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Abstract: In order to rationally deal with the belief degree, Liu proposed uncertainty theory and
refined into a branch of mathematics based on normality, self-duality, sub-additivity and product
axioms. Subsequently, Liu defined the uncertainty process to describe the evolution of uncertainty
phenomena over time. This paper proposes a risk-neutral option pricing method under the assump-
tion that the stock price is driven by Liu process, which is a special kind of uncertain process with
a stationary independent increment. Based on uncertainty theory, the stock price’s distribution
and inverse distribution function under the risk-neutral measure are first derived. Then these two
proposed functions are applied to price the European and American options, and verify the parity
relationship of European call and put options.

Keywords: no-arbitrage market; risk-neutral option pricing; Liu process; uncertainty theory

1. Introduction

The value of options comes from the difference between the benefits and costs they
bring. Under normal circumstances, the cost of options is fixed, but the possible benefits are
very uncertain and have great volatility. In other words, there is a huge asymmetry between
the benefits and costs of options, option pricing theory studies this asymmetry, and then
gives the option’s “fair” price. Numerous research reports have confirmed that options not
only have risk aversion, risk investment and price discovery functions, but options trading
can also pass unpublished information into the spot market and play a role in improving
information asymmetry in the spot market. Options theory has become an important
part of modern finance and the study of options pricing theory is of great importance to
academia, exchanges and over-the-counter markets, as well as the financial industry.

Under the Black–Scholes model framework [1], many scholars have done a lot of
research on option pricing theory and obtained many useful results [2]. However, as the
Black–Scholes formula is based on probability theory, some conclusions are not highly
consistent with the market, and their practical applicability is not strong. This is because
a central assumption of the Black–Scholes formula is that stock prices obey the Wiener
process, which is described by a stochastic differential equation. It can only describe the
continuous changes in asset value, but actual research has found that the stock price does
not change continuously over time but there is a “jump” [3]. Many scholars have conducted
research on the option pricing problem with jump in the price of the underlying asset.
Using Lévy–Laplace transformation and the equivalence measure transformation, Eric
Benhamou [4] obtained an European option pricing formula for the underlying asset driven
by the Lévy process. Gong and Zhuang [5] introduced two pure jump Lévy processes
into the double jump stochastic volatility model in which both the returns and volatility
processes jump, and then proposed a option pricing formula. Huang and Wang [6,7]
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studied a Lévy financial market under Knight uncertainty, and established an upper and
lower bounds model.

The above studies on option pricing are conducted in the framework of stochastic
differential equations. However, a large number of studies have shown that the distribution
of stock returns does not conform to the assumption of normal probability distribution
in stochastic differential equations and Liu [8] put forward a number of hypotheses to
show that it is inappropriate to use stochastic differential equations to describe stock price
changes. On the other hand, handling problems with probability requires a large number
of sample data. However, there are often unexpected events in the real financial market,
so that historical data cannot represent future trends. We have to invite some domain
experts to evaluate their belief degree that each event will occur. Personal belief degrees
always plays a very important role and influence behavioral decision making. Behavioral
finance has made an in-depth exploration of this, but behavioral finance does not have a
perfect mathematical theoretical framework. In order to rationally deal with this belief
degree, Liu [9] proposed uncertainty theory and refined into a branch of mathematics
based on normality, duality, sub-additivity and the product axiom. The essential difference
between uncertainty theory and probability theory lies in the difference in product measure.
The probability product measure is equal to the product of the measure and the product
measure in the uncertainty theory is equal to the measure, whichever is smaller. In the real
world, decisions are usually made in nondeterministic states, and both probability theory
and uncertainty theory can be used to deal with nondeterministic phenomena. However,
they belong to different branches of mathematics. Probability theory is used to deal with
random phenomena of frequency, while uncertainty theory is used to deal with uncertain
phenomena of belief degree. In recent years, uncertainty theory has been widely used
in a number of different fields, forming important branches such as uncertain finance,
uncertain statistics, and uncertain control. The study of uncertain process was started
by Liu [10] for modelling the evolution of uncertain phenomena. An uncertain process
is essentially a sequence of uncertain variables indexed by time. Liu process is a type of
stationary independent increment process whose increments are normal uncertain variables.
Subsequently, in order to integrate an uncertain process with respect to a canonical process,
Liu proposed uncertain integral in [10]. In 2009, Liu [11] defined an uncertain differential
equation driven by Liu process, and established an uncertain stock price model and then
gave a pricing formula of standard European options by fair price principle. Based on this
uncertain stock price model, Chen [12] proved American option pricing formulas, Peng
and Yao [13] proved a stock model with mean-reverting process and the corresponding
option pricing formulas. Geometric average and arithmetic average Asian option pricing
formula are certified by Zhang, Liu [14] and Sun, Chen [15], respectively. Sun and Su [16]
proposed a mean-reverting stock model with floating interest rate in the uncertain financial
markets and then employed it to the European option and American option in the uncertain
markets. In 2008, Liu [10] defined an uncertain renewal process to describe a discontinuous
uncertain system, and Yao [17] established an uncertain differential equation with jumps,
then gave a sufficient condition for this equation having a unique solution. Then Yu [18]
proposed a stock model which was described by an uncertain differential equation with
renewal process, and derived the pricing formulas for European call and put options with
jumps. Ji and Zhou [19] proposed a stock model which contains both the positive jumps
and the negative jumps, and they also proved European option pricing formulas.

The no-arbitrage equilibrium principle is the most fundamental research method in
finance and is the basis of modern financial asset pricing, Yao [20] proposed a no-arbitrage
theorem of Liu’s stock model market in 2015 and gave a necessary and sufficient condition
for no arbitrage in the uncertain financial market. However, the above articles about option
pricing based on uncertainty theory did not consider the situation of risk-neutral financial
market and the call and put options did not satisfy the classical parity relationship. As-
suming that the uncertain market simulated by Liu’s stock model is a no-arbitrage finance
market, this paper presents a risk-neutral pricing method of options. This research makes
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up for the lack of consideration of the arbitrage opportunities in uncertain financial markets,
and further enriches and develops uncertain financial theory. In the rest of this paper,
Section 1 will introduce some useful concepts and conclusions of uncertainty theory as
needed. Section 3 introduces a risk-neutral pricing method of options and proved new
distribution and inverse distribution for the Liu stock process in risk-neutral uncertainty
measurement. Using these new distribution and inverse distribution of the stock process,
Section 4 obtains the risk-neutral pricing formula of European and American options.
Section 5 is the conclusion of this paper.

2. Preliminaries

From the mathematical viewpoint, Liu’s uncertainty theory proposed by Liu [9] is
essentially an alternative theory of measure. Probability theory is mainly used to resolve
frequency problems, while uncertainty theories are mainly used to deal with reliability
problems. They have different axiomatic foundations and different algorithms. In this
section, we will introduce some important concepts and theorems of uncertainty theory
such as uncertain measure, a fundamental concept in uncertainty theory.

Definition 1. (uncertain measure) [21]. Let Γ be a nonempty set, L be a σ−algebra over Γ. The
uncertain measure is a set function M on the σ−algebra L which satisfies the following normality,
duality, sub-additivity, and product measure axioms.

(i) (normality). M{Γ} = 1, where Γ is the universal set.
(ii) (duality). For any event Λ, M{Λ}+ M{Λc} = 1.
(iii) (sub-additivity). For every countable sequence of event Λ1, Λ2, · · · , we have

M
{ ∞⋃

i=1

Λi

}
≤

∞

∑
i=1

M{Λi}.

(iv) (product measure). For every countable sequence of event Λ1, Λ2, · · · , we have

M
{ ∞

∏
i=1

Λi

}
=

∞∧
i=1

M{Λi}.

Uncertainty theory is a new axiomatic mathematical system based on the above four
axioms. From Definition 1 we can see that product measure is the essential difference
between uncertainty theory and probability theory. The probability product measure is
equal to the product of the measure and the product measure in the uncertainty theory is
equal to the measure, whichever is smaller.

Similar to random variable, Liu defined an uncertain variable ξ as a measurable
function from an uncertainty space to the set of real numbers.

Definition 2. (uncertainty distribution) [21]. For an uncertain variable ξ, its uncertainty distri-
bution is defined as

Φ(x) = M{ξ ≤ x}.

where x is an arbitrary real number.

Definition 3. (inverse uncertainty distribution) [21]. Assuming that ξ is an uncertain variable,
its regular uncertain distribution function is Φ(x). Then the inverse uncertainty distribution of ξ
is denoted as Φ−1(α), which is the inverse function of Φ(x).

Definition 4. (expected) [21]. For an uncertain variable ξ, its expected value is defined as

E[ξ] =
∫ +∞

0
M{ξ ≥ r}dr−

∫ 0

−∞
M{ξ ≤ r}dr.
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From the perspective of uncertain distribution Φ(x), its expected value is defined as

E[ξ] =
∫ +∞

0

(
1−Φ(x)

)
dx−

∫ 0

−∞
Φ(x)dx,

and if Φ(x) has an inverse function Φ−1(α), then

E[ξ] =
∫ 1

0
Φ−1(α)dα.

Since uncertainty theory and probability theory have different axiomatic foundations,
their algorithms are also different. In uncertainty theory, the calculation of expected value
mainly uses the inverse uncertainty distribution.

In order to describe the evolution of uncertainty phenomena over time, Liu proposed
uncertain process. An uncertain process is a function Xt(γ) from T× (Γ, L, M) to the set of
real numbers, where (Γ, L, M) is an uncertainty space and T is a totally ordered time set.

Definition 5. (Liu process) [21]. Liu process Ct is a special uncertain process which satisfies the
following three conditions

(i) C0 = 0 and almost all sample paths are Lipschitz continuous;
(ii) The increments of Ct are stationary and independent;
(iii) Ct+s − Ct is a normal uncertain variable with the following uncertainty distribution

Φ(x) =
(

1 + exp
(
− πx√

3t

))−1
.

Definition 6. (Uncertain integral) [21]. For a closed interval[a, b], define

∆ = max
1≤i≤k

|ti+1 − ti|,

where a = t1 < t2 < · · · < tk+1 = b. The uncertain integral of Xt with respect to Ct is defined as

∫ b

a
XtdCt = lim

∆→0

k

∑
i=1

Xt · (Cti+1 − Cti ).

for an uncertain process Xt and a canonical Liu process Ct.

Lemma 1. Following Ref. [21], let f (x) be a Riemann integral function, then for any a > 0, Liu
integral Y =

∫ b
a f (t)dCt is a normal uncertain variable, and

Y ∼ N
(

0,
∫ a

0
| f (t)|dt

)
.

Lemma 2. Following [21], suppose ξ1, ξ2, · · · , ξn are a set of independent uncertain variables,
and Φ1, Φ2, · · · , Φn are their regular uncertainty distributions. For an uncertain variable
ξ = f (ξ1, ξ2, · · · , ξn), if f (·) is a continuous and strictly increasing function, its inverse
uncertainty distribution is

Ψ−1(α) = f
(

Φ−1
1 (α), Φ−1

2 (α), · · · , Φ−1
n (α)

)
.

Otherwise, if f (·) is a continuous and strictly decreasing function, its inverse uncer-
tainty distribution is

Ψ−1(α) = f
(

Φ−1
1 (1− α), Φ−1

2 (1− α), · · · , Φ−1
n (1− α)

)
.
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3. Stock Model with Risk-Neutral Uncertainty Measure

Let (Γ, L, M) be an uncertainty space, representing a financial market, and M is called
the objective uncertainty measure in this financial market. Furthermore, ptis the bond price,
and St is the stock price in this market; Liu [21] proposed a stock mode as follows:{

dpt = rt ptdt,
dSt = µtStdt + σtStdCt, t ∈ [0, T].

(1)

here rt is the risk-less interest rate, µt, σt are the drift and diffusion. Ct is a standard
canonical Liu process.

Lemma 3. If the uncertain stock model is described as (1), then the expected value of St under
uncertain measure M is

E(St) =

 S0 θσ exp
( ∫ t

0 µsds
)

,
∫ t

0 |σs|ds < π√
3
,

+ ∞,
∫ t

0 |σs|ds ≥ π√
3

.
(2)

where

θσ =

√
3
∫ t

0 |σs|ds

sin
(√

3
∫ t

0 |σs|ds
) . (3)

Proof. According to the stock process (1), the stock process St in uncertain market is

St = S0 exp
( ∫ t

0
µsds +

∫ t

0
σsdCs

)
, t ∈ [0, T]. (4)

Let

ξ = exp
( ∫ t

0
µsds +

∫ t

0
σsdCs

)
,

then it is easy to verify that, when x ≤ 0, uncertainty distribution Φξ(x) of uncertain
variable ξ is 0.

When x > 0,

Φξ(x) = M{ξ ≤ x} = M
{ ∫ t

0
σsdCs ≤ lnx−

∫ t

0
µsds

}
,

according to Lemma 1, we can obtain

Φξ(x) =
(

1 + exp
(

π
( ∫ t

0 µsds− lnx)
√

3
∫ t

0 |σs|ds

))−1

, (5)

and the inverse uncertainty distribution of ξ is

Φ−1
ξ (x) = exp

( ∫ t

0
µsds +

√
3
∫ t

0 |σs|ds
π

ln
(

α

1− α

))
, 0 < α < 1. (6)

It can be obtained from the definition of uncertain expectation

E(St) = S0E(ξ) = S0exp
( ∫ t

0
µsds

) ∫ 1

0

( α

1− α

)√3
∫ t

0 |σs |ds/π
dα,

as ∫ 1

0

( α

1− α

)x
dα =

{
πx

sin(πx) , 0 < x < 1,
+ ∞, x ≥ 1,

(7)
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then we get the uncertain expectation

E(St) =

 S0exp
( ∫ t

0 µsds
) √

3
∫ t

0 |σs |ds

sin(
√

3
∫ t

0 |σs |ds)
,
∫ t

0 |σs|ds < π√
3

,

+ ∞,
∫ t

0 |σs|ds ≥ π√
3
,

(8)

The proof is completed.

From Lemma 3, we can see that if the stock process is described by the Liu model (1),
when

∫ t
0 |σs|ds ≥ π√

3
, we will not be able to predict the price of the stock as

E(St) = +∞. This also coincides with the fact that the longer the time, the more dif-
ficult to predict the stock price. Therefore, in the rest of this paper we only consider the
short-term case when

∫ t
0 |σs|ds < π√

3
.

For an uncertain financial market, according to the no-arbitrage theorem proposed
by Yao in Ref [20], the equivalent condition to ensure a no-arbitrage market is that the
stock drift coefficient µs be equal to the risk-free interest rate rs. In other words, in a
risk-neutral world, investors do not require risk compensation for risks, and all expected
rates of return are risk-free interest rate. By discounting the risk-neutral expected value
with the risk-free interest rate, the price of the option can be calculated. Then there is a
risk-neutral uncertainty measure MQ which satisfies

EQ
(

exp
(
−
∫ t

0
rsds

)
St

)
= S0. (9)

In the rest of this section, we are going to derive the uncertainty distribution as well
as inverse uncertainty distribution of St under uncertainty measure MQ.

Theorem 1. Assume the uncertain stock model is described by (1), then the uncertainty distribution
of St under the risk-neutral uncertainty measure MQ is

ΦQ
S (x) =

(
1 + exp

(
π(
∫ t

0 rsds− ln( θσ
S0

x))
√

3
∫ t

0 |σs|ds

))−1

, (10)

and the inverse uncertainty distribution of St under the risk-neutral uncertainty measure MQ is

ΦQ,−1
S (α) =

S0

θσ
exp

( ∫ t

0
rsds +

√
3
∫ t

0 |σs|ds
π

ln
( α

1− α

))
, (11)

where θσ is defined as (3).

Proof. From the property of the risk-neutral uncertainty measure MQ, we have

EQ(St) = exp
( ∫ t

0
rsds

)
S0,

and let

ξ = exp
( ∫ t

0
µsds +

∫ t

0
σsdCs

)
,

then
St = S0ξ,

and

EQ(ξ) = exp
( ∫ t

0
rsds

)
=

sin
(√

3
∫ t

0 |σs|ds
)

√
3
∫ t

0 |σs|ds
exp
( ∫ t

0
rsds−

∫ t

0
µsds

)
E(ξ)
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=
1
θσ

exp
( ∫ t

0
rsds−

∫ t

0
µsds

) ∫ +∞

0
(1−Φξ(y))dy,

here θσ is defined as (3), and let us make a transformation

y = θσexp
( ∫ t

0
µsds−

∫ t

0
rsds

)
x,

then

EQ(ξ) =
∫ +∞

0

(
1−Φ

(
θσexp

( ∫ t

0
µsds−

∫ t

0
rsds

)
x
))

dx,

contrasting with the definition of expectation, we get the uncertainty distribution of ξ
under the risk-neutral uncertainty measure

ΦQ
ξ (x) = Φ

(
θσexp

( ∫ t

0
µsds−

∫ t

0
rsds

)
x
)
=
(

1 + exp
(π(

∫ t
0 rsds− ln(θσx))
√

3
∫ t

0 |σs|ds

))−1
,

and the inverse uncertainty distribution of ξ under the risk-neutral uncertainty measure
MQ is

ΦQ,−1
ξ (α) =

1
θσ

exp
( ∫ t

0
rsds +

√
3
∫ t

0 |σs|ds
π

ln
( α

1− α

))
,

this means θσξ is also a geometric Liu process with log-drift
∫ t

0 rsds and log-diffusion∫ t
0 |σs|ds.

Then the uncertainty distribution of St under the risk-neutral uncertainty measure is

ΦQ
S (x) = MQ{St ≤ x} = MQ{ξ ≤ x

S0
}

=
(

1 + exp
(π(

∫ t
0 rsds− ln( θσ

S0
x))

√
3
∫ t

0 |σs|ds

))−1
,

and the inverse uncertainty distribution is

ΦQ,−1
S (α) =

S0

θσ
exp
( ∫ t

0
rsds +

√
3
∫ t

0 |σs|ds
π

ln
( α

1− α

))
.

The proof is completed.

4. Options Pricing with Risk-Neutral Uncertainty Measure
4.1. European Options

Theorem 2. In an uncertain financial market, assume that the underlying stock price model
described by (1). Consider a European call option of which the strike price is K and the expiration
date is T, then its price fc under the risk-neutral uncertainty measure MQ is

fc = exp
(
−
∫ T

0
rtdt

) ∫ 1

0

(
S0

θT
σ

exp
( ∫ T

0
rtdt +

√
3
∫ T

0 |σt|dt
π

ln
( α

1− α

))
− K

)+

dα. (12)

here θT
σ is defined as (3) with t = T.

Proof. According the definition of European call option price by Liu [21],

fc = EQ
(

exp
(
−
∫ T

0
rtdt

)(
ST − K

)+)
,
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thus from Theorem 1 and Lemma 2, since (ST − K)+ is a monotonically increasing function
of ST , then the inverse uncertainty distribution of (ST − K)+ is

ΦQ,−1(α) =

(
S0

θT
σ

exp
( ∫ T

0
rtdt +

√
3
∫ T

0 |σt|dt
π

ln
( α

1− α

))
− K

)+

.

Then

fc = exp
(
−
∫ T

0
rtdt

)
EQ
((

ST − K
)+)

,

= exp
(
−
∫ T

0
rtdt

) ∫ 1

0

(
S0

θT
σ

exp
( ∫ T

0
rtdt +

√
3
∫ T

0 |σt|dt
π

ln
( α

1− α

))
− K

)+

dα.

The proof is completed.

Example 1. In an uncertain market, assume that the current selling price of a stock at time 0 is
40, the drift and diffusion of this stock is 0.06 and 0.25, respectively. The risk-less interest rate
r is 0.08 per annum. Consider a European call option with this stock as the underlying asset—
the expiration time T is 1 and the strike price K is 42. From the European call option pricing
Formula (12) under the risk-neutral measure, we can calculate that the price of this European call
option is 1.268.

Theorem 3. In an uncertain financial market, assume that the underlying stock price model
described by (1). Consider a European put option whose strike price is K and expiration date is T,
then its price fp under the risk-neutral uncertainty measure MQ is

fp = exp
(
−
∫ T

0
rtdt

) ∫ 1

0

(
K− S0

θT
σ

exp
( ∫ T

0
rtdt +

√
3
∫ T

0 |σt|dt
π

ln
( α

1− α

)))+

dα. (13)

here θT
σ is defined as (3) with t = T.

Proof. According the definition of European put option price by Liu [21],

fp = EQ
(

exp
(
−
∫ T

0
rtdt

)(
K− ST

)+)
,

thus from Theorem 1 and Lemma 2, since
(

K−ST

)+
is a monotonically decreasing function

of ST , then the inverse uncertainty distribution of
(

K− ST

)+
is

ΨQ,−1(α) =

(
K− S0

θT
σ

exp
( ∫ T

0
rtdt +

√
3
∫ T

0 |σt|dt
π

ln
(1− α

α

)))+

.

Then we can get the price of European put option price (13) by replacing variables of
integral similar to what we have done in Theorem 2.

fP = exp
(
−
∫ T

0
rtdt

)
EQ
((

K− ST

)+)

= exp
(
−
∫ T

0
rtdt

) ∫ 1

0

(
K− S0

θT
σ

exp
( ∫ T

0
rtdt +

√
3
∫ T

0 |σt|dt
π

ln
(1− α

α

)))+

dα

= exp
(
−
∫ T

0
rtdt

) ∫ 1

0

(
K− S0

θT
σ

exp
( ∫ T

0
rtdt +

√
3
∫ T

0 |σt|dt
π

ln
( α

1− α

)))+

dα.

The proof is completed.
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Example 2. In an uncertain market, assume that the current selling price of a stock at time 0 is
40, the drift and diffusion of this stock is 0.06 and 0.25, respectively. The risk-less interest rate
r is 0.08 per annum. Consider a European call option with this stock as the underlying asset,
the expiration time T is 1 and the strike price K is 42. From the European put option pricing
Formula (13) under the risk-neutral measure, we can calculate that the price of this European put
option is 0.039.

According to the no-arbitrage pricing theory, the price of European call and put
options should satisfy the parity formula. Therefore, Theorem 4 in the following will
verify the price of call and put options obtained in Theorems 2 and 3, satisfying this
parity relationship.

Theorem 4. European call option price (12) and put option price (13) under risk-neutral uncer-
tainty measure satisfied the following parity relationship.

fc + exp
(
−
∫ T

0
rtdt

)
K = fp + S0. (14)

Proof. According to Theorems 2 and 3,

fc − fp = exp
(
−
∫ T

0
rtdt

) ∫ 1

0

(
S0

θT
σ

exp
( ∫ T

0
rtdt +

√
3
∫ T

0 |σt|dt
π

ln
( α

1− α

))
− K

)+

dα

−exp
(
−
∫ T

0
rtdt

) ∫ 1

0

(
K− S0

θT
σ

exp
( ∫ T

0
rtdt +

√
3
∫ T

0 |σt|dt
π

ln
( α

1− α

)))+

dα.

We discuss its value in two cases:

(i) When S0
θT

σ
exp
( ∫ T

0 rtdt +
√

3
∫ T

0 |σt |dt
π ln

(
α

1−α

))
> K,

fc − fp = exp
(
−
∫ T

0
rtdt

) ∫ 1

0

(
S0

θT
σ

exp
( ∫ T

0
rtdt +

√
3
∫ T

0 |σt|dt
π

ln
( α

1− α

))
− K

)
dα

=
S0

θT
σ

∫ 1

0

( α

1− α

)√3
∫ T

0 |σt |dt
π

dα− exp
( ∫ T

0
−rtdt

)
K = S0 − exp

( ∫ T

0
−rtdt

)
K.

(ii) When S0
θT

σ
exp
( ∫ T

0 rtdt +
√

3
∫ T

0 |σt |dt
π ln

(
α

1−α

))
< K,

fc − fp = −exp
(
−
∫ T

0
rtdt

) ∫ 1

0

(
K− S0

θT
σ

exp
( ∫ T

0
rtdt +

√
3
∫ T

0 |σt|dt
π

ln
( α

1− α

)))
dα

= exp
(
−
∫ T

0
rtdt

) ∫ 1

0

(
S0

θT
σ

exp
( ∫ T

0
rtdt +

√
3
∫ T

0 |σt|dt
π

ln
( α

1− α

))
− K

)
dα

= S0 − exp
( ∫ T

0 −rtdt
)

K.

So Equation (14) always holds.
The proof is completed.

4.2. American Options

Theorem 5. In an uncertain financial market, assume that the underlying stock price model
described by (1). Consider an American call option whose strike price is K and expiration date is T,
then its price fc under the risk-neutral uncertainty measure MQ is
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fc =
∫ 1

0

(
sup

0≤t≤T
exp
(
−
∫ t

0
rsds

)(S0

θσ
exp
( ∫ t

0
rsds +

√
3
∫ t

0 |σs|ds
π

ln
( α

1− α

))
− K

)+)
dα. (15)

where θσ is also defined by (3).

Proof. In Ref [22], Chen defined the price of the American call option as

fc = EQ
(

sup
0≤t≤T

exp
(
−
∫ t

0
rsds

)(
St − K

)+)
,

Since exp
(
−
∫ t

0 rsds
)(

St − K
)+

is a monotonically increasing function of St, from
Theorem 1 and Lemma 2, its inverse uncertainty distribution is

ΦQ,−1(α) = sup
0≤t≤T

exp
(
−
∫ t

0
rsds

)(S0

θσ
exp
( ∫ t

0
rsds +

√
3
∫ t

0 |σs|ds
π

ln
( α

1− α

))
− K

)+

.

Then

fc = EQ
(

sup
0≤t≤T

exp
(
−
∫ t

0
rsds

)(
St − K

)+)

=
∫ 1

0

(
sup

0≤t≤T
exp
(
−
∫ t

0
rsds

)(S0

θσ
exp
( ∫ t

0
rsds +

√
3
∫ t

0 |σs|ds
π

ln
( α

1− α

))
− K

)+)
dα.

The proof is completed.

Theorem 6. In an uncertain financial market, assume the underlying stock price model described
by (1). Consider an American put option whose strike price is K and expiration date is T, then its
price fp under the risk-neutral uncertainty measure MQ is

fP =
∫ 1

0

(
sup

0≤t≤T
exp
(
−
∫ t

0
rsds

)(
K− S0

θσ
exp
( ∫ t

0
rsds +

√
3
∫ t

0 |σs|ds
π

ln
( α

1− α

)))+)
dα. (16)

where θσ is also defined by (3).

Proof. In Ref [22], Chen defined the price of American put option is

fc = EQ
(

sup
0≤t≤T

exp
(
−
∫ t

0
rsds

)(
K− St

)+)
.

Since exp
(
−
∫ t

0 rsds
)(

K − St

)+
is a monotonically decreasing function of St, from

Theorem 1 and Lemma 2, its inverse uncertainty distribution is

ΦQ,−1(α) = sup
0≤t≤T

exp
(
−
∫ t

0
rsds

)(
K− S0

θσ
exp
( ∫ t

0
rsds +

√
3
∫ t

0 |σs|ds
π

ln
( α

1− α

)))+

.

Then we can obtain the price of American put options (16) by replacing variables of
integral similar to what we have done in Theorem 5.

The prove is completed.

5. Conclusions

This paper derived a risk-neutral pricing method of options for Liu’s stock model
in an uncertain market. The stock price process obtained by this method conforms to
Yao’s no-arbitrage theorem of uncertain financial markets and European call and put
options satisfy the classical parity relationship. The results of this option pricing method
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are consistent with the classic no-arbitrage principle, and provide a certain theoretical
reference for investors to derivative pricing and make investment decisions. This article
only discusses a risk-neutral pricing method of options in uncertain environments from the
theoretical aspect. In future research, numerical simulations or actual data are needed to
verify the feasibility of the theoretical model. On the other hand, we only discuss European
and American option pricing without any additional conditions; there are many issues
worthy of in-depth study, such as pricing issues of general options and various new options
considering the distribution of dividends, transaction costs or credit risks.
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