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Abstract: Volatile markets and uncertain deterioration rate make it extremely difficult for man-
ufacturers to make the quantity of saleable vegetables just meet the fluctuating demands, which
will lead to inevitable out of stock or over production. Aggregate production planning (APP) is to
find the optimal yield of vegetables, shortage and overstock symmetry, are not conducive to the
final benefit.The essence of aggregate production planning is to deal with the symmetrical relation
between shortage and overproduction. In order to reduce the adverse effects caused by shortage,
we regard the service level as an important constraint to meet the customer demand and ensure the
market share. So an uncertain aggregate production planning model for vegetables under condition
of allowed stockout and considering service level constraint is constructed, whose objective is to find
the optimal output while minimizing the expected total cost. Moreover, two methods are proposed
in different cases to solve the model. A crisp equivalent form can be transformed when uncertain
variables obey linear uncertain distributions and for general case, a hybrid intelligent algorithm
integrating the 99-method and genetic algorithm is employed. Finally, two numerical examples are
carried out to illustrate the effectiveness of the proposed model.

Keywords: aggregate production planning (APP); uncertainty theory; out of stock; service level
constraint

1. Introduction

The aim of aggregate production planning (APP) is to meet the market demand and
achieve the maximum profit or minimum cost by adjusting the production and other con-
trollable factors for all kinds of products over a finite planning horizon. The relationship
between shortage and overproduction is symmetrical; shortage leads to profit maximiza-
tion, and overproduction leads to cost minimization. We are trying to solve the problem
of balance between shortage and overproduction. In 1955, Holt et al. [1] proposed the
HMMS rule, and since then researchers have developed plenty of models to solve the APP
problem, such as [2–8]. As the initial segment of the supply chain, the production planning
problem is discussed in this paper. As a special category of perishable products, the study
of the APP problem of vegetables can learn from the perishable products.

Demand and deterioration rate are two important factors in vegetables’ production
process. Ghare and Schrader [9] firstly assumed a constant rate and studied the perishable
inventory problems with a deterministic demand. An EOQ model for items with Weibull
distribution deterioration was proposed by Covert and Philip [10] in 1973. In 2016, a produc-
tion planning model considering uncertain demand using two-stage stochastic program-
ming in a fresh vegetable supply chain context was presented by Jordi Mateo et al. [11].
Meanwhile, some scholars established lots of APP models under the fuzzy environment,
such as [12,13].
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For the production planning problem, whether or not to allow shortages is another
factor that researchers are concerned about. Although shortages and overproduction are
symmetrical, in general, the probability of occurrence is also symmetrical, but in reality,
shortage occurs frequently. Moreover, in the perishable products supply chain with a
high deterioration rate, the demand is often backlogged deliberately to reduce losses of
deterioration. As a result, more and more research studies tend to assume that being out of
stock is allowed and they usually take the sales loss and opportunity cost caused by being
out of stock into consideration. In 2005, Yu et al. [14] firstly proposed an integrated VMI
model considering a single deteriorating item and back ordering and concluded that it was
meaningful to allow shortages, especially in the case of relatively low shortage costs. Then,
in 2014, Liu et al. [15] built a decision model of a simple two-echelon perishable product
supply chain that considered customer returns and the split shortage penalty mechanism
after the introduction of the options contract and obtained the initial order volume and
options purchasing volume of the retailer.

As for the inevitable shortage, manufacturers must try their best to improve the
service level and meet customer needs in order to ensure the market share. Therefore, as an
important evaluation index, the service level should be taken into account in the process
of production planning. However, as for the constraints of perishable goods production
and inventory, most of the literature mainly paid attention to the constraints on the stock
transfer and production capacity. At present, fewer studies regard the service level as a
constraint. In 2012, PaulsWorm et al. [16] studied a production planning problem for a
perishable product with a fixed lifetime under a service level constraint whose objective
was to develop a production planning method for a perishable product with non-stationary
demand and a long deterministic production lead time. Duan et al. [17] dealt with two
period inventory optimization problems for perishable items, where the demand rate
depended on the service level of the previous replenishment cycle, and the results indicated
that the service level was an important factor that influenced the inventory policy and the
enterprise should balance the service level and profits. Then Xu and Xiao [18] established
an inventory control model based on service level constraints. In 2016, Xiong [19] studied
the Pareto optimal area of the perishable product order timing by means of the service
level and discussed a two-echelon supply chain which was comprised of a supplier and a
retailer. This research might provide the retailer with valuable guidance for its decision of
order timing. Above all, it is very necessary to consider the service level as an important
factor to study the supply chain of perishable products.

The APP problem not only involves large amounts of data, but might be undergone
by all sorts of unpredictable disruptions in actual production. Some uncertain methods
are used to handle this problem. In order to study the behavior of uncertain phenomena,
uncertainty theory was founded by Liu [20] in 2007 and redefined by Liu [21] in 2010.
Uncertainty theory has been developed steadily and applied widely [22–26]. Given the
production planning problem, a multi-product aggregate production planning model based
on uncertainty theory was presented by Ning et al. [27] in 2013, whose studying object was
the general products. Pang and Ning [28] used uncertainty theory to study the aggregate
production planning problem for vegetables from the point of manufacturers. Ning, Pang
and Wang [29] established an expected profit model considering preservation technology
investment under the capacity constraints. On the basis of the models and aiming at the
particularities of vegetables, an uncertain APP model for vegetables under the conditions
of allowed stockout and service level constraints is built in this paper.

The remainder of the paper is organized as follows. In Section 2, we describe the
uncertain APP problem for vegetables. Section 3 proposes an uncertain APP model for
fresh vegetables. In Section 4, a crisp equivalent form of the proposed model is obtained
when the variables are linear, and a hybrid intelligent algorithm is designed in the general
case. Then, we give two numerical examples to illustrate the proposed models in Section 4.
Finally, some conclusions are covered in Section 6.
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2. Problem Description

Now we assume that a manufacturer intends to produce N different kinds of vegeta-
bles over a finite planning horizon T, including t periods. The ripe vegetables will be stored
in the inventory to wait to be bought by the distributors. In the decision-making process,
the manufacturer should take account of a variety of uncertain factors, try their best to
make the output keep up with the demand, and realize the target of the minimum total cost
during the whole horizon T. The properties of fast updating speed and volatile markets
for new products make the historical data unreliable for forecasting the future demand.
Moreover, the deterioration rate θnt and demand Dnt will also be affected by the nature of
the vegetables and storage conditions as well as other factors, n = 1, 2, . . . , N, t = 1, 2, . . . , T.
All of these make the deterioration rate and demand be usually obtained on the basis of
the belief degree from experienced experts instead of the historical data. Furthermore,
because of the uncertain deterioration rate, unfixed deterioration time and uncertain cus-
tomer arrival time, it is difficult to determine how many products will go bad and when
they will go bad or be sold, which might interfere with making an accurate judgment for
the inventory cost cnt and storage space vnt occupied by per unit vegetable. In this paper,
we employ uncertain variables to denote these four factors.

On the one hand, the unfixed deterioration time and uncertain deterioration rate
make the unmetamorphosed part of the vegetables that can be sold eventually become
unstable. On the other hand, it is extremely difficult for the manufacturer to forecast
the market demand accurately because of the properties of the fast updating speed and
volatile markets for new products. Therefore, it becomes very hard to make the quantity of
salable vegetables just meet the fluctuating demands and will lead inevitably to being out
of stock or to overproduction. So, these two cases are both considered in this paper. Other
assumptions and simplifications are stated as follows:

Firstly, the vegetables will be stored in the inventory after harvest and begin deterio-
rating as soon as they are entered the storage. Once sold or deteriorating, this part of the
vegetables will leave the storage and no longer expand the inventory cost;

Secondly, the characteristics of freshness and deterioration make it difficult to sell
the vegetables across the planning period. Hence, there is no beginning inventory in
each period;

Thirdly, the total cost consists of the production cost, inventory cost, deterioration
cost, shortage cost and overproduction cost;

Fourthly, the production cost, processing cost, shortage cost, overproduction cost and
maximum warehouse space are deterministic and constant.

To sum up, Dnt, θnt, cnt, vnt are set as uncertain variables which are independent
of each other, and Qnt is set as the decision variable, n = 1, 2, . . . , N, t = 1, 2, . . . , T.
The notations of the APP problem are shown in Table 1.

Table 1. Notations of the APP problem.

Notation Meaning

N Types of vegetables
T Planning horizon
f Total cost function over T
Dnt Demand for the nth vegetable in period t (units)
θnt Deterioration rate of the nth vegetable in period t, θnt ∈ (0, 1)
bnt Unit processing cost for the nth vegetable in period t ($/unit)
gnt Unit production cost of the nth vegetable in period t ($/unit)
Qnt Total production of the nth vegetable in period t (units)
cnt Unit inventory cost of the nth vegetable in period t ($/unit)
ent Unit shortage cost of the nth vegetable in period t ($/unit)
Bnt Quantities of shortage of the nth vegetable in period t (units)
pnt Unit overproduction cost of the nth vegetable in period t ($/unit)
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Table 1. Cont.

Notation Meaning

Ont Quantities of overproduction of the nth vegetable in period t (units)
vnt Warehouse space per unit of the nth vegetable in period t ( f t2/unit)
Vtmax Maximum warehouse space available in period t ( f t2)

3. Model Formulation

In this section, we build an uncertain programming model according to the description
for vegetables’ APP problem. The objective function and the constraints are constructed
as below.

3.1. Objective Function

The total cost includes the following:

Firstly, the total production cost
N
∑

n=1

T
∑

t=1
gntQnt;

Secondly, the total inventory cost
N
∑

n=1

T
∑

t=1
cntQnt;

Thirdly, the total deterioration cost

N

∑
n=1

T

∑
t=1

(gntθntQnt + bntθntQnt).

It is well known that for the amount of perished vegetables θntQnt, we not only lose

the production cost
N
∑

n=1

T
∑

t=1
gntθntQnt in vain, but also need pay additional processing cost

N
∑

n=1

T
∑

t=1
bntθntQnt;

Fourthly, the total shortage cost
N
∑

n=1

T
∑

t=1
entBnt, where Bnt = max

{
Dnt − Qnt(1 −

θnt), 0
}

;

Fifthly, the total overproduction cost
N
∑

n=1

T
∑

t=1
pntOnt, where Ont = max

{
Qnt(1− θnt)−

Dnt, 0
}

.
As a consequence, the objective function about the total cost is

f =
N

∑
n=1

T

∑
t=1

(
gntQnt + cntQnt + gntθntQnt + bntθntQnt + entBnt + pntOnt

)
. (1)

3.2. Constraints
3.2.1. Service-Level Constraint

It is inevitable for vegetables to be out of stock, and in the actual production, the
under-supply of a product is one of the main factors that contribute to customer service
levels drop. In order to ensure the market share and meet the customer demand, we regard
the service level as an important constraint and construct the following chance constraint:

M
{ N

∑
n=1

(
Qnt(1− θnt)− Dnt

)
≥ 0

}
≥ γ, t = 1, 2, . . . , T (2)

where γ is the service level, and 0 < γ ≤ 1.
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3.2.2. Inventory Capacity Constraint

The actual production will be restricted by limited resources, and inventory limitation
is introduced into this APP problem. Volatile market demand, uncertain deterioration rate
and other disruptions make the manufacturer cannot set an accurate storage constraints.
So, the chance constraint on the uncertain measure that the storage space taken up by all
products does not exceed the maximum warehouse space available is not less than ε in
period t is as follows,

M
{ N

∑
n=1

vntQnt ≤ Vtmax

}
≥ ε, (3)

where ε is denoted as the confidence level, and 0 < ε ≤ 1, t = 1, 2, . . . , T.

3.3. Model

Different managers have different attitudes towards the risk in the decision-making
process. In this paper, we assume that the decision maker wants to obtain a minimum
expected cost under chance constraints, then the APP model may be built as follows,

min E [ f ]
subject to :

M
{

N
∑

n=1

(
Qnt(1− θnt)− Dnt

)
≥ 0

}
≥ γ

M
{

N
∑

n=1
vntQnt ≤ Vtmax

}
≥ ε

Qnt ≥ 0, n = 1, 2, . . . , N, t = 1, 2, . . . ,T

(4)

4. Solving Method

In uncertainty theory, uncertainty distributions are usually used to depict uncertain
variables. For model (4), two methods must be proposed to obtain the optimal solution

because of the form of Bnt = max
{

Dnt −Qnt(1− θnt), 0
}

and Ont = max
{

Qnt(1− θnt)−

Dnt, 0
}

. When the uncertain variables all obey linear uncertain distributions, a crisp form
can be deduced by some theorems, while if the uncertain variables follow different kinds of
uncertain distributions, a hybrid algorithm needs to be used to solve the uncertain model.

4.1. Equivalent Crisp Form

In this subsection, we assume that all uncertain variables obey linear uncertain dis-
tribution, then the equivalent crisp form can be obtained by uncertainty theory [20]. The
information of these uncertain variables are shown in Table 2.

Table 2. Uncertain linear distributions.

Uncertain Variable Linear Uncertain Distribution

Dnt L(aDnt , bDnt)
θnt L(aθnt , bθnt)
cnt L(acnt , bcnt)
vnt L(avnt , bvnt)

According to uncertain expectation [20], Equation (1) can be converted into
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E[ f ] =
N

∑
n=1

T

∑
t=1

(
Qntgnt + QntE[cnt] + gntQntE[θnt]

+ bntQntE[θnt] + pntE[Bnt] + entE[Ont]

)
.

where E[cnt] =
acnt + bcnt

2
, E[θnt] =

aθnt + bθnt

2
. For this uncertain APP problem, we are not

sure whether it is out of stock or overproduction. According to reference [27], the second is
the most suitable choice for this model. As a result, the objective function can be further
transformed into the following form,

E[ f ] =
N

∑
n=1

T

∑
t=1

(
Qntgnt + Qnt

acnt + bcnt

2
+ Qntgnt

aθnt + bθnt

2
+ Qntbnt

aθnt + bθnt

2

+pnt
(Qnt −Qntaθnt − aDnt)

2

2
(

bDnt − aDnt + Qnt(bθnt − aθnt)
) + ent

(Qnt −Qntbθnt − bDnt)
2

2
(

bDnt − aDnt + Qnt(bθnt − aθnt)
)),

where
N
∑

n=1

T
∑

t=1
(aDnt −Qnt + Qntaθnt) ≤ 0 <

N
∑

n=1

T
∑

t=1
(bDnt −Qnt + Qntbθnt),

N
∑

n=1

T
∑

t=1
(Qnt −Qntbθnt − bDnt) ≤ 0 <

N
∑

n=1

T
∑

t=1
(Qnt −Qntaθnt − aDnt).

According to reference [27], we can obtain

M
{ N

∑
n=1

Qnt(1− θnt) ≥
N

∑
n=1

Dnt

}
=

N

∑
n=1

Qnt −Qntaθnt − aDnt

bDnt − aDnt + Qnt(bθnt − aθnt)
,

where
N
∑

n=1
(Qnt −Qntbθnt − bDnt) ≤ 0 <

N
∑

n=1
(Qnt −Qntaθnt − aDnt).

Then by reference [23], Equation (3) is respectively equivalent to

N

∑
n=1

(
(1− ε)avnt + εbvnt

)
Qnt ≤ Vtmax, t = 1, 2, . . . , T

Above all, we obtain the deterministic form of model (4),

min E [ f ]
subject to :

N
∑

n=1
(Qnt −Qntbθnt − bDnt) ≤ 0

N
∑

n=1
(Qnt −Qntaθnt − aDnt) > 0

N
∑

n=1

(
(1− ε)avnt + εbvnt

)
Qnt ≤ Vtmax

N

∑
n=1

Qnt −Qntaθnt − aDnt

bDnt − aDnt + Qnt(bθnt − aθnt)
≥ γ

Qnt ≥ 0, n = 1, 2, . . . , N, t = 1, 2, . . . ,T

(5)

Obviously, Equation (5) is a nonlinear programming and it can be solved by traditional
optimization methods.
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4.2. Genetic Algorithm Combined with 99-Method

In some cases, it will become difficult to transform the uncertain model into a crisp
form. The 99 method can be employed to gain approximate values of the objective function
and constraints. Genetic algorithm can be used to find the optimal solution of the model.
Then, we can integrate genetic algorithm and the 99 method to solve Equation (4) for
the cases.

According to reference [21], the uncertain variables Bnt = max
{

Dnt − Qnt(1 −

θnt), 0
}

has the 99 method as follow,

0.01 0.02

(x
Dnt
1 + Qnt x

θnt
1 −Qnt )

∨
0 (x

Dnt
2 + Qnt x

θnt
2 −Qnt )

∨
0

... 0.99

... (x
Dnt
99 + Qnt x

θnt
99 −Qnt )

∨
0

The uncertain variables Ont = max
{

Qnt(1− θnt)−Dnt, 0
}

have a 99 method as follow,

0.01 0.02

(Qnt −Qnt x
θnt
99 − x

Dnt
99 )

∨
0 (Qnt −Qnt x

θnt
98 − x

Dnt
98 )

∨
0

... 0.99

... (Qnt −Qnt x
θnt
1 − x

Dnt
1 )

∨
0

Then, the objective function

N

∑
n=1

T

∑
t=1

(
gntQnt + cntQnt + gntθntQnt + bntθntQnt

+ entBnt + pntOnt
)

has a 99 table (1 ≤ k < 100 and k is an integer) as follow.

. . . k/100 . . .

. . .
N
∑

n=1

T
∑

t=1

(
Qnt
(

gnt + xcnt
k + xθnt

k (gnt + bnt)
)

+ent

((
xDnt

k + Qnt(xθnt
k − 1)

)∨
0
)

+pnt

((
Qnt(1− xθnt

100−k)− xDnt
100−k

)∨
0
))

. . .

Then the objective value E[ f ] in Equation (4) can be approximated by the following
function value

99

∑
k=1

(
N

∑
n=1

T

∑
t=1

(
Qnt

(
gnt + xcnt

k + xθnt
k (gnt + bnt)

)
+ ent

((
xDnt

k + Qnt(xθnt
k − 1)

)∨
0
)

+ pnt

((
Qnt(1− xθnt

100−k)− xDnt
100−k

)∨
0
)))

/99.
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For the constraints, we can convert them into deterministic form by reference [23],
and Equation (2) is equivalent to

N

∑
n=1

(
Φ−1

Dnt
(γ) + QntΨ−1

θnt
(γ)

)
≤

N

∑
n=1

Qnt, t = 1, 2, . . . , T.

Equation (3) can be transformed into

N

∑
n=1

(
Υ−1

vnt (ε)Qnt

)
≤ Vtmax, t = 1, 2, . . . , T.

Then we can use the genetic algorithm and direct search toolbox (GADST) in MATLAB
to search for the optimal solutions for Equation (4).

5. Numerical Examples

Two numerical examples are given to illustrate the proposed model in Section 4.
Example 1 Assume that a manufacturer plans to produce two kinds of vegetables

during two periods and all uncertain variables obey linear uncertain distributions. Infor-
mation of the numerical instance including uncertain variables and various deterministic
costs is shown in Table 3. In addition, other relevant parameters are presented as follows,
γ = 0.7, ε = 0.8, V1max = 8000, V2max = 10, 000.

Table 3. Information of Example 1.

Item Period 1 Period 2

D1t L(60, 120) L(50, 110)
D2t L(50, 90) L(70, 120)
θ1t L(0, 0.3) L(0, 0.3)
θ2t L(0, 0.2) L(0, 0.2)
c1t L(1, 3) L(2, 5)
c2t L(2, 4) L(1, 4)
v1t L(1, 4) L(2, 5)
v2t L(2, 5) L(3, 6)
g1t 4 6
g2t 5 8
b1t 2 1
b2t 2 3
e1t 2 1
e2t 1 2
p1t 1 1
p2t 2 1

In accordance with the information from Table 3, the deterministic Equation (5) can be
further converted into
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

min 6.9Q11 + 10.55Q12 + 8.7Q21 + 11.6Q22

+H + I + J + K

subject to :

Q11 + Q21 > 110

Q12 + Q22 > 120

0.7Q11 + 0.8Q21 ≤ 210

0.7Q12 + 0.8Q22 ≤ 230

3.4Q11 + 4.4Q21 ≤ 8000

4.4Q12 + 5.4Q22 ≤ 10000

Q11 − 60
60 + 0.3Q11

+
Q21 − 50

40 + 0.2Q21
≥ 0.7

Q12 − 50
60 + 0.3Q12

+
Q22 − 50

50 + 0.2Q22
≥ 0.7

Q11, Q12, Q21, Q22 ≥ 0

(6)

where

H =
(Q11 − 60)2 + (0.7Q11 − 120)2

120 + 0.6Q11
,

I =
(Q12 − 50)2 + (0.7Q12 − 110)2

120 + 0.6Q12
,

J =
2(Q21 − 50)2 + (0.8Q21 − 90)2

80 + 0.4Q21
,

K =
(Q22 − 70)2 + 2(0.8Q22 − 120)2

100 + 0.4Q22
.

This nonlinear programming model can be solved by the optimization software Lingo,
and we obtain the optimal objective value 3227.9560, which represents the minimum total
cost of this production planning problem. The optimal solutions of the output are listed
in Table 4.

Table 4. Optimal output of the production planning in Example 1.

Item Period 1 Period 2

Q1t 76.7008 67.9473
Q2t 77.7044 103.7260

Example 2 Consider an APP model with two kinds of vegetables during two periods
(the related data are listed in Table 5), where the uncertain variables obey different kinds of
uncertain distributions. The uncertain model cannot be transformed into a crisp equivalent
one. We use the genetic algorithm and direct search toolbox in MATLAB 8.5 to solve
this example. The relevant parameters in the genetic algorithm are presented as follows:
’PopulationSize’ = 45, ’CrossoverFraction’ = 0.35, and ’PopInitRange’ = [0; 10]. We set ’rng(0,
’twister’)’ for reproducibility. In addition, the confidence levels are set as γ = 0.7, ε = 0.8,
and the largest inventory capacity is set as V1max = 8000, V2max = 10,000.
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Table 5. Information of Example 2.

Item Period 1 Period 2

D1t L(60, 120) L(50, 110)
D2t L(50, 90) L(70, 120)
θ1t Z(0, 0.1, 0.3) Z(0, 0.1, 0.3)
θ2t Z(0, 0.1, 0.2) Z(0, 0.1, 0.2)
c1t N(3, 1) N(5, 2)
c2t N(4, 1) N(4, 2)
v1t L(3, 6) L(3, 5)
v2t L(4, 7) L(2, 4)
g1t 4 6
g2t 5 8
b1t 2 1
b2t 2 3
e1t 2 2
e2t 2 2
p1t 3 3
p2t 3 3

After 81 generations, we obtain that the minimum total cost is 2115.62 and the val-
ues of the decision variables are shown in Table 6. In order to demonstrate the rela-
tionship between the total cost and the service level for this APP problem, we assign
different values to confidence level γ and overproduction cost p (for simplicity, we assume
p = p11 = p12 = p21 = p22) to observe the changes of the minimal cost. Their optimal
objective values are shown in Table 7, and we can find the changing trend of the optimal
values from Figure 1.

Table 6. Optimal output of the production planning in Example 2.

Item Period 1 Period 2

Q1t 113.9636 115.6818
Q2t 100.6382 118.7673

Table 7. The changes of optimal values under different service levels and overproduction costs.

γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9

p = 1 1712.16 1890.67 2100.26 2295.24 2506.74
p = 2 1716.43 1890.99 2109.80 2304.33 2549.23
p = 3 1721.17 1899.26 2115.62 2324.86 2582.49
p = 4 1723.36 1903.84 2128.23 2345.19 2615.75
p = 5 1725.56 1908.41 2154.83 2365.44 2649.01

From these five gradual rising lines, we can find that the optimal total cost rises with
the increase in service level gradually at the same overproduction cost, which implies
that there is a reciprocal relationship between the total cost and service level, alerting the
decision makers to handle this conflict reasonably. In addition, from the look of the whole
figure, we can also find that the bigger the value of the overproduction cost, the larger the
increasing range of the optimal objective value with the increase in service level. This plays
a large role in revealing that a bigger overproduction cost will lead to a faster speed at which
the total cost increases with the service level, especially the higher service level. Hence,
the manufacturer should reasonably control the quantity and cost of overproduction.
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Figure 1. The changing trend of optimal objective value.

The feasibility of the model is verified by numerical examples. The experimental
results of the numerical examples provide a theoretical basis and reference for APP decision
makers in the actual environment.

6. Conclusions

This paper proposed an APP model for vegetables under the condition of allowed
stockout and considering the service level constraint from the point of the manufacturer
in an uncertain environment. In accordance with the characteristics of the APP problem
for vegetables, the deterioration rate, market demand and other factors are described by
uncertain variables. Then, a crisp equivalent form is given when these uncertain variables
obey linear uncertain distributions, while a hybrid intelligent algorithm integrating the
99 method and genetic algorithm is employed to solve the uncertain model for the general
case. Finally, two numerical examples are given to illustrate the proposed models, and we
conclude that the manufacturer should deal with the reciprocal relationship between total
cost and service level reasonably.

We will continue to study the problem of model construction considering various
factors such as being out of stock, service level and vegetable freshness. We will also study
modeling and solving problems with some parameters as uncertain random variables.

Uncertain random variables, proposed by Liu [30] in 2013, are used to model complex
systems that contain both uncertainty and randomness. In this paper, we only discussed
the case of uncertainty in APP; we will study the construction of an uncertain random APP
model in the future.
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