisfaction. However, from the
standpoint of the system, a better order is one with lower waiting and response times. The
selection algorithm employs a combination of user fairness and job response and waiting
time to achieve an unbiased selection between user satisfaction and resource management.
As a result, a selection weight weight,jectio, is defined for the orders, which is utilised as a
measure to choose between two orders.

The strategy utilised by multi-objective optimization methods to integrate the
criteria ([38,39,43]) was utilised to produce the selection weight for two orders, order,
and ordery. As a result, the selection weight has been defined as follows:

1 1 . . 1 . 1 . .
Tordera] ZVonrder,, ]wtj [ordery,]| ZV]Eorderb IWt]> n < [ordery] ZV]eorderu ]Tt] Jordery| ZV]eorderb ]rt]) (Fporden, — FForderb ) (8)

1 .
[ordery] ZVjeorder,, ]wtj

1
Tordery] Lvjeorder, JTtj FForer,
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In summary, the selection phase’s pseudocode is provided in Pseudocode 2.

Pseudocode 2 Order Selection
Input:
Output: final order order ;)
1: procedure SELECTORDER(LL, Heoarsest, it" coarsening)

1 v 1y .
“’Vd”fix‘ ZV]eorderﬂx IWt] “’V’j”ﬂexible‘ vaeard"’flaxible ]wt/ .

2: vJwt + (

7

1 . .
forder ] ZV/Eurderfix Juwt;

1 . 1y .
W ZV]eorderﬂX ]Vf] |”rd€rflexible| ZV]eorderb ]rt]

3: ofrt + ( (—— I ;
\orderfix\ v]E‘Wderflexible 1
PForderﬁx _Fporderflexible

4: vFF + TT,

rderfix ’

5 weightserection < vJwt +vJrt + vFF;
b: if WEightselection > 0 then
7: order finq) 4 0rder fiexiple;
8 else

9 order fing) < ordersjy;

10: end if

11: end procedure

Finally, in Pseudocode 3 the overall scheduling process in ROA-CONS has been given.

Pseudocode 3 ROA-CONS Scheduling
Input: Application Model Hypergraph H = (7, D, wy, ¢y ), Topology Model Graph G =
V, & wg, Cd (g Coyi ), Current Schedule S, Incoming Job ], Set of users Users
Output: Updated Schedule schedule, pgated
1: procedure SELECTORDER(Hcoarsest, it coarsening)
2: IT + HATS(H,G);
3: order fjy <
CONSERVATIVEBACKFILLING(S, |, H, G, I1);
orderﬂexible — ROA(OTdET’fZ‘x, H, G, itr,limit);
schedule, paated <
SELECTORDER (order ¢y, order fiexipe, Users, H, G);
6: end procedure

4. Simulation and Evaluation

Simulation is usually a common way for assessing novel job scheduling algorithms.
In the literature, there are various high-performance computer (HPC) simulators, such as
GridSim [44], BigSim [45], and Performance Prediction Toolkit (PPT) [46]. GridSim is a
well-known and commonly utilised simulator that is used by numerous researchers [47-49].
It is a simulator for grids, parallel high-performance clusters, and peer-to-peer networks.
This simulator perfectly simulates heterogeneous systems [47]. However, it is difficult to
properly configure it to imitate HPC job planning.

The Alea [50] is a simulator that emulates scheduling in parallel HPC clusters based on
the newest GridSim (GridSim v5.0) toolkit. It inherits the features of the GridSim simulator,
making the job scheduling and mapping challenges on HPCs easier to set and run. Alea is
a modular simulator that has several components to imitate real-world HPC computers,
centralized schedulers, and task assignment systems. The broad overview of the structure
of Alea is shown in Figure 2.

The latest Alea simulator (Alea v4.0) is used in the paper to simulate the scheduling
and mapping in heterogeneous parallel architectures. To mimic the scheduling, Alea needs
valid datasets. These datasets, known as workloads, are logs of job execution collected
from various parallel systems around the world. These logs are in Standard Workload
Format (SWF) [51], which contains a great deal of information on the jobs submitted to the
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Figure 2. An overview of the structure of the Alea simulator

In addition to workloads, this simulator requires a description of the target HPC on
which the specified workload will run. Another configuration file is used to specify the
target machine’s structure, which includes HPC details such as the number of clusters,
their names, the number of nodes per cluster, the number of CPUs per node and their
speeds, and RAM per node. This configuration is a text-based file with one line for each of
the parallel distributed machine’s clusters. Pseudocode 4 contains a sample description of
an HPC with two clusters.

Pseudocode 4 Machine Configuration File in Alea [41]
1: //cluster_id name no_nodes CPUs_per_node CPU_speed RAM_per_node_(KB)
2: 0 zewura 20 80 3.2 529426432
3: 1 zegox 48 12 24 94035968

The proposed Raccoon Optimization Job Scheduling approach (ROA-CONS) has been
assessed using Alea simulation. This section summarises the findings of this evaluation.
Alea has also simulated three other common schedulers, scheduling the identical datasets.
The ROA-CONS findings were compared to those of other schedulers using two primary
metrics: job waiting time and job response time.

4.1. Benchmarks Datasets and Algorithms

Alea needs a proper workload in SWF format with the description of the target HPC,
as indicated in the preceding section. Two alternative workloads, Wagap and Zewura, are
used in this simulation. These datasets are real workloads from the Czech National Grid
Organization’s MetaCentrum parallel structure [41], and they are available via the Parallel
Workload Archive [52].

The Wagap data set comprises 17,900 jobs on a high-performance computer with two
clusters. For this dataset, the target machine is shown in Table 2.

Table 2. HPC Configurations for Wagap Workload.

# Nodes CPUS Per Node CPU Speed RAM Per Node (kb)

20 80 3.2GHz 529,426,432
2 48 12 2.4 GHz 94,035,968
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Zewura, the second dataset, comprises 17,257 jobs. This workload has been applied to
one HPC cluster. In Table 3 the configurations for this HPC are provided.

Table 3. HPC Configurations for Zewura Workload.

# Nodes CPUS Per Node CPU Speed RAM Per Node (kb)
20 4 3.2GHz 536,870,912

The simulation is conducted with a ROA-CONS scheduling algorithm in the same envi-
ronment together with three more scheduling techniques. Conservative backfilling (CONS),
Easy backfilling (BF-EASY) and Conservative backfilling Tabu Search (CONS+Tabu) are
the benchmark algorithms that are utilised for evaluation of ROA-CONS.

4.2. Results and Discussion

The simulation results are reported in this section. The proposed scheduling approach
(ROA-CONS) is tested on Alea with the three previously stated algorithms. The outcomes
recorded two key metrics: job waiting time and job response time. The charts below
summarise the average outcomes of ten simulations for each scheduling algorithm. Figure 3
depicts the average job waiting time, whereas Figure 4 depicts the average response time.

I8ROA-CONS 1 1CONS I8 BF-EASY 018 CONS+Tabu
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Figure 3. Waiting time for datasets.
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According to the simulation results, ROA-CONS aided in achieving a shorter waiting
time and response time. Previous research [18,22-24], as well as our findings, demonstrates
that conservative backfilling has a lesser efficiency in terms of optimising job waiting time.
This approach is a fixed technique, and as explained in Section 3, employing solely a fixed
technique does not reduce waiting time [25].

Furthermore, the CONS reservation approach is less efficient than the aggressive and
meta-heuristic methods employed in the BF-EASY and CONS-Tabu approaches, respec-
tively [20,28,29]. Furthermore, BF-EASY employs a locking system, which has a significant
impact on reserving jobs and reduces the options for backfilling [19,20].

CONS-Tabu provides relatively better outcomes in terms of job waiting time than the
other two benchmark scheduling algorithms. This technique employs the Tabu optimiza-
tion technique and improves on the BF-EASY approach, resulting in a better schedule than
BE-EASY.

ROA-CONS employs both fixed and flexible methods. It generates a fixed order
initially, then optimises it via ROA, and finally chooses the best order between them.
Using ROA allows the scheduler to re-arrange jobs in a fixed order to save waiting time.
Furthermore, the selection algorithm evaluates the orders based on their fairness factor as
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well as their average waiting and response time. All of this contributes to the selection of
an order with the smallest amount of waiting time for all users.

ROA-CONS benefits from the Model of Exascale Message-Passing Programs on Het-
erogeneous Architectures (MEMPHA), which was introduced in [32]. MEMPHA assists
ROA-CONS in delivering excellent details about the application and topology, allowing
them to make more informed judgments. Although the process of scheduling jobs has a sig-
nificant impact on resource management, the execution pattern of each job, which consists
of several tasks, is critical. The ROA-CONS technique assigns job tasks to processors using
the partitioning structure supplied by Heterogeneity Aware Task Scheduling (HATS) [33].

Experiments on HATS indicated that it can minimise the execution time of a parallel
programme by using topology-aware partitioning. As a result, it contributes to faster job
execution in ROA-CONS. As stated in Definition 3, a job’s response time is the sum of
its waiting time and execution time. As a result, by shortening the execution time, HATS
reduces the job’s response time. It is also one of the reasons behind the faster response time
gained by using ROA-CONS.

Faster execution and response times imply that the parallel machine must run for
a shorter length of time to execute the parallel application. It indicates that the parallel
application will consume fewer resources, such as energy, on the HPC. In this way, ROA-
CONS aids in parallel machine resource management and optimises resource consumption.

5. Conclusions

This paper introduces a job scheduling approach based on the Raccoon Optimization
Algorithm (ROA-CONS). This scheduling method is a high-level combination of fixed
and flexible techniques. This method employs two scheduling strategies. The use of
Conservative Backfilling first offers a fixed order. The Raccoon Optimization algorithm
then reorders the fixed order to get a flexible order. Finally, a selection algorithm chooses
the best order among the fixed and flexible alternatives.

ROA-CONS optimises orders from the perspective of the parallel machine by utilising
job waiting and job response time. Furthermore, it employs the fairness factor to determine
an order that is preferable in the eyes of the users (job owners). As a result, ROA-CONS
develop balanced schedules that are optimised for both the machine and the user. It
provides a symmetrical allocation that achieves a balance between job waiting and response
time reduction and user fairness.

The proposed scheduling algorithm’s performance is evaluated using simulation. The
Alea v4.0 Job Scheduling simulator simulates ROA-CONS as well as other well-known
scheduling approaches. The input benchmark data is real-world workloads, and the results
are compared based on job waiting and response times.

In simulations, two workloads are used: Zewura and Wagap. In terms of waiting time,
the results showed that, in the best situation, ROA-CONS managed to enhance performance
by 45.01 percent when compared to the CONS scheduling algorithm on Zewura workload.
In the worst-case scenario, it improved performance by 15.28 percent over the CONS-TABU
scheduling technique. Furthermore, on Wagap workload, ROA-CONS enhanced schedules
by 16.47 percent in the best scenario (compared to BF-EASY) and 7.08 percent in the worst
scenario (compared to the CONS-TABU method).

The second parameter measured was the job response time. In this parameter, ROA-
CONS enhanced the outcomes in Zewura workload by 13.51 percent in the best case
(compared to CONS) and 4.37 percent in the worst case (compared to CONS-TABU). ROA-
CONS, on the other hand, scheduled Wagap workload with a 7.78 percent improvement in
the best scenario (relative to BF-EASY) and a 1.78 percent improvement over CONS-TABU
(worst case).

In general, ROA-CONS produced better results than alternative scheduling approaches,
resulting in less waiting time and response time for jobs sent to the parallel computer. This
enhancement will reduce user waiting periods and aid to lower the parallel machine’s
energy consumption by shortening its execution time.
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A simulation method is used to evaluate the proposed method in this paper. The
authors intend to implement and test the approach on genuine parallel and distributed
machines in the future. Extending this technique to cover cloud-based and grid-based
systems is another area for development that the authors will investigate in the future.
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