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Abstract: The fixed effect meta-analytic structural equation modeling (MASEM) model assumes
that the population effect is homogeneous across studies. It was first developed analytically using
Generalized Least Squares (GLS) and computationally using Weighted Least Square (WLS) methods.
The MASEM fixed effect was not estimated analytically using the estimation method based on
moment. One of the classic estimation methods based on moment is the Generalized Method
of Moments (GMM), whereas GMM can possibly estimate the data whose studies has parameter
uncertainty problems, it also has a high accuracy on data heterogeneity. Therefore, this study
estimates the fixed effect MASEM model using GMM. The symmetry of this research is based on
the proof goodness of the estimator and the performance that it is analytical and numerical. The
estimation results were proven to be the goodness of the estimator, unbiased and consistent. To show
the performance of the obtained estimator, a comparison was carried out on the same data as the
MASEM using GLS. The results show that the estimation of MASEM using GMM yields the SE value
in each coefficient is smaller than the estimation of MASEM using GLS. Interactive GMM for the
determination of the optimal weight on GMM in this study gave better results and therefore needs to
be developed in order to obtain a Random Model MASEM estimator using GMM that is much more
reliable and accurate in performance.

Keywords: GMM; fixed effect model; meta-analysis; MASEM

1. Introduction

Currently, there are many scientific studies whose discussions have the same topic
but with various characteristics and results. Those studies are conducted from time to
time and space to space on several global problems with the same goals. This condition
demands researchers to review those scientific studies known as literature review. The
main reason of this is to strengthen the overall conclusion from the findings in those
studies [1]. Statistical methods that are capable of synthesizing studies, integrating studies,
and gathering evidence of the studies, for the purpose of integrating findings of those
studies, are called a meta-analysis [2]. A meta-analysis is defined as statistical analysis
used to integrate a large collection of the analytical results from previous studies. One
of the requirements needed in a meta-analysis is an assessment of the results of similar
studies by finding the effect size value.

The effect size meta-analysis value consists of four types, namely effect size based
on mean, proportion, odd ratio and correlation. The effect size based on correlation is
obtained from the correlation of measured models such as Structural Equation Modeling
(SEM). Currently, SEM is a widely used method in quantitative research. Many studies
apply SEM model in various fields, for example in the fields of economic and social [3,4],
education and health [5,6], engineering [7,8], and many others. The previous studies using
Structural Equation Modeling (SEM) technique were integrated with the meta-analysis

Symmetry 2021, 13, 2273. https://doi.org/10.3390/sym13122273 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6211-5696
https://doi.org/10.3390/sym13122273
https://doi.org/10.3390/sym13122273
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13122273
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13122273?type=check_update&version=2


Symmetry 2021, 13, 2273 2 of 11

based on the effect size correlation. The combination of SEM and meta-analysis technique
is called Meta-Analytic Structural Equation Modeling (MASEM). MASEM has two steps
of analysis, the first one is synthesizing the correlation or covariance matrix from several
studies, and the second one is applying the SEM technique to explain the relationship
between variables using combined correlation or covariance matrix [9].

MASEM is a correlated-based meta-analysis such that the type of MASEM data is a
correlation matrix of the previous studies. Effect size correlation is divided into univariate
and multivariate. Univariate effect size correlation is based on the bivariate correlation of
two studies, and multivariate effect size correlation is based on the multivariate correlation
of multiple studies. MASEM belongs to multivariate effect size correlation [10]. In general,
according to the homogeneity of the MASEM models, as well as meta-analysis models,
MASEM models are divided into fixed effect MASEM model and random effect MASEM
model [11,12]. The difference between those two models is on the fixed effect model in
an assumption that the population effect is homogeneous across studies such that the
variance between studies component is ignored, and there is only variance within studies
component in it. The random effect model is heterogeneous or there is variation on the
effect of the studies population that involves both variance components between studies
and within studies. In addition, the applied research of the MASEM method in Indonesia
is similar to the state of health in East Java [13–15].

The fixed effect MASEM model was first developed analytically using Generalized
Least Squares (GLS) method [16]. Further development was carried out computationally
using Weighted Least Square (WLS) method or also known as Two Stage SEM (TSSEM) [17].
The development of the fixed effect MASEM model is limited, although there are many
estimation methods that can be used to obtain more detailed study of the MASEM model.
This is contrast to the development of the random effect MASEM model which has been
widely studied, such as the DerSimonian and Laird’s method [18], the moment method [19],
maximum likelihood method [20], and etc.

In this study, the focus is on the fixed effect model MASEM as the first step in the
further development of MASEM. The MASEM fixed effect was not estimated analytically
using the estimation method based on moment. One of the classic estimation methods
based on moment is the Generalized Method of Moments (GMM). GMM was first devel-
oped by Las Peter Hansen in 1982. GMM is an extension of the moment method. Basically,
the GMM method compares the population moments with the sample moments then
making it possible to estimate data studies having uncertainty problem parameter. GMM
also has high level accuracy on data heterogeneity.

The MASEM model is sensitive to heterogeneity and the objective of MASEM is to
obtain the homogeneity of the data. Based on the description above, fixed effect MASEM
model needs to be developed analytically in order to obtain a good estimator and consider-
ing that MASEM is a method that has a problem with heterogeneity, and there is currently
no study developing the fixed effect MASEM model using GMM estimation technique.
Therefore, the researchers, in this study, propose a new method for estimating the fixed
effect MASEM model using GMM, which is estimated analytically.

The symmetry of this research is based on the proof goodness of the estimator and
the performance carried out by analytical and numerical. Estimation results for good-
ness of estimator proven by analytical were unbiased and consistent, while for estimator
performance test, the estimation results were tested in sample question [16] and then
compared with the performance of the estimation using GLS technique. The estimation
results obtained are intended to be a new benchmark for the MASEM model, which has
more reliable performance such that these results become a solution by integrating research
with the same subject often found on social, economic, educational and other problems.
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2. Literature Review

This section describes the definition of the Fixed Effect Meta-Analysis Model, Meta-
Analytic Structural Equation Modeling (MASEM) using Generalized Least Squares (GLS)
Approach and Generalized Method of Moments (GMM).

2.1. Fixed Effect Meta-Analysis Model

The meta-analysis based on the homogeneity of the effect size model is divided into
two types, namely fixed effect meta-analysis and random effect meta-analysis. The fixed
effect meta-analysis assumes that the effect size value that is similar to or homogeneous
among studies and the variance between studies is ignored in this model. There is only
variance in within study. The random effect meta-analysis assumes that it is heterogeneous
with there is variance between studies and within studies [11].

Fixed effect model is written as follows:

yi = βF + ei (1)

where

y = studies effect size vector;
β = combined effect size parameter;
e = sampling error;
i = 1, 2, . . . , k studies unit;
F = fixed effect case.

If ei assumes normally distributed with mean 0 and variance σ2
i . Weighted mean of

effect size estimation y in the fixed effect model is [4]

y =
∑k

i=1 wiyi

∑k
i=1 wi

(2)

where

yi = i-th studies effect size;
wi = 1

σ2
i

(i-th studies weight);

k = number of studies.

Sample variance S2
F with wi as weighting factor can be calculated using

S2
F =

1

∑k
i=1 wi

(3)

2.2. Meta-Analytic Structural Equation Modeling (MASEM) Using Generalized Least Squares
(GLS) Approach

Becker’s initial model in [16] is defined as regression model with k a collection of
correlation matrices and p predictor variables. Thus, the multiple correlation is p∗ = p(p+1)

2
will be estimated. This model is a multivariate meta-analysis model because the effect
size value in MASEM is based on multivariate correlation. The meta-analysis model,
namely Equation (1) is a univariate meta-analysis model and if the equation is applied to a
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multivariate model consisting of k studies and p∗ correlations, then it can be written in the
following form:

yi = βF + ei

y11
y12

...
y1p∗

y21
y22

...
y2p∗

...
yk1
yk2

...
ykp∗


kp∗×1

=



β1
β2
...

βp∗

β1
β2
...

βp∗
...

β1
β2
...

βp∗


kp∗×1

+



e11
e12
...

e1p∗

e21
e22
...

e2p∗
...

ek1
ek2
...

ekp∗


kp∗×1

y11
y12

...
y1p∗

y21
y22

...
y2p∗

...
yk1
yk2

...
ykp∗


kp∗×1

=



1 0 · · · 0
0 1 · · · 0

. . .
0 0 0 1
1 0 · · · 0
0 1 · · · 0

. . .
0 0 0 1

...
1 0 · · · 0
0 1 · · · 0

. . .
0 0 0 1


kp∗×p∗


β1
β2
...

βp∗


p∗×1

+



e11
e12
...

e1p∗

e21
e22
...

e2p∗
...

ek1
ek2
...

ekp∗


kp∗×1

Then, the Becker model, in which y equal r and β equal ρ, is:

r = Xρ + e (4)

where

r = correlation vector with kp∗ × 1 size;
X = identity matrix with kp∗ × p∗ size;
ρ = combined correlation vector p∗ × 1 size;
e = error vector (unexplained Variance) kp∗ × 1 which is approximated by Σ variance–
covariance matrix with kp∗ × kp∗ size.

If the GLS estimation steps have been carried out, it obtains

ρ̂ =
(

X′Σ−1X
)−1

X′Σ−1r (5)

var(ρ̂) =
(

X′Σ−1X
)−1

(6)

There are two models in the meta-analysis, which are fixed effect and random effect.
In the two models, there are differences in the estimator value, which lies in the value of
the variance-covariance matrices. Here is the difference between the two models:
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1. First effect model: Fixed effect meta-analysis model is ri = ρ + e where r ∼ N(0, Σ)
then the correlation matrix estimator is

ρ̂ =
(

X′Σ−1X
)−1

X′Σ−1r. (7)

var(ρ̂) =
(

X′Σ−1X
)−1

(8)

2. Random effect model: Random effect meta-analysis model is ri = ρi + e and ρi = ρ + ui
where r ∼ N(0, Σ + T) or equal to r ∼ N(0, Ψ) then the correlation matrix estimator is

ρ̂ =
(

X′Ψ−1X
)−1

X′Ψ−1r. (9)

var(ρ̂) =
(

X′Ψ−1X
)−1

(10)

2.3. Generalized Method of Moments (GMM)

There are many basic estimation methods, such as maximum likelihood estimation
(MLE) and ordinary least square (OLS). In addition to the basic method there is also another
basic estimation method which is Method of Moment (MM). MM can also be used as an
alternative method which can be used to find a consistent estimator of a parameter. The
basic pattern of this method of moment is to equate the population moments with the
corresponding sample moments.

The weakness of MM can only be applied in the case where the number of moment
conditions is equal to the number of estimated parameters, thus in 1982 The Generalized
Method of Moments (GMM) was introduced. GMM is one of the methods to estimating
parameters and an extension of Method of Moments (MM). The GMM estimator is used
on parameters that are overidentified by moment conditions. If we have more moment
conditions than the unknown parameters, it will result in overidentification estimates.
However, GMM can be used when the number of moment conditions is not the same
as the number of estimated parameters. This also allows GMM to work in cases of high
heterogeneity of data. The definition of GMM based on [21] is supposed there is an
observed sample (xk : k = 1, 2, . . . , K) to estimate the θ parameter which has size t× 1 to
the true value of θ0. Supposed E = [f(xk, θ0)] = 0 is the set of q conditional moments and
corresponding fK(θ) sample moments. The criteria function is defined as follows:

Qk(θ) = fK(θ)
TWfK(θ) (11)

where W is a positive definite matrix, such that θ̂ = argminθQk(θ).

3. Methodology

This section describes the Meta-Analytic Structural Equation Modeling (MASEM)
estimation method proposed using the method of Generalized Method of Moments (GMM).

3.1. Parameter Estimation of Meta-Analytic Structural Equation Modeling (MASEM)

The ordinary Structural Equation Modeling (SEM) model can be said to have v num-
ber of exogenous latent variables and one endogenous latent variable. Based on that
model, if there are p number of indicators of exogeneous latent v and endogenous latent
q indicators

(
y1, y2, . . . , yq, x1, x2, . . . , xp

)
, then there is t = p + q random variable that

can be written as (a1, a2, . . . , at) in each study having ni samples with total of k study.
The correlation among random variables of ae and as where ae, as ∈ (a1, a2, . . . , at) and

e 6= s is c∗ = t(t−1)
2 in the i study and is written as η =

[
ηi12, ηi13, . . . , ηi1t, ηi23, . . . , ηi(t−1)t

]′
which η is the sample correlation vector whereas the population correlation is written as

γ =
[
γi12, γi13, . . . , γi1t, γi23, . . . , γi(t−1)t

]′
.
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In this study the researchers also use several assumptions including:

1. a = [a1, a2, . . . , at]
′ ∼ Np(µ, Σ);

2. asymptotic normal distribution
√

ni(ηi − γi) ∼ N(0, Σ)
3. error vector ζ ∼ N(0, Σ) such that the value of Σi according to [22] can be defined

as follows:

Var
(
ηipq

)
=

(
1− γipq

)2

ni
(12)

and

Cov(ηist, ηiuv) =
[
0.5γistγiuv

(
γ2

isu + γ2
isv + γ2

itu + γ2
itv
)
+ γisuγitv+γisvγitu

−(γistγisuγisv + γitsγituγitv + γiusγiutγiuv + γivsγivtγivu)]/ni
(13)

3.2. Fixed Effect Generalized Method of Moment (GMM) Estimation

The fixed effect meta-analysis model assumes that the effect size value is similar for
each study and variance between study component is ignored. To estimate the correlation
vector in general with c∗ model length is as follows:

ηkc∗×1 = Ξkc∗×c∗γc∗×1 + ζkc∗×1 (14)

where

η = correlation vector between indicators in each study with kc∗ × 1 size;
γ = combined correlation vector with c∗ × 1 size;
Ξ = matrix created by stacking k identity matrix with kc∗ × c∗ size;
ζ = error vector (unexplained variance) with kc∗ × 1 size.

The steps for estimating the parameters from Equation (14) are as follows:

1. Determining the population moment condition [11]:

f(γ) = Ξ′(η− Ξγ) (15)

2. Determining the sample moment condition:

fK(γ) =
1
k

k

∑
i=1

(
Ξ′i(ηi − Ξiγ)

)
(16)

3. Constructing GMM function which is quadratic function of the sample moment:

QK(γ) = fK(γ)
′WfK(γ) (17)

where W is the weight estimator;
4. Minimizing function QK(γ) :

∂QK(γ)

∂γ
= 0 (18)

∂fK(γ)
′WfK(γ)

∂γ
= 0 (19)

5. After substituting Equation (16) to Equation (19), we obtain the parameter estimation
of GMM below:

γ̂GMM =
(

Ξ′ ΞW Ξ′ Ξ
)−1

Ξ′ ΞW Ξ′ η (20)

var(γ̂GMM) =
(

Ξ′ ΞW Ξ′ Ξ
)−1

Ξ′ ΞW Ξ′ Σ ΞW Ξ′ Ξ
(

Ξ′ ΞW Ξ′ Ξ
)−1 (21)

3.2.1. The Unbiased Properties of the GMM Estimator

One of the properties of a good estimator is unbiased, which means that the expected
value of the estimator is the same as the value of the parameter or it can be written as
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E(γ̂GMM) = γ. The unbiased properties of the GMM estimator satisfies Lemma 1 which
can be proved analytically by the proof found in Appendix A.

Lemma 1. If there is a Meta-Analytic Structural Equation Modeling (MASEM) model with a
population correlation vector η ∼ Np(µ, Σ), a sample correlation vector (γ) and an error vector
ζξ ∼ N(0, Σ)estimated by the generalized method of moment (GMM), the value of E(γ̂GMM) = γ
is unbiased.

3.2.2. The Consistent Properties of the GMM Estimator

The properties of good estimator are not only unbiased but also consistent. The
unbiased estimator γ̂GMM is consistent if lim

k→∞
QK(γ̂k) = 0 [23]. The consistent properties

of the GMM estimator satisfies Lemma 2 in which the proof is shown in Appendix B.

Lemma 2. If there is a Meta-Analytic Structural Equation Modeling (MASEM) model with a
population correlation vector η ∼ Np(µ, Σ), a sample correlation vector (γ) and an error
vector ζ ∼ N(0, Σ)estimated by the generalized method of moment (GMM), the unbiased estimator
γ̂GMMis consistent that satisfies the value of lim

k→∞
QK(γ̂k) = 0.

3.2.3. Determination of W Weight

Parameter estimation using GMM involves weighting W, which is a positive definite
weight matrix, and the optimal value of W weight can produce the efficient estimator. The
W weight is defined as follows [24]:

lim
k→∞

Var
(√

kfK(γ)
)
= W(γ) (22)

and
Wopt = [W(γ)]−1 (23)

The value of
√

kfK(γ) if approached by the Central Limit Theorem yields

√
kfK(γ)→ N(0, S) (24)

where S is the asymptotic moment variance of
√

kfK(γ). This implies that Equation (23)
can also be written as

Wopt = S−1 (25)

The S matrix is defined as follows as:

S = Var
(√

kfK(γ)
)

= k Var
(

1
k

k
∑

i=1
(Ξ′i(ηi − Ξiγ))

)
= 1

k

k
∑

i=1
[Ξ′i(ηi − Ξiγ)]

[
(ηi − Ξiγ)

′Ξi

]
= 1

k

k
∑

i=1

[
Ξ′iζ i

][
ζ′iΞi

]
(26)

Because the Equation (26) still contains γ component, numerical iteration is carried
out to find the solution. The numerical iteration steps are:

Step 1 Initialize W(i) = I which is substituted to Equation (20) such that the initial
value of γ̂

(i)
GMM is obtained.

Step 2 The estimated result of γ̂
(i)
GMM is substituted to Equation (26) such that the value

of S(i) is obtained.
Step 3 Update the weights by calculating W(i+1) =

(
S(i+1)

)−1
.
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Step 4 Update the γ̂
(i+1)
GMM value from Equation (20).

Step 5 Returns to step 2 and Calculate iteration until convergence.

4. Results and Discussion

In this section, the estimation results of Meta-Analytical Structural Equation Modeling
(MASEM) using the Generalized Method of Moments (GMM) are tested on simulation
data to show the performance of the GMM method and the results are compared to the
GLS method.

4.1. Results

The estimation of Meta-Analytical Structural Equation Modeling (MASEM) with the
GMM method was applied to the case real data in the article [15] with size of sample
Table 1. It aims to show the performance of the estimator. The example case in this article
concerns the correlation between 4 variables, poverty, economy, human resource (HR) and
health variables. The coefficient β1 shows the correlation between economy and poverty,
The coefficient β2 shows the correlation between health and poverty and the coefficient β3
shows the correlation between HR and poverty. There are six studies as data sources for
the application of the sample questions. They are as follows:

Table 1. Data of Sample for Implementation.

No Data of Sample Size of Sample

1 East Java n1 = 38
2 Central Java n2 = 35
3 Yogyakarta n3 = 5
4 West Java n4 = 27
5 DKI Jakarta n5 = 6
6 Banten n6 = 8

There are six correlations from each data source (economy-poverty; health-poverty;
HR-poverty; economy-health; economy-HR; health-HR) and arranged in r36×1 or η36×1
vector form,

r36×1 =
[

rT
16×1

rT
26×1

rT
36×1

rT
46×1

rT
56×1

rT
66×1

]T
Where

rT
16×1

=
[

0.590 −0.476 −0.612 −0.311 −0.563 0.666
]T

rT
26×1

=
[

0.591 −0.494 0.326 −0.591 0.639 −0.378
]T

rT
36×1

=
[

0.827 −0.604 −0.753 −0.529 −0.738 0.898
]T

rT
46×1

=
[

0.698 −0.399 −0.387 −0.747 −0.251 0.231
]T

rT
56×1

=
[

0.963 −0.946 −0.930 −0.939 −0.985 0.888
]T

rT
66×1

=
[

0.829 −0.848 −0.447 −0.888 −0.742 0.826
]T

Or in GMM estimation

η36×1 =
[

ηT
16×1

ηT
26×1

ηT
36×1

ηT
46×1

ηT
56×1

ηT
66×1

]T
with the same data

The estimated value obtained consists of a pooled correlation matrix (ρ̂GLS or γ̂GMM),
the value of the coefficient between the latent variables and the fit of the model. The results
of the GMM MASEM estimation are then compared to their performance with the results
of the GLS MASEM estimator using initial weight W0 = I presented in Table 2.
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Table 2. Result values.

Value
Method

GLS GMM

pooled correlation vector
r̂GLS =


0.906
−0.976
−0.832
−0.956
−0.978
0.910

 γ̂GMM =


0.714
−0.587
−0.539
−0.604
−0.228
0.239


Coefficient β1 0.511 0.516
Coefficient β2 −1.079 −0.185
Coefficient β3 0.650 −0.378

The standard error of β1 0.808 0.075
The standard error of β2 0.309 0.078
The standard error of β3 0.548 0.057

4.2. Discussion

The goodness of the estimator is unbiased and consistent. The MASEM estimator
with GMM was proven to be unbiased and consistent; thus, it has the goodness of the
estimator. To see the performance of the estimator, the estimation results of this study were
compared with the estimations results of the MASEM GLS. The result of the model fit is
the standard error of β1, β2 and β3. This shows that the estimation using GMM produces
the value better than the estimation using GLS because the SE value of the GMM method
in each coefficient is smaller than the GLS method. Thus, the GMM performance using the
interactive GMM has better performance than the GLS method for the case of poverty in
the island of Java.

5. Conclusions

The reliability of the performance of GMM depends on its weight, thus there are
many ways that can be used to obtain the optimal weight. In this study, using interactive
GMM which turned out to have a better performance then GLS result. Of course, future
studies are also needed to determine a more optimal weight for the random model MASEM
estimator using GMM that is much more reliable and accurate in performance.
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Appendix A

The steps to prove that γ̂GMM is an unbiased estimator is to simplify Equation (20) as
follows as:

γ̂GMM = Dη

where D =
(

Ξ
′
ΞWΞ

′
Ξ
)−1

Ξ
′
ΞWΞ

′
, such that

E(γ̂GMM) = E(Dη)
= DE(Ξγ + ζ) as, E(γ) = 0

=
(

Ξ
′
ΞWΞ

′
Ξ
)−1

Ξ
′
ΞWΞ

′
ΞE(Ξγ)

=

[(
Ξ
′
ΞWΞ

′
Ξ
)−1

Ξ
′
ΞWΞ

′
Ξ

]
γ

= γ

then, it is proven that E(γ̂GMM) = γ and has the unbiased properties of estimator.

Appendix B

The GMM estimator is obtained by minimizing Equation (17); thus, it will be proved that

lim
k→∞

QK(γ̂k)= 0

= lim
k→∞

(
1
k Ξ

′
η− 1

k Ξ
′
Ξ

^
γk

)′
W
(

1
k Ξ

′
η− 1

k Ξ
′
Ξ

^
γk

)
= 0

= lim
k→∞

1
k2

[(
Ξ
′
η− Ξ

′
Ξ

^
γk

)′
W
(

Ξ
′
η− Ξ

′
Ξ

^
γk

)]
= 0

It is true that the unbiased estimator γ̂GMM is consistent with satisfies the value
lim
k→∞

QK(γ̂k) = 0.
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