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Abstract: In cognitive radio (CR) networks, eigenvalue-based detectors (EBDs) have attracted much
attention due to their good performance of detecting secondary users (SUs). In order to further improve
the detection performance of EBDs with short samples, we propose two new detectors: average circu-
lant matrix-based Roy’s largest root test (ACM-RLRT) and average circulant matrix-based generalized
likelihood ratio test (ACM-GLRT). In the proposed method,the circulant matrix of samples at each time
instant from SUs is calculated, and then, the covariance matrix of the circulant matrix is averaged over a
short period of time. The eigenvalues of the achieved average circulant matrix (ACM) are used to build
our proposed detectors. Using a circulant matrix can improve the dominant eigenvalue of covariance
matrix of signals and also the detection performance of EBDs even with short samples. The probability
distribution functions of the detectors undernull hypothesis are analyzed, and the asymptotic expressions
for the false-alarm and thresholds of two proposed detectors are derived, respectively. The simulation
results verify the effectiveness of the proposed detectors.

Keywords: cognitive radio; eigenvalue-based spectrum sensing; circulant matrix; GLRT; RLRT

1. Introduction

Cognitive radio (CR) can effectively improve spectrum resource utilization by allowing
unlicensed users or secondary users (SUs) to use unoccupied spectrum holes. To avoid interfer-
ence with the signals of licensed users or primary users (PUs), SUs are required to detect the
presence of primary users utilizing the channel accurately and quickly. Therefore, spectrum
sensing technology is most important in the implementation of cognitive radio systems.

The purpose of spectrum sensing is to quickly and accurately detect whether the
frequency band is occupied by primary users. It enables cognitive users to opportunistically
access idle frequency bands without interfering with the work of primary users according
to the corresponding rules in the network. At the same time, in order to avoid harmful
interference to primary users, it is still necessary to continuously perceive the surrounding
spectrum environment during the use of the idle spectrum by secondary users. Once the
primary user signal appears, SUs need to perform fast spectrum switching or exit the
current frequency band to minimize interference to primary users.

The existing spectrum sensing algorithms can be divided into single-user spectrum
sensing algorithms and cooperative spectrum sensing algorithms according to the number
of cognitive users participating in sensing. Classic single-user spectrum sensing algorithms
include: energy detection (ED), matched filter detection (MFD) and cyclostationary feature
detection (CFD). Among them, the ED algorithm does not require any prior knowledge of
primary users, and its implementation is simple and low in complexity, but it is susceptible
to noise uncertainty [1]. The criterion of the matched filter detection algorithm is to
maximize the output signal-to-noise ratio; therefore, it is the optimal detection method
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under the condition of known signal waveforms [2]. However, designing a matched
filter requires a prior knowledge of primary user signals, the complexity of the device
increases, and the synchronization requirements are high. The CFD algorithm is mainly a
signal detection method designed for the modulated signal to have characteristics similar
to periodicity. It can distinguish the noise energy from the energy of the modulated
signal and has a strong ability to resist the uncertainty of noise power, but it needs to do
periodic processing on the signal, resulting in a low efficiency in practical applications [3].
Cooperative spectrum sensing is used to enhance the sensing performance by exploiting
the spatial diversity in the observations of SUs. By cooperation, SUs can share their sensing
information in fusion center (FC), which makes a final decision more accurate than the
local decisions at each SUs. There are many strategies to fuse the information from SUs.
Among them, the cooperative sensing methods based on the eigenvalues of the covariance
matrix of received signals by SUs have attracted widespread attention of researchers.

Eigenvalue-based detection (EBD) techniques has good application prospects because
they do not require prior knowledge of the primary user signal and have a good detection
performance [4–8]. The EBD can be further divided into semiblind detection under known
noise variance and blind detection with noise uncertainty [5]. The Roy’s largest root test
(RLRT) is considered as a nearly optimal detector in the case of known noise variance [9].
There are some blind sensing methods for unknown noise variance, such as the maximum–
minimum eigenvalue (MME) [10–14], energy with minimum eigenvalue (EME) [15] detec-
tion, and the generalized likelihood ratio test (GLRT)-based methods [16–19]. The GLRT
detector in [9,19] is considered as optimal under the generalized likelihood ratio (GLR)
criterion, when noise variance is unknown. In addition, there are some other detectors
based on EBD that have been proposed. For example, GLRT-based arithmetic to geometric
mean (AGM) detection can achieve relatively outstanding performance without any prior
information [18,20]. In [17], mean-to-square extreme eigenvalue (MSEE) is proposed to
avoid the heavy computational costs of AGM detection method. We found that the detec-
tors mentioned above often select the maximum or minimum eigenvalues of the sampling
covariance matrix to form their test statistics. In order to characterize the performance
of the detectors, the theoretical thresholds are analyzed under the assumption that the
sample number of received signal by SUs is large and even goes to infinity [21,22]. This
assumption is relevant in many applications in cognitive radio networks.

In this paper, we proposed two detectors to improve the detection performance of
EBDs with small samples based on the average circulant matrix. Classical EBDs use the
eigenvalues of the sampling covariance matrix of the received signals from SUs. Here,
in our proposed detectors, each sample of received signals from SUs is collected by one
fusion center which performs the detection decision. The circulant matrix of samples at
each time instant from SUs is calculated, and then, the covariance matrix of the circulant
matrix at each time instant is averaged for a period of time. The eigenvalues of the achieved
average circulant matrix (ACM) are used to build our detectors based on RLRT and GLRT.
From the numerical simulation results, using a circulant matrix can improve the dominant
eigenvalue of covariance matrix of signals and obtain a better detection performance of
EBDs even with small samples. Our contribution is as follows: (1) two new detector are
proposed based on the eigenvalues of the ACM of received signals with small samples; (2)
their probability distribution functions of proposed detectors under the null hypothesis
are analyzed; (3) the asymptotic expressions for the false alarm and thresholds of two
proposed detectors are derived. Simulation results show that the detection performance of
the proposed method is better than some other EBDs. The asymptotic analyses match the
simulation results well.

The rest of the paper is organized as follows: After introducing a system model in
Section 2, we introduce the proposed detectors in Section 3. The performance analysis of
two detectors is discussed in Section 4, and the simulation results are presented in Section 5.
In Section 6, some conclusions are given.
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2. System Model

In this paper, we consider centralized cooperative spectrum sensing scenarios in a
cognitive radio network. Assume that there is a single primary user (PU), K secondary
users (SUs), and a data fusion center (FC) in the cognitive radio system. K secondary users
quickly detect the occupation of authorized channels by primary user in a cooperative
manner. FC is used to collect the observed signals made by the SUs to make a final decision.
The system model is shown in Figure 1.

Primary User

Fusion 
Center

Secondary User-1

Secondary User-2

Secondary User-3 Secondary User-K

···

Figure 1. Cooperative spectrum sensing system model.

The binary hypothesis is used here to model the detection problem: (1) H0, indicating
that the primary user signal does not exist, and the signal received by the secondary user
at this time is only noise; and (2) H1, indicating that the primary user signal exists. At this
time, the signal received by the secondary user is the superposition of the primary user
signal and the noise after the effects of channel multipath and attenuation. The hypothesis
test can be expressed as {

y(n) = v(n) H0

y(n) = h · s(n) + v(n) H1
, (1)

where s(n) is the transmit signal at sample n and the received data vector y(n)= {yk(n)}T at
sample n by SU and k = 0, 1, 2 ... K− 1. In addition, K× 1 vector h represents the channels
coefficients between the primary users and K sensors. The K × 1 vector v(n)= {vk(n)}T

is assumed to be additive white Gaussian noise (AWGN) with mean zero and variance σ2
n .

The noise is independent identically distributed and uncorrelated with s(n).
The received signal matrix of K secondary users of N samples in FC is:

Y = [y(1) y(2) · · · y(N)] =


y1(1) y1(2) · · · y1(N)
y2(1) y2(2) · · · y2(N)

...
... · · ·

...
yK(1) yk(2) · · · yK(N)

. (2)

Let T be the detection statistic that distinguishes Hypothesis H0 and Hypothesis H1.
When the detection statistic is higher than the detection threshold τ, the primary user
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signal is considered to exist, otherwise, the primary user is considered not to exist, and the
decision rule is defined as follows: {

T ≤ τ H0
T > τ H1

, (3)

where τ is the detection threshold for spectrum sensing.
The detection performance of the spectrum detection algorithm is usually measured by

the false-alarm probability P f and the detection probability Pd, which are defined as follows:{
P f=Pr(T > τ|H0)
Pd=Pr(T > τ|H1)

. (4)

In the practical analysis, constant false-alarm probability is used, and then the corre-
sponding detection threshold is determined by the value of the target false-alarm proba-
bility. The detection performance of the spectrum sensing algorithm is measured by the
detection probability Pd.

3. Proposed Detectors
3.1. The Average of Circulant Matrix

For a single primary user and multiple secondary users, the data fusion center makes
the final decision based on the data from multiple secondary users. The sampling signal
received by the data fusion center at sampling time n(n =1, 2, ..., N) is Y, which is a received
data matrix and its sampling covariance matrix is expressed as : R = 1

N Y · YH

Define the circulant matrix for a received vector of K SUs at n-th sample as Zn.

Zn =


y0(n) yK−1(n) · · · y1(n)
y1(n) y0(n) · · · y2(n)

...
... · · ·

...
yK−1(n) yK−2(n) · · · y0(n)

. (5)

Define Rn as
Rn={rk,j}n = Zn · ZH

n , (6)

where rk,j are the (k, j) element of Rn and j = 0, 1, · · · , K− 1. (·)H represents the conjugate
transpose. Then, the average of Rn over N samples is

R={rk,j} =
1
N

N

∑
n=1

Rn, (7)

where rk,j is the (k, j) element of R. Since Zn is a circulant matrix, Rn and R are circulant
matrices, too. Suppose rn = {rk,1}n is the first column element of matrix Rn.

r={rk,1} =
1
N

N

∑
n=1

rn. (8)

Then we have [23]
FT(rn) = |FT(y(n))|2, (9)

where FT(·) denotes discrete Fourier transform.
Suppose λm to be the eigenvalues of R, where m = 0, 1, · · · , K− 1, then we obtain [24]

λm=Φ(m) =
K−1

∑
k=0

r · e−jωmk, (10)
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where ωm= 2πm
K . By substituting (6), (8), and (9) into (10), we have

λω=Φ(m) =
K−1

∑
k=0

(
1
N

N

∑
n=1

rne−jωmk)

=
N

∑
n=1

(
1
N

K-1

∑
k=0

rne−jωmk)

=
N

∑
n=1

(
1
N

∣∣∣∣∣K−1

∑
k=0

yk(n)e−jωmk

∣∣∣∣∣
2

)

=
N

∑
n=1

An(m),

(11)

where An(m)= 1
N

∣∣∣∣K-1
∑

k=0
yk(n)e−jωmk

∣∣∣∣2. Due to the conjugate symmetry property of DFT, eigen-

values λ0, λ1, λ2, ..., λk−1 are symmetrical, and only eigenvalues λ0, λ1, λ2, ..., λ[ K
2 ]

are con-

sidered in the following sections, where
[

K
2

]
is K

2 when K is even or K−1
2 when K is odd.

Traditional RLRT and GLRT methods use random matrix to construct signals. Because
of randomness, the result is uncertain, which leads to low efficiency of signal reconstruc-
tion. Due to the large amount of measurement data, the coefficients are random, and the
calculation speed of dense matrix is slow. The circulant matrix is efficient and fast and
needs less measurement in signal acquisition. The circulant matrix is a kind of structural
matrix which is determined by circulant permutation with predefined vectors. Because of
the reduction of random coefficients in the circulant matrix, the multiplication is fast.

3.2. The Distribution of Eigenvalues of R under the H0

According to Theorem 6.1.1 of [25], under H0, yk is a Gaussian purely random process
with zero mean and variance σ2

n, then the An(m) , where m = 0, 1, · · · ,
[

K
2

]
, are independently

distributed, and Φ(m), m = 0, 1, · · · ,
[

K
2

]
are mutually independent random variables.

If Xk is a pure Gaussian random process with mean 0 and variance σ2
x , and

Im= 2
N

∣∣∣∣K-1
∑

k=0
Xk(n)e−jωmk

∣∣∣∣2, wm= 2πm
K , m = 0, 1, · · · ,

[
K
2

]
, then Im distributes independently.

For each m, the following relationship is satisfied [25]:

Im ∼
{

σ2
x · χ2

2 m 6= 0, [K
2 ]

2σ2
x · χ2

1 m = 0, [K
2 ]

, (12)

where χ2
1 represents the chi-square distribution with 1 degree of freedom, χ2

2 represents
the chi-square distribution with 2 degrees of freedom, and χ2

2 can also be expressed as an
exponential distribution with a parameter of 1/2.

Comparing Im and An(m), we have Im = 2An(m). Thus for An(m), the following
relationship is satisfied:

An(m) ∼
{ 1

2 σ2
n · χ2

2 m 6= 0, [K
2 ]

σ2
n · χ2

1 m = 0, [K
2 ]

. (13)

If X ∼ χ2
ν, χ2

ν represents the chi-square distribution with υ degree of freedom. For
any c > 0, cX ∼ Γ(k = ν

2 , θ = 2c), Γ(k = ν
2 , θ = 2c) represents the gamma distribution

with shape parameter ν
2 and scale parameter 2c [26]. So σ2

nχ2
1 is a gamma distribution with

shape parameter 1/2 and scale parameter σ2
n . Then, σ2

nχ2
1 ∼ Γ( 1

2 , 2σ2
n). In the same way,

1
2 σ2

nχ2
2 ∼ Γ(1, σ2

n).
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LetA′n(m)= K
N · An(m), and then,

A′n(m) ∼
{

exp( K
Nσ2

n
) m 6= 0, [K

2 ]

Γ( 1
2 , 2K

N σ2
n) m = 0, [K

2 ]
. (14)

From (11), Φ(m)= ∑N
n=1 A′n(m). According to Section 2.2 of [27], we have

λm = Φ(m) ∼
{

Γ(N, K
N σ2

n) m 6= 0, [K
2 ]

Γ(N
2 , 2K

N σ2
n) m = 0, [K

2 ]
. (15)

3.3. The Detector ACM-RLRT under Unknown Noise Variance

In the case of known noise variance, according to the expression of RLRT [9], we
express the proposed detector ACM-RLRT as

T =
λmax

σ2
n

=max(Tm), (16)

where λm is the maximum eigenvalue of R and T = λmax
σ2

n
,m = 0, 1, · · · ,

[
K
2

]
.

3.4. The Detector ACM-GLRT under Unknown Noise Variance

According to GLRT-based EBD [20], the proposed detector of ACM-GLRT can be
defined as,

T” =
K · λmax

tr(R)
, (17)

where tr(R)= ∑K−1
m=0 λm is the trace of R. From Theorem 6.1.1 of [25] and (15), the eigenvalues

λm = Φ(m) are independent only for m = 0, 1, · · · ,
[

K
2

]
. In addition, the numerator and

the denominator of T”are not independent. It is difficult to deduce the theoretical expression
of PDF of T”. Therefore, we modified the expression of the ACM-GLRT detector as,

T′ = max(T′m), (18)

where

T′m =


λm

∑K/2−1
m=1 λm−λm

(K
2 − 2) m 6= 0, [K

2 ]

λm

∑K/2−1
m=1 λm

(K
2 − 1) m = 0, [K

2 ]
. (19)

In the modified statistic, the numerator of (19) is independent of the denominator. The
modification makes it possible to give the asymptotic expression of PDF for T′.

4. Performance Analysis
4.1. Performance Analysis of ACM-RLRT with Known Noise Variance

Suppose the noise variance to be σ2
n . According to Gamma distribution theory [25], if

X ∼ Γ(β, γ), and c > 0, Y = cX, then X ∼ Γ(β, cγ). From (15), we have

Tm =
λm

σ2
n
∼
{

Γ(N, K
N ) m 6= 0, [K

2 ]
Γ(N

2 , 2K
N ) m = 0, [K

2 ]
. (20)

In addition, the false-alarm probability is

Pf = Pr(T > τ|H0)=Pr(max(Tm) > τ|H0)

= 1−
K
2

∏
m=0

Pr(Tm ≤ τ|H0)

= 1-Γ(τ; N,
K
N
)

K
2 −1
· Γ(τ;

N
2

,
2K
N

)
2
,

(21)
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where Γ(τ; ζ, ϕ) indicates the Γ(ζ; ϕ) distribution with the argument τ. The threshold τ
can be determined by (21), given Pf =α, 0 < α ≤ 1.

4.2. Performance Analysis of ACM-GLRT with Unknown Noise Variance

Since λm have a gamma distribution and express the denominator of (19) as

D =

{
∑K/2−1

m=1 λm − λm m 6= 0, [K
2 ]

∑K/2−1
m=1 λm m = 0, [K

2 ]
. (22)

From the gamma distribution theory [28], if X1...Xn are independent random variables
and obey Γ(αi, β), i=1, ..., n, then Y= ∑n

i=1 Xi,Y∼ Γ(∑n
i=1 αi, β). According to (15) and (22), then

D ∼
{

Γ((K
2 − 2)N, K

N σ2
n) m 6= 0, [K

2 ]
Γ((K

2 − 1)N, K
N σ2

n) m = 0, [K
2 ]

. (23)

From the distribution theory of gamma function ratio [29,30], if X1 ∼ Γ(α1, θ1) and
X2 ∼ Γ(α2, θ2) are independent of each other, then α2θ2X1

α1θ1X2
follows the F distribution with

parameters 2α1 and 2α2, that is expressed as α2θ2X1
α1θ1X2

∼ F(2α1, 2α2).
According to (15), (19), and (23),

T′m ∼
{

F(2N,2(K
2 − 2)N) m 6= 0, [K

2 ]
F(N,(K

2 − 1)N) m = 0, [K
2 ]

, (24)

where F(α, γ) denotes F distribution with parameters α and γ.
From (24) , we have the false-alarm probability of ACM-GLRT

Pf =Pr(T′>τ|H0)=Pr(max(T′m)>τ|H0)

=1−
K
2

∏
m=0

Pr(T′m ≤ τ|H0)

=1-F(τ; 2N, 2N(
K
2
− 2))

K
2 −1
· F(τ; N, (

K
2
− 1)N)

2
,

(25)

where F(τ; ζ, ϕ) indicates F(ζ; ϕ) distribution with the argument τ. The threshold τ can be
found given Pf .

4.3. Computational Complexity

In spectrum sensing, the computational cost mainly focuses on the computation of
test statistic and the decision threshold. The threshold can be calculated ahead and used as
a table during the detection. Thus, the main cost lies in the test statistic.

As for the computation of test statistic, the difference between our proposed schemes
and existing schemes is how to obtain the eigenvalues used in the detectors. Our proposed
schemes first use the eigenvalues of expending the received vector of K SUs at n-th sample
into its K× K circulant matrix and then averaging the circulant matrix over samples. The
eigenvalues are achieved by using fast Fourier transform (FFT) to the covariance matrix of
an average circulant matrix. Our proposed schemes have two additional steps: obtaining
the circulant matrix of receiving vectors and averaging. These steps are proposed by just
shifting and the summation of O(K + N), where N is the sample size. The computational
complexity of FFT is O(K log K); therefore, the total complexity is O(K + N + K log K)
where K < N. Existing schemes use the eigenvalues of the K× K covariance matrix of the
received vector of K SUs. In [14], the iterative power method is applied for computing
these eigenvalues from an implementation perspective. This has the time complexity of
O(K2). For short samples (such as, N = 20 and K = 8), our proposed schemes have a
smaller cost than the existing schemes.
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5. Simulation Results

In this section, we first show the influence of a circulant matrix on the eigenvalues
of the covariance matrix as well as the histogram of proposed methods under binary
hypothesis. Then, the performance of the two proposed detectors is verified with ROC
curves. In addition, we provide a performance comparison between the proposed methods
and several typical previous works.

We assume there are one PU and eight SUs in the CR networks. In addition, each SU
is equipped with an antenna. Both PU signal and noise follow Gaussian distribution with
mean zero but different variance.

5.1. The Effect of Circulant Matrix on Eigenvalues of Covariance Matrix

In our proposed detectors, the circulant matrix technique is used to improve the dominant
eigenvalue of the covariance matrix. Figure 2 gives an example of the sorted eigenvalues of
two different covariance matrix: R (with the circulant matrix technique) and R (without the
circulant matrix technique) under the hypothesis H1 and H0 at SNR = 3 dB with 100 repeats.
Since we consider a single primary user signal in this paper, there is only one dominant
eigenvalue under H1. It can be seen from Figure 2 that the dominant eigenvalues of R with
ACM have an extended range. However, the gap with ACM between H1 and H0 is wider
than that without ACM, which helps to improve the detection performance.

0 1 2 3 4 5 6 7 8 9

Order of sorted Eigenvalues

0

50

100

150

200

250

E
ig

en
va

lu
es

H1 without ACM
H0 without ACM
H1 with ACM
H0 with ACM

Figure 2. The sorted eigenvalues of two different covariance matrices under H1 and H0.

To show the effect of the circulant matrix on the test statistic of EBDs, Figures 3–6 give
the histogram of the test statistics of the four different detectors. In Figures 3 and 4, we can
see the comparison of the probability distribution function of test statistic of RLRT with
ACM-RLRT under hypothesis H0 and H1. With the circulant matrix technique, the test
statistic of ACM-RLRT has the wider gap between H0 and H1 than RLRT. We also notice
that the ACM-RLRT has an extended PDF. These two effects on the test statistic match the
simulation results of eigenvalues.
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Figure 3. Histogram of RLRT test statistics under H1 and H0.
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Figure 4. Histogram of ACM-RLRT test statistics under H1 and H0.

The comparison of GLRT with ACM-GLRT is shown in Figures 5 and 6. The PDF of
test statistic of ACM-GLRT also has a wider gap between H0 and H1 than GLRT, which is
consistent with ACM-RLRT.
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Figure 5. Histogram of GLRT test statistics under H1 and H0.
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Figure 6. Histogram of ACM-GLRT test statistics under H1 and H0.

5.2. Receiver Operating Characteristic (ROC) Curve

Based on the fact that the circulant matrix technique can broaden the gap between
the PDF of H0 and H1, we choose small samples (N = 20) to process the received signals
form PU. Figure 7 shows the comparison of ROC curve of our proposed detectors with
some other detectors. Our proposed detectors, ACM-RLRT and ACM-GLRT, have a better
detection performance than other detectors. ACM-RLRT has the best performance. The
reason may lie in that we change the classical GLRT detector while using a circulant
matrix. GLRT and RLRT do worse than ACM-RLRT and ACM-GLRT but better than others.
Some other methods, such as MSEE, AGM, and MME show very similar results under the
limited samples, which are lower than GLRT and RLRT. In addition, EME has the worst
performance among them. From the results, we can see that our proposed methods can
still have a better performance even under the small sample.
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Figure 7. ROC curves for different detection methods (SNR = −9 dB, K = 8). The proposed methods
are compared with MSEE, EME, MME, RLRT, GLRT, and AGM.

In Figures 8 and 9, the theoretical and simulation results of ROC curve are presented
to evaluate the performance metric of the proposed ACM-RLRT and ACM-GLRT detectors,
respectively. We can see that the ROC curve using theoretical thresholds of proposed
detectors coincides with the simulation results of ACM-RLRT. However, ACM-GLRT has a
difference between the results of theoretical threshold and simulation. With larger K, the
difference becomes smaller. This is because the F function in (24) is more concentrated
when K is larger, which helps to reduce the difference between theoretical and simulated
results. With the increase in the SU number K, the detection performance becomes better.
We see that cooperation between sensors can contribute additional sample data to the
sensing process, which would help to improve the detection performance.
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Figure 8. ROC curve of ACM-RLRT detector. SNR = −9 dB, N = 20, K = 8, 10, 12.
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Figure 9. ROC curve of ACM-GLRT detector. SNR = −9 dB, N = 20, K = 8, 10, 12.

Figures 10 and 11 shows the theoretical and simulation results of ROC curve of
the proposed ACM-RLRT and ACM-GLRT detectors, respectively. As for ACM-RLRT,
the results of simulated thresholds match well with the theoretical threshold under a
different SNR. However, for ACM-GLRT, there is a difference between the theory and
simulation results both for different SNR. The reason maybe lies in the calculation of the
theoretical threshold which is performed by searching the threshold-Pf table. When SNR is
higher, the test statistic concentrates further, which helps to reduce the difference between
theoretical curves and simulated ones. With the increase in SNR, the detection performance
becomes better.
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Figure 10. ROC curve of ACM-RLRT detector. N = 20, K = 12, SNR = −5 dB, −7 dB, −9 dB, −11 dB.
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Figure 11. ROC curve of ACM-GLRT detector. N = 20, K = 12, SNR = −5 dB, −7 dB, −9 dB, −11 dB.

5.3. SNR

We then examine the effect of SNR on the detection performance under the fixed
Pf . Figures 12 and 13 illustrates the curves of SNR versus detection probability using
our proposed methods and some other eigenvalue-based detectors (GLRT, RLRT, MME,
EME, MSEE, and AGM) with Pf = 0.001. The detection probability increases with the
improvement of the SNR. From Figures 10 and 11, the performance of ACM-GLRT and
ACM-RLRT are significantly better than others at the same SNR, which matches with the
results of the ROC curve. We also notice that AGM performs better than MME and MSEE
with the increase in SNR (SNR>-10dB), which is different than the ROC curve. In addition,
EME also shows the worst result under low SNR and short samples.
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Figure 12. Pd-SNR curve of ACM-RLRT and other detectors. K = 8, N = 20, and Pf = 0.001.
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Figure 13. Pd-SNR curve of ACM-GLRT and other detectors. K = 8, N = 20, and Pf = 0.001.

Figures 14 and 15 show the comparison of the Pd-N curve of proposed detectors and
those other detectors. The trend is that the detection probability increases with sample
number N. From Figures 14 and 15, we can see that both ACM-RLRT and ACM-GLRT have
better performance than other detectors. In addition, only the curves of our two proposed
detectors tend to be constant with the increase in sample number N. The other detectors
cannot show the trend. It indicates that our proposed detectors can be close to the highest
performance under the relatively small samples.
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Figure 14. Pd-N curve of ACM-RLRT and another detector. SNR = −9 dB, K = 8.
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Figure 15. Pd-N curve of ACM-GLRT and another detector. SNR = −9 dB, K = 8.

6. Conclusions

In the cognitive radio networks, the eigenvalue-based spectrum sensing method has
attracted wide attention because it can obtain high detection performance without prior
knowledge about the signals of both primary users and noise. Although some methods
have been proposed to further improve the performance of eigenvalue-based detectors
(EBDs), there is still one problem seldom to be confronted with. That is how the EBDs can
quickly detect and perform good results with small samples. In this paper, we proposed
two detectors, the ACM-RLRT and ACM-GLRT, based on the circulant matrix technique for
the known and unknown noise variances. The simulation results show that the circulant
matrix technique can enhance the dominant eigenvalue of the covariance matrix, which
would broaden the range between the probability density function (PDF) of the detectors’
statistic under a null hypothesis and alternative hypothesis. We also derived the theoretical
expression of the PDFs of two proposed detectors under a null hypothesis. The expression
of the false-alarm probability is given at last. The results show that the performance of
theoretical analyses is consistent with the simulated ones. From the simulation results, it
can be seen that the proposed detectors have a better detection performance even under
the small samples, compared with some other methods.
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