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Abstract: We construct a four-dimensional lattice gauge theory in which fermions acquire mass
without breaking symmetries as a result of gauge interactions. Our model consists of reduced
staggered fermions transforming in the bifundamental representation of an SU(2)× SU(2) gauge
symmetry. This fermion representation ensures that single-site bilinear mass terms vanish identically.
A symmetric four-fermion operator is however allowed, and we give numerical results that show
that a condensate of this operator develops in the vacuum.
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1. Introduction

Can we generate a mass for all physical states in a theory without breaking symme-
tries? Can we do this using gauge interactions only? In this paper, we describe a lattice
model that is capable of realizing this scenario.

The model consists of a reduced staggered fermion coupled to an SU(2) × SU(2)
lattice gauge field. The fermion representation is chosen so that single-site fermion gauge-
invariant bilinear terms vanish identically. A symmetric four-fermion operator remains
invariant under these symmetries, and we present evidence that it condenses as a result of
the gauge interactions. Since no symmetries are broken by this condensate, there are no
massless Goldstone bosons, and the spectrum consists of color singlet composites of the ele-
mentary fermions. This scenario corresponds to symmetric mass generation realized in the
context of a confining gauge theory. It gives an explicit and non-supersymmetric realization
of a mechanism that has been proposed to gap chiral fermions in the continuum [1,2].

The model can be seen as a generalization of the SO(4) Higgs–Yukawa theory de-
scribed in [3], which uses strong quartic interactions to gap lattice fermions. This four-
dimensional model is built on earlier work directed at symmetric mass generation with
staggered fermions in two, three, and four dimensions [4–10]. Related work in the con-
densed matter physics community can be found here [11–17].

In the current paper, both of the SU(2) subgroups of SO(4) are gauged, and confine-
ment rather than strong Yukawa interactions is used to generate the four-fermion condensate.

2. Staggered Fermion Model

We start from a staggered fermion action, which takes the form:

S = ∑
x,µ

ηµ(x)Tr
(

ψ†∆µψ
)

(1)

where ηµ(x) = (−1)∑
µ−1
i xi are the usual staggered phases and ∆µ is the symmetric differ-

ence operator whose action on a lattice field f (x) is given by:

∆µ f (x) =
1
2
( f (x + µ)− f (x− µ)) (2)
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This action has a U(1) staggered symmetry ψ → eiε(x)αψ with ε(x) = (−1)∑i xi the
site parity operator. The fermions are additionally taken to transform under a global G× H
symmetry where G and H correspond to independent SU(2) groups:

ψ→ ψ̂ = GψH† (3)

We also impose the reality condition:

ψ† = σ2ψTσ2 (4)

To see that this reality condition is compatible with the non-abelian symmetry, consider
the transformed fermion:

ψ̂† = Hψ†G† (5)

= Hσ2ψTσ2G†

= σ2

(
σ2Hσ2ψTσ2G†σ2

)
σ2

= σ2

(
H∗ψTGT

)
σ2

= σ2ψ̂Tσ2

The reality condition is automatically satisfied if ψ = ∑4
A=1 σAχA for real χA where

σA = (I, iσi). Substituting this expression into the kinetic term shows that the action can be
written in an explicit SO(4) invariant form:

S = ∑
x,µ

1
2

ηµ(x)χA∆µχA (6)

Indeed, in this form, one can see that the kinetic term of this model is precisely the
same as that considered in previous work with SO(4) invariant staggered fermions [3].

Once this reality condition is imposed, it is not possible to write down single site mass
terms since Tr

(
ψ†ψ

)
= Tr

(
σ2ψTσ2ψ

)
= 0 on account of the Grassmann nature of the fields.

However, a four-fermion term invariant under SO(4) = SU(2)× SU(2) is possible and
takes the form:

Tr
(

ψψ†ψψ†
)
=

1
3

εabcdχaχbχcχd (7)

The form of this four-fermion term also agrees with the earlier work [3].
To add such a four-fermion term to the action, we can use a Yukawa interaction with

an auxiliary scalar field φ of the form:

∑
x

Tr
(

φψψ†
)
+

1
2λ2 ∑

x
Tr (φ2) (8)

where φ transforms in the adjoint representation of G, but is a singlet under H:

φ→ GφG† (9)

After integration over φ, a four-fermion term is produced with coupling −λ2/2. The
addition of this term breaks the original U(1) staggered symmetry to a Z4 corresponding to:

ψ(x)→ ωε(x)ψ(x) (10)

where ω is an element of Z4.
In [3], we showed that it is possible to achieve symmetric mass generation in this

model for large values of the Yukawa coupling and vanishing gauge coupling. In this
paper, we show that a four-fermion condensate can also be obtained by using strong
gauge interactions and small Yukawa coupling. This result is important as it avoids the
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problem of relying on perturbatively irrelevant four-fermion operators to induce symmetric
mass generation.

To do this, we need to generalize Equation (1) so that it is invariant under lattice gauge
transformations. The following prescription does the job:

SF = ∑
x,µ

1
2 ηµ(x)Tr [ψ†(x)Uµ(x)ψ(x + µ)V†

µ (x) (11)

−ψ†(x)U†
µ(x− µ)ψ(x− µ)Vµ(x− µ)]

In addition, we add Wilson terms for G and H:

SW =− βG
2 ∑

x
∑
µν

(
Uµ(x)Uν(x + µ)Uµ(x + ν)†Uν(x)†

)
(12)

− βH
2 ∑

x
∑
µν

(
Vµ(x)Vν(x + µ)Vµ(x + ν)†Vν(x)†

)
(13)

The resultant action is now invariant under the following gauge transformations:

ψ(x)→ G(x)ψ(x)H†(x) (14)

Uµ(x)→ G(x)Uµ(x)G†(x + µ) (15)

Vµ(x)→ H(x + µ)Vµ(x)H†(x) (16)

The Yukawa interaction given in Equation (8) is automatically invariant under these
local symmetries. (As an aside, we remark that four-fermion interactions similar to the ones
considered here have previously been used to argue for the appearance of Higgs phases in
strongly coupled lattice theories) [18].)

Finally, we note that the action of the model is invariant under a Z2 center symmetry
transformation:

Vµ(x)→ −Vµ(x) (17)

Uµ(x)→ Uµ(x)

ψ(x)→ ε(x)ψ(x)

The existence of an exact center symmetry ensures that the Polyakov line:

P(x) =
1
2

Tr
L

∏
t=1

Vµ(x + t) (18)

is a good order parameter for confinement in this theory.
In the next section, we show numerical results that provide evidence that a four-

fermion condensate appears in the theory even for small Yukawa coupling. We can think
of this condensate as corresponding to the appearance of a bilinear mass term for the
color singlet composite scalar φ = ψψ†. This scenario is similar to that advocated for by
Tong et al. in [1] as a mechanism for gapping chiral fermions. It is important to remember
though that this model targets a vector-like theory at short distances as β→ ∞.

3. Numerical Results

The fermion kinetic term including the Yukawa term takes the form:

SF = ∑
x

Tr
[
σ2ψTσ2

(
ηµ(x)∆c

µ + Gφ
)

ψ
]

(19)
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where ∆c denotes the covariant difference operator appearing in Equation (11). Using
the properties:

UT
µ = σ2U†

µσ2 (20)

VT
µ = σ2V†

µ σ2

φT = −σ2φσ2

It is easy to verify that the fermion operator M is antisymmetric and each eigenvector
vn(x) with eigenvalue λn is paired with another σ2v∗n(x)σ2 with eigenvalue λ∗n. Thus, the
eigenvalues, which are generically complex, come in quartets

(
λ, λ̄,−λ,−λ̄

)
. This ensures

that the Pfaffian that results after fermion integration is generically real positive definite.
We verified that this is indeed the case by computing the latter for ensembles of a small
lattice size. (Notice though that pure imaginary eigenvalues come only in pairs, which
allows for a sign change if such an eigenvalue crosses the origin. While this is logically
possible, we did not see any sign of this in our simulations.) Thus, the model can be
simulated using the RHMC algorithm [19]. We now turn to our numerical results.

3.1. The Yukawa Theory Limit βH = βG → ∞

In the absence of gauge interactions, the model reduces to the SO(4) Higgs–Yukawa
theory examined in [3]. In this limit, the only way to drive a four-fermion condensate is
through the use of a large Yukawa coupling λ. Figure 1 shows a picture of Tr φ2, which
serves as a proxy for the four-fermion condensate vs. λ. The rapid growth near λ ∼ 1.0
is identical to our earlier results for the pure four-fermion model in four dimensions.
This conclusion is strengthened in Figure 2, which shows a plot of theassociated fermion
susceptibility defined by:

χ =
1
V ∑

x

〈
ψ†(0)ψ(0)ψ†(x)ψ(x)

〉
(21)
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Figure 1. Tr
(
φ2) vs. λ for L = 44, 64, 84.
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This shows a peak that grows with volume close to the coupling where the enhanced
four-fermion vev switches on.

3.2. The Gauge Theory Limit λ→ 0

We now switch on the gauge interactions, setting βH = βG = β and retaining only a
small Yukawa coupling. Figure 3 shows a plot of Tr(φ2) vs. β. The Yukawa coupling is
small and fixed to λ = 0.5 for lattice sizes L = 64, 84, 103 × 8. Clearly, the condensate grows
for β ≤ 2.5. Notice that the appearance of this four-fermion vev is a result of the gauge
interactions, not the explicit Yukawa coupling since the latter lies well below the threshold
to drive the phase transition seen in Figure 1. Indeed, the effect of changing the value of the
bare Yukawa coupling λ can be seen in Figure 4, which shows the condensate for a range
of λ = 0.25, 0.5, 0.75, 1.0 on an L = 64 lattice. Clearly, for all λ < 0.8, a condensate develops
at small β, but is driven to zero in the weak gauge coupling limit β→ ∞, consistent with
Figure 1. Notice that the value of the condensate as β → 0 scales according to λ2 as one
might expect from perturbation theory. The case where λ = 1.0 is close to the threshold
required to precipitate a condensate even in the absence of gauge interactions, and indeed,
we see in this case that the condensate survives the β→ ∞ limit.
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Figure 3. Tr
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 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Po
ly

a
ko

v
 L

in
e
s

β

λ=0.5

L=64

L=84

L=103x8

Figure 5. Polyakov line vs. β for L = 64, 84, 103 × 8.

The fact that the regime where the four-fermion condensate is non-zero corresponds
to confinement can be seen in Figure 5, which shows the absolute value of the Polyakov
line averaged over the lattice over the same range in β. It is clear that the Polyakov line
vanishes for values of β in which the four-fermion condensate grows. (We use the absolute
value of the line in our measurements since the Polyakov line itself vanishes for all β at
finite volume as a consequence of the exact center symmetry.) A vanishing Polyakov line
signals a confining phase for the gauge theory. This conclusion can be strengthened by
looking at Wilson loops. The Wilson loops for L = 84 and λ = 0.5 are shown in Figure 6
and clearly also decrease rapidly in the small β regime.
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Figure 6. Wilson loops vs. β for L = 84.

To extract the string tension, we fit the W(R, R) loops to an exponential of form
e−(AR2+BR+C) corresponding to a combination of area and perimeter laws. For values of
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β < 1.8, the fit values of B and C are consistent with zero, and we hence fit only for A.
However, around β = 1.8, the area term and the perimeter term become comparable, so
we need to employ the full form of the exponential for couplings β ≥ 1.8. This behavior
can be seen in Figure 7, which shows the coefficients A and B versus β.
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Figure 7. A and B vs. β for L = 84.

The plot also shows the pure area law fit as a solid line, which yields an estimate of
the string tension σ = 0.499(5). This agrees well with a strong coupling analysis of the
quenched gauge theory and is consistent with the absence of light fermions in this regime
due to symmetric mass generation.

Of course, while the single-site fermion bilinear is forced to vanish by symmetry in
this model, it is possible to construct other gauge-invariant and Z4 symmetric fermion
mass terms that involve coupling different fermion fields within the hypercube [20,21]. It
is logically possible that the model would choose to condense these other fermion bilinear
operators rather than the four-fermion operator we have considered so far. To check for this,
we added the simplest of these operators, the one link term, to the action with coupling ml .

O1 = 1
8 ∑x,µ ε(x)ξµ(x)Tr[ψ†(x)(Uµ(x)ψ(x + µ)V†

µ (x)

+U†
µ(x− µ)ψ(x− µ)Vµ(x− µ))] (22)

where the phase ξµ(x) = (−1)∑4
µ+1 xi [20]. Notice though that a vev for this operator as

ml → 0 will necessarily break a set of discrete shift symmetries given by:

ψ(x)→ ξρ(x)ψ(x + ρ) (23)

Vµ(x)→ V∗µ (x + ρ) (24)

Uµ(x)→ U∗µ(x + ρ) (25)

In Figure 8, we show a plot of the vev of this operator for several lattice sizes as a
function of ml on a 64 lattice for λ = 0.5 and β = 2.0. Notice that the measured vev is
small in comparison with the four-fermion condensate and decreases smoothly to zero as
ml → 0 with no significant dependence on the lattice volume. This result argues against
the condensation of such a link term and a corresponding spontaneous breaking of these
shift symmetries in the thermodynamic limit.
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Figure 8. Link vev vs. ml for L = 64, 84 at β = 2.0.

4. Conclusions

In this paper, we argued that a particular lattice gauge theory composed of massless
reduced staggered fermions transforming under a local SU(2)× SU(2) symmetry develops
a four-fermion rather than bilinear-fermion condensate due to confinement. Furthermore,
since this four-fermion condensate breaks no symmetries, there are no Goldstone bosons in
the spectrum of the theory. This gives an explicit realization of symmetric mass generation
in a lattice model that describes sixteen Majorana fermions at high energies. This number
of fermion flavors is precisely what is needed to cancel certain discrete anomalies of Weyl
fermions in the continuum [22–24]. Our work furnishes the first example of a lattice theory
capable of supporting symmetric mass generation using gauge interactions only.
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