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Abstract: It is a well-known fact that convex and non-convex fuzzy mappings play a critical role
in the study of fuzzy optimization. Due to the behavior of its definition, the idea of convexity also
plays a significant role in the subject of inequalities. The concepts of convexity and symmetry have a
tight connection. We may use whatever we learn from both the concepts, owing to the significant
correlation that has developed between both in recent years. In this paper, we introduce a new class
of harmonically convex fuzzy-interval-valued functions which is known as harmonically /-convex
fuzzy-interval-valued functions (abbreviated as harmonically i-convex F-I-V-Fs) by means of fuzzy
order relation. This fuzzy order relation is defined level-wise through Kulisch-Miranker order
relation defined on interval space. Some properties of this class are investigated. BY using fuzzy
order relation and h-convex F-I-V-Fs, Hermite-Hadamard type inequalities for harmonically are
developed via fuzzy Riemann integral. We have also obtained some new inequalities for the product
of harmonically h-convex F-I-V-Fs. Moreover, we establish Hermite-Hadamard-Fej’er inequality for
harmonically /i-convex F-I-V-Fs via fuzzy Riemann integral. These outcomes are a generalization of a
number of previously known results, as well as many new outcomes can be deduced as a result of
appropriate parameter “6” and real valued function “V” selections. For the validation of the main
results, we have added some nontrivial examples. We hope that the concepts and techniques of this
study may open new directions for research.

Keywords: harmonically h-convex fuzzy interval-valued function; fuzzy Riemannian integral;
Hermite-Hadamard inequality; Hermite-Hadamard Fejér inequality

1. Introduction

Convex analysis has contributed significantly to the advancement of applied and pure
research. The study and distinction between several directions of the classical notion of
convexity has received considerable interest in recent decades. A variety of convex function
extensions and generalizations have recently been discovered, see [1-5] and the references
therein for more information. In the classical approach, a real valued function ¥ : K — R
is called convex if

F((A=Qw+dy) < (1-¥(w) + ¥ (y), ©)

forallw, y € K, ¢ € [0, 1].
The concept of convexity in the context of integral problems is a fascinating field of
study. As a result, several inequalities have been proposed as convex function applications.
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Among these, the Hermite-Hadamard inequality (H-H inequality) is a fascinating convex
analytic result. The H-H inequality [6,7] is defined as follows for the convex function
¥ :K— Ronaninterval K = [u, v]:

forallu, v € K.

Various applications have been discovered resulting from a geometrical interpretation;
see for example [8-10]. In several works [11-13], we can find analysis on the generalization
of this disparity. Set-valued analysis is a generalization of the interval analysis. The topic
arose as a response to the interval uncertainty that can be found in various computational
or mathematical models of deterministic real-world problems.

The Archimedes method, which is used to calculate the circumference of a circle, is one
of the earliest examples of an interval enclosure, see [14]. In 1966, Moore [15] published the
first manuscript on interval analysis. Stimulated by this work the theory and application of
interval arithmetic’s started to be further investigated. We can mention applications such
as robotics, computer graphics, chemical and structural engineering, economics, behavioral
ecology, constraint fulfillment, signal processing and global optimization, neural network
output optimization, that have explored the use of interval analysis [16,17].

Researchers have looked at various major inequalities as a result of the aforementioned
applications, including the Jensen’s inequality, H-H inequality, and Ostrowski inequality,
among others. Chalco-Cano et al. [18,19] used the Hukuhara derivative for interval-
valued functions to generate Ostrowski type inequalities. The Minkowski and Beckenbach
inequalities were established by Romn-Flores et al. [20], see also [20-22] for additional
inequalities. The H-H inequality was proposed by Sadowska [23]. Other studies can be
found in [23,24].

Zhao et al. used extended fractional integrals to prove the H-H inequality for interval-
valued approximately h-convex functions in [25]. Kamran et al. [26] developed the H-H
inequality by means of the notion of interval-valued generalized p-convex functions.
Khan et al. introduced new classes of convex and generalized convex F-I-V-F, and derived
fractional H-H type and H-H type inequalities for convex F-I-V-F [27], h-convex F-I-V-F [28],
(h1, hy)-connvex F-I-V-F [29], (hq1, hy)-preinvex F-I-V-F [30], log-h-convex F-I-V-Fs [31], log-
s-convex F-I-V-Fs in the second sense [32], and the references therein. We refer the readers
for further analysis to literature on the applications and properties of fuzzy-interval, and
inequalities and generalized convex fuzzy mappings, see [33-53] and the references therein.

In this paper, we established the Hermite-Hadamard type inequality for harmonically
h-convex F-I-V-Fs via fuzzy Riemann integral. We also established Hermite-Hadamard
Fej’er inequality via the fuzzy Riemann integral. Moreover, we have discussed some new
and classical inequalities as exceptional cases.

2. Preliminary Concepts

In this section, we recall some basic preliminary notions, definitions, and results.

We define interval as,

[ws, W] ={w e R:ws <w < w*and wy, w* € R }, where w, < w*.

We write len [wy, w*] = w* — wy, and if len [w,, w*] = 0, then [w,, w*] is called
degenerate. Hereafter, all intervals will be non-degenerate. The collection of all closed
and bounded intervals of R is defined as K¢ = {[ws, w*]: wy, w* € R/and/w, < w*}.If
ws > 0, then [w,, w*| is called positive interval. The set of all positive interval is denoted
by Kc™ and defined as K¢t = {[w., w*] : [ws, w*] € K¢ and w, > 0}.

Now we look at some of the properties of intervals using arithmetic operations. Let
[0+, 0*], [[+, [*] € Kc and p € R. Then, we have

[0, @1+ [, [*]=[0x + [+, "+ [7],
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dtr - [ minlete @'l 0, @' 1Y,
o R I s

) [0os, pe] if p > 0,
p-low @]=9 {0} ifp=0
[0g™, po+] if p < 0.

For [0«, 0%], [[+, [*] € K¢, the inclusion “C” is defined by
[0 @] < [+, [*],if and only if [ < 0s, @™ < J™.

Remark 1. The relation * <j " is defined on K¢ by
[Q*’ Q*] SI U*r f*] if and Ol‘lly if Qx < f*r Q* < f*/ (3)
forall [o«, 0*], [[+, [*] € K¢, and it is an order relation, see [45].

Moore [24] initially proposed the concept of Riemann integral for I-V-F, which is
defined as follows:

Theorem 1. [14] If ¥ : [u,v] C R — K¢ is an I-V-F such that ¥ (w) = [¥s(w), ¥*(w)], then
¥ is Riemann integrable over [u,v] if and only if, ¥, and ¥* are both Riemann integrable over
[u, v] such that

(IR) /:‘I’(w)dw: [(R) /uv‘ﬂ(w)dw, (R) /uvlp*(w)dw}

Let R be the set of real numbers. A mapping ¢ : R — [0,1] called the membership
function distinguishes a fuzzy subset set A of R. This representation is found to be
acceptable in this study. The notation F(IR) also stands for the collection of all fuzzy subsets
of R.

A real fuzzy interval  is a fuzzy set in R with the following properties:

(1) Cisnormal, i.e., there exists w € R such that {(w) = 1;
(2) isupper semi continuous, i.e., for given w € R, for every w € R there exists ¢ > 0,

there exists § > 0 such that {(w) — {(y) < e forall y € R with |w —y| < d.

(3) Cisfuzzy convex, ie., {((1 —¢)w+ ¢y) > min({(w), {(y)),Yw,y € Rand ¢ € [0,1];
(4) (is compactly supported, i.e., cl{w € R| {(w))0} is compact.

The collection of all real fuzzy intervals is denoted by Fy.

For 6 € [0,1], 6-levels [{ ]9 is a nonempty compact convex set of R. This is represented
by

6 = {w e R|¢(w) 2 6},

from these definitions, we have
2)° = [5+(6), ¢*(0)],

where

G+(8) = inf{w € R[ {(w) = 6},
¢"(6) = sup{w € R[ {(w) > 6}
Thus, a real fuzzy interval { can be identified by a parametrized triples
(20,2 @).0):0 € 0, 1)),

The two end point functions, {.(0) and {*(6), are used to characterize a real fuzzy
interval.
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[(FR) /u ! ‘?’(w)dw}

Proposition 1 ([42]). Let {,© & Fy, the fuzzy order relation * < given on Fy by

7 <0, ifand only if, [7]° <; [@]° forall 6 € (0, 1],

is a partial order relation.

We will now look at some of the properties of fuzzy intervals using arithmetic opera-
tions. Let {,® € Fy and p € R. Then, we have

z7e)’ = 17’ + [e)’, 4)
[7xe]’ = [¢)° x (@, ®)
-7’ =p-[2)° ©)

For ¢ € Fy, such that { = ®+¢, we have the existence of the Hukuhara difference of {
and O, which we call the H-difference of { and ®, and is denoted by ¢ Z@. The H-difference
exists, then

($).(0) = (¢=0),(6) = 7.(6) — ©.(6). @)

Definition 1 ([42]). A fuzzy-interval-valued map ¥ : K C R — Fy is called F-I-V-F. For each
8 € (0, 1], whose 6-levels define the family of I-V-Fs ¥y : K C R — K¢ are given by ¥y(w) =
[Fe(w,0), ¥*(w,0)] for all w € K. Here, for each 8 € (0, 1], the end point real functions
Y. (.,0), ¥*(.,0) : K — R are called lower and upper functions of ¥ (w).

The following conclusions can be drawn from the literature [42-44]:

Definition 2. Let ‘E: [u, v] CR — Fy be an F-I-V-F. Then, fuzzy integral of ¥ over [u, v],
denoted by (FR) [,/ ¥ (w)dw, is given level-wise by

9 v v
_ (m)/u ¥y (w)dw = {/u ¥ (w, 0)dw : ¥(w,60) € Ry, ), 9)}, ®)

forall € (0, 1], where Ry, ], ¢) denotes the collection of Riemannian integrable functions
of -V-Fs. The F-I-V-F ¥ is FR-integrable over [u, v] if (FR) [ ¥(w)dw € Fy. Note that, if
Yi(w,8), ¥*(w,0) are Lebesgue-integrable, then ¥ is fuzzy Aumann-integrable function over
[u, v], see [21,27,31].

Theorem 2. Let ¥ : [u, v] C R — Fy be a F-I-V-E, whose 6-levels define the family of I-V-Fs
Y : [u, v] C R — K¢ are given by ¥y(w) = [¥i(w,0), ¥*(w,0)] forall w € [u, v] and for all
6 € (0, 1]. Then, ¥ is FR-integrable over [u, v] if and only if, ¥, (w,0) and ¥*(w, 8) are both
R-integrable over [u, v]. Moreover, if ¥ is FR-integrable over [u, v], then

{(FR) /u V?(w)dwr _ [(R) /u "%, (w,0)dw, (R) /u V‘F*(w,e)dw]: (IR) /u " (w)dw, 9

forall® € (0, 1]. Forall 0 € (0, 1], FR((,, 4], o) denotes the collection of all FR-integrable
F-I-V-Fs over [u, v].

Definition 3 ([46]). A set K = [u, v] C RT = (0,00) is said to be convex set, if, for all
w, y € K, ¢ €0, 1], we have

wy
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Definition 4 ([46]). The relation ¥ : [u, v] — R is called a harmonically convex function on
[, v]if
¥ isgy ) < - 0¥ +iY0) an
gw+(1-8)y

forallw, y € [u, v], ¢ € [0, 1], where ¥ (w) > 0 for all w € [u, v]. If expression (11) is reversed,
then ¥ is called harmonically concave F-I-V-F on [u, v], such that

Wy _
¥(srigy) 2 (- 0@ + i)

Definition 5 ([47]). The positive real-valued function ¥ : [u, v] — R™ is called harmonically
h-convex function on [u, v] if

_wy ol
¥ ) <h - 0¥ +HO0), 1)

forallw, y € [u, v], & € [0, 1], where ¥ (w) > Oforallw € [u, vland h:[0,1] C [u, v] = RT
such that h0. If expression (12) is reversed, then ¥ is called harmonically h-concave function on
[u, v], such that

_ vy _ w .
V(s igy ) = - DY@ +hO¥ )

The set of all harmonically k-convex (harmonically /i-concave) functions is denoted by

HSX([u, v], RT,h) (HSV([u, v], RY, h)).

Definition 6 ([28]). The F-I-V-F ¥ : [u, v] — Fy is called h-convex F-I-V-F on [u, v] if
F((1 = Qw+Ey) < (1 =¥ (w)Fh(@)¥ (), (13)

forallw, y € [u, v], & € [0, 1], where ¥ (w) > Oforallw € [u, v]and h: [0, 1] C [u, v] = RT,
such that h0. If expression (13) is reversed, then ¥ is called h-concave F-I-V-F on [u, v]. The set of
all h-convex (h-concave) F-I-V-F is denoted by

FSX([u, v], Fo,h)(FSV([u, v], Fo, h)).

Definition 7 ([33]). The F-I-V-F ¥ : [u, v] — Ty is called harmonically convex F-I-V-F on [u, v]
if

. wy G -~
Vo iegy ) < - 0F@HTW) 1)

forallw, y € [u, v], & € [0, 1], where ¥(w) = 0, for all w € [u, v]. If expression (14) is

reversed, then ¥ is called harmonically concave F-I-V-F on [u, v].

Definition 8. The F-I-V-F ¥ : [u, v] — Ty is called harmonically h-convex F-I-V-F on [u, v] if
Ve is, ) < h0-0F@THOT0) 15
gw+(1-¢)y

forallw, y € [u, v], & € [0, 1], where ¥ (w) = 6,@rallw € [u, vjand h: [0, 1] C [u, v] - R
such that h0. If expression (15) is reversed, then ¥ is called harmonically h-concave F-I-V-F on
[u, v]. The set of all harmonically h-convex (harmonically h-concave) F-I-V-F is denoted by



Symmetry 2021, 13, 2352

6 of 19

HFSX([u, v], Fo, h)(HESV ([u, v], Fo, h)).

Theorem 3. Let [u, v] be harmonically convex set, and let ¥ : [u, v] — Fc(R) be a F-I-V-F,
whose 6-levels define the family of I-V-Fs ¥y : [u, v] C R — Kt C K¢ are given by

Y (w) = [Fe(w,0), ¥ (w,0)], Yw € [u, v]. (16)

forallw € [u, v], 8 € [0, 1]. Then, ¥ € HFSX([u, v], Fo, h), if and only if, for all € [0, 1],
Yi(w, 0), ¥*(w, 0) € HSX([u, v], R, h).

Proof. The proof is similar to the proof of Theorem 2.12, see [29]. O

Example 1. Let us consider the F-I-V-Fs ¥ : [0, 2] — Fc(R) defined by,

2 ae o, val
F@)®) = { =45 c (o, 2va

0 otherwis.

Then, for each 6 € [0, 1], we have ¥(w) = [0y/w, (2—60)y/w]. Since ¥i(w, 0),
¥*(w, 0) € HSX([u, v], R*,h), with h(§) = ¢, for each § € [0, 1], then
¥ € HFSX([u, v], Fy, h).

Remark 2. If h({) = &, then Definition 8 reduces to the Definition 7.

If ¥, (w, &) = ¥*(w, a) with a = 1, then the harmonically /-convex F-I-V-F reduces
to the classical harmonically h-convex function, see [47].

If ¥s(w, &) = ¥*(w, «) witha = 1 and h(¢) = &° with s € (0, 1), then the harmoni-
cally h-convex F-I-V-F reduces to the classical harmonically s-convex function, see [47].

If ¥s(w, a) = ¥*(w, «) with « = 1 and h(§) = ¢, then the harmonically h-convex
F-I-V-F reduces to the classical harmonically convex function, see [46].

If o (w, &) = ¥*(w, «) witha = 1 and h({) = 1, then the harmonically /-convex
F-I-V-F reduces to the classical harmonically P-function, see [47].

3. Fuzzy-Interval Hermite-Hadamard Inequalities

In this section, we prove two types of inequalities. First one is H-H and their vari-
ant forms, and the second one is H-H Fejér inequalities for convex F-I-V-Fs where the
integrands are F-I-V-Fs.

Theorem 4. Let ¥ € HFSX([u, v], Fo, h), whose 6-levels define the family of I-V-Fs
Yo :[u, v] CR — KL that are given by ¥p(w) = [¥u(w,0), ¥*(w,0)] for all w € [u, v],

0 €0, 1]. Ifh(%) #0and ¥ € FRy, 4|, g, 50 that

1 = vy o 1
Zh(%)‘f’(;:t—vl) < Ubfu /u ZE;U)dw < [‘P(u) +‘P(v)}/0 h(Z)de. (17)

If ¥ € HFSV([u, v], Fy, h), then

1 & 2uv uo v F(w) L 1
2h(;)Y(u+v> Fo—u /u dw = {‘f’(“) +‘f’(v)]/0 h(E)de. (18)
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Proof. Let ¥ € HFSX([u, v], Fy, h). Then, by hypothesis, we can write

h(l;)?(%) <‘?<¢u+2‘f— f:)v);?((l—gz%v)‘

Therefore, for each 6 € [0, 1], we have

iy ¥ (345, 0) < ¥ (mrtias 0) + ¥ (i )
(22, 0) < ¥ (e, 0) + ¥ (=2 0)-

utv’ Cut+(1-¢)v’ 1-¢)u+¢v’
Then

1

@ Jo ¥ (345, 0)dz< fo Y*(@’u—&-(l Rk )d§+ fo HU*< 2T eo’ )dg,
1w ( 2uv * uv *

h(lT)fO k4 (3?’ )dé’S fO b4 (W' )d§+ fo b4 (W, 9)616

It follows that
1 2 uv ¥, (w, 0
zh(%)q&(ﬂ%%ﬁ 0) < 5= Ji i,
1 x(2 uv ¥* (w, 0
zh(%)qj (ﬁ’ 9) < v—u fl:] Ef,g )dw'
That is
v v *
1 {%( 2uv , 0)/ ‘f’*( 2uv ’ 6)] < uv {/ ‘I’*(wz, G)dw, / b4 (wz, e)dw}
2h(1> u+v u+v v—ulty w u w
2
Thus, B
~ v
iy () <o [
2h( 3 - u
In a similar way as above, we have
v CF@) o 3 T [
L (FR) /u w5 [F(u) T ¥ ()] /0 h(E)de. (20)

Combining (19) and (20), we have

~ u uv vy _ o 1
Zhé)?(ffv) < [T b < [#) T 0] [ m@e

Hence, we obtain the required result. [J

Example 2. We consider h(&) = &, for & € [0, 1], and the FIVFs ¥ : [0, 2] — Fc(R), as in
Example 1. Then, for each 6 € [0, 1], we have ¥g(w) = [0v/w, (2 — 60)\/w] is a harmonically
h-convex FIVFs. Since, ¥i(w,0) = 0y/w, ¥*(w, ) = (2—0)\/w. We now compute the
following:

1 ) Yf*( 2uv , 9) < uv /uv Y (w, G)dw < [¥(u, 0) 4+ ¥ (v, )] /1h(§)dé.

Zh(% u+v v—u w? 0

11 ¥, (uzf’v, 9) = ¥,(0, 8) =0,
Zh(j)
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uv /‘U Y. (w, ) 9 /2 G\f
u 2

v—u w?

(¥, (1, 0) + i (v, 6)] /0 <¢>d¢—ﬁ

forall 6 € [0, 1]. That means

Sl

Similarly, it can be easily shown that

uv vy * *
h(l%) pr(aeg) < oo [P gy < W (u, 0) + ¥ (v, 0)] fy h(E)dE. for all

2
6 € [0, 1], such that

1 2
2h(%) ' (u ivv'

U Wk 2 _
o T, 8 e,
v—u Ju w? 2 Jo w2

1
¥ (n, 0)+¥7(v, 0)] [ h()dz =

9) = ¥,(0, 6) =0,

From which, we have

(2-19)
0<0< ,
ST V2
that is
[0,0] <1 [0, 0] < \72[9, (2—0)],forall 6 € [0, 1].
Hence,

2;1%;)‘?(”2101)) < o [ < [# # 90)] [ e

Remark 3. If h({) = ¢°, wheres € (0, 1), then Theorem 4 reduces to the result for the harmonically
s-convex fuzzy-interval-valued function, see [28]:

2 9(5) = 5 0 [ P s s [ )

If h(¢) = ¢, then Theorem 4 reduces to the result for the harmonically convex fuzzy-
interval-valued function, see [28]:

() < [T T TI0

If h($) = 1, then Theorem 4 reduces to the result for the harmonically P fuzzy-interval-
valued function, see [28]:

?(;:‘L“v) < (FR) / ‘f’é]g“>dw <F(u) T ¥().
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If ¥s(w, 0) = ¥*(w, 0) with 6 = 1, then Theorem 4 reduces to the result for the
classical harmonically h-convex function, see [47]:

w2

1 2uv uv v ¥ (w) .
2h<%) 11U(LMLU) S, (R)/u dw < [¥(u) +‘F(v)}/0 h(E)de.

If ¥o(w, 8) = ¥*(w, ) with 8 = 1 and h({) = ¢°, then Theorem 4 reduces to the
result for the classical harmonically s-convex function, see [47]:

uv v
2 Yj(uzj—vv) = v—u (R)/ T(sz)dw = 1
u w s+1

[F(u) + ¥(v)].

If ¥ (w, ) =¥*"(w, 6) with® = 1and h(¢) = ¢, then Theorem 4 reduces to the result
for the classical harmonically convex function, see [46]:

P() = 5 0 [ e < MO

If ¥ (w, ) = ¥*(w, 6) with @ = 1 and h(¢) = 1, then Theorem 4 reduces to the result
for the classical harmonically P function, see [47]:

Theorem 5. Let ¥ € HFSX([u, v], Fo, h) with h (%) # 0, whose 0-levels define the family of I-
V-Fs ¥y : [u, v] CR — K& that are given by ¥y(w) = [¥x(w,0), ¥*(w,0)] for all w € [u, v],
0 €0, 1. If¥ € FR(, ], 9, 50 that

1

) [T a0 < [700 7 #0) [200(3)] [r@a e

and 1 = [1,,17], 2 = [24,27]-
If ¥ € HFSX([u, v], Fy, h), then inequality (21) is reversed.

Proof. Take [u 2“—“], so that

/ u+v

e

4uv u 4uv u 2uv u 2uv
v I utv R4 (e R ek 7 e TE
1— 2uv 1— 2uv h 1— 2uv 1— 2uv | °
( g) u+v ( g)u + gu-&-v CL[ + ( g) u-+tv ( g)u + éu_i,_u

Therefore, for every 6 € [0, 1], yields

u 4uv u 4uv

2uv 2uv
1 u u
IF utv u+tv 9 <1f/ utv 9 lf/ utv 9
i)\ E-02% T Goueds )= *(@Hl—é)ﬁ%’ >+ *((1—c>u+¢3f¢z' >
1

y Au y Auv 0\ < y* % 0) 4+ ¥+ ufi 0
H2) T\ a0 (-utegy”” )

Y utv utv
-0

(1-g)u+g 2’
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1

()

il

4uv

u—+3v

In consequence, we obtain

1 4 Uv 2y (w, 0
4h(%)qf*(l¢f§v’ 6) S o= JuT (wz duw,
1w« 4 Uv 2 gy, g
iy (5.0) < 22 [ T
That is
AR 4uv 0 /ﬁ”v ¥ (w, 9 /ﬁvv ¥*(w, Q)dw
") u+3v’ T v—u w? '
It follows that
uv G
1 g 4uv L /w ¥(w )dw 22)
4h(%) u+3v) Sv—u Jy w2
In a similar way as above, we have
_ vy
El)qj(?jtfv) < vuvu /2 ngzu)dw. @3)
4h( 5 W
Combining (22) and (23), we can write
1 {f/ 4uv :F{IVI 4uv < uv /v {I}(w) dw (24)
4h(%) u+3v Bu+v)| “v—u Ju wr

Therefore, for every 6 € [0, 1], by using Theorem 4, we have
0) +1(3)¥- (st
o) n()¥ (s,

4uv

0 < it () (5

(2) 7 (s,

= 2%/

__ %
=2
w@

< o P

< uv fv ¥*(w, 6) dw

= v—u u w2

{‘I’* (1, 0)+ ¥ (v, 0)
2

7

0)] fy i
0)] Jy h(@)de

IN

(2,
¥*(u, 9)+‘F (v, 0) —i—‘f’*(

2uv
u+v’

IN

= 1%/

:l*/
ww(%)( (1, 0) + ¥ (v, 6)) }fo
w+h(%)(w*(u 0) +¥* (v, 0 }

IN

IA

(¥ (u, 0) + ¥-(v, 0)][ 3 +
[¥*(u, 6) +¥*(v, 0)][ +

(@))}} f?o )ffé,

that is
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Theorem 6. Let ¥ € HFSX([u, v], Fo, h1) and P € HFSX([u, v], Fo, hy), whose 6-levels
YoPo:[u, ) CR— KL are defined by Yo(w) = [¥i(w,0), ¥*(w,0)] and
Po(w) = [Pu(w,8), P*(w,8)] for all w € [u, v], & € [0, 1], respectively. If FXP €
FR([u, v], 0) then

" (FR) /MU F@)XP®) 4 M(u,v) /1 I (8o (8)dET N (u, v) /01 I (8)ha (1 — €)dE,

v—u w?

where M(u, v) = ¥(u)xPu)F¥W)XPW), N, v) = Fu)XPu)F¥(0)xP(v),
My(u,v) = [M((#,v), 0), M*((4,0), 0)] and Ny(u,v) = [Ni((,v), 8), N*((w,0), 6)].
Proof. Since ¥ and P are harmonically /; and hy-convex F-I-V-Fs then, for each 6 € [0, 1]
we have

¥ (s 0) < Q¥ (, 0) +n(1-0)¥(v, ),

¥ (s, 0) <)Y (u, 0) + I (1- ¥ (v, 0),
and

ha(8)P(u, ) +ha(1 = &) P(v, ),
ha (&) P*(u, 8) +ha(1 = )P (v, 6).

From the definition of harmonically h-convexity of F-I-V-Fs it follows that Y(w) =0
and P(w) = 0, so that

Y*((l—é;i—«—év’ 9) X P*((l lsz—«—ﬁv 9)
< ((8)¥e(u, 0) + (1 — )‘F»«(v 0))(h2(5) P« (u, ) + h2(1 —&)Px(v, 6))
=Y. (u, 0) X Pi(u, 0)[h1(5)h2(E)] + ¥e(v, 0) x Pi(v, 0)[h1(1 —&)ha(1 — )]
+ ‘P*(u 0)Px (v, 0)h1(§)h2(8) + ‘f’*(v 0) x Px(u, 0)h1 (1 —)ha(¢),

‘P*( 0) x P (=

(1- §)u+c§v (I-¢)u+cv”’

< (m(8)¥"(u, 0) +m( é‘)‘f’*(v 0))(12(3)P* (u, 8) + ha(1=E)P*(v, 6))
= ¥*(u, 0) x P*(u, 0)[11($)h2(Z)] + ¥ (v, 8) x P*(v, 0)[11(1 = ha(1 = )]
+ ¥, 0)P* (v, 0)h1(E)h2(8) + ¥ (v, 0) x P (u, 0)h1(1 = E)ha ().

Integrating both sides of above inequality over [0, 1] results

1 uv uv _uwv ¥ (w, 0) X Py (w, 6)

Jo ¥ (=g ©) % Pt ©) = v i = o
< (¥ (1, 6) X P.(1, 0) + .0, 0) x P.(0, 0)) [l n Qo €
+(¥i(u, 0) x Pi(v, 0) +¥i(v, 0) x Pi(u, 0)) [y h1($)h2(1 - §)dg,
1w * u _ W ¥ (w, 0) xP* (w, 0)

Jo ¥ (a=tire ©) * P* (atiore ©) = oo Ju Tt dw
< (¥ (u, 0) x P*(u, 0) + ¥ (v, 0) x P*(v, 0)) [V (&)ha(E)dE
+(¥*(u, 0) x P*(v, ) +¥*(v, ) x P*(u, 0)) [y h1(5)h2(1 — &)d¢.
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It follows that,
M ( u,v) ) Jo i (€)ha(2)dE
), 0) Jy m()h(1 - &)dE

v), 0 fo h($)h2(5)de
9 fo hl h2<1 ) 4

% [ ¥e(w, 6) x Py(w, 0)dw

<
AL
f ¥*(w, 0) x P*(w, 0)dw <
+ N*

o—u

((u,
M((
((u

that is
[f ¥, (w, 0) x Px(w, 0)dw, [¥*(w, 0) x P*(w, 6)dw]

o—u

<1 ML ((,0), 8), M (1,0), )] [ n(@ha(@)de

FINL(0,0), 0, N ((0), 8)] [ I (@ha(1 - O

Thus,

= (FR) J* de < M(u,0) [L () (E)dEF N (u,0) [3 1y (E)ha(1 — §)dE.

O
Theorem 7. Let ¥ € HFSX([u, v], Fo, I), P e HFSX([u, v], Fo, hy), whose 6-levels

YoPy : [, v] CR — K that are defined by ¥y(w) = [¥u(w,0), ¥*(w,0)] and Py(w) =
[Ps(w,0), P*(w,0)] for all w € [u, v], 8 € [0, 1], respectively. If hl(%>h2(%) # 0 and
1?;275 € fR([u, v], 8), 50 that

2h1(%§h2(%) T(zuv)xp(fﬁ)

< o (FR) [ TP iy 4 M, 0) fo 11 (6 (1 = E)AGTF N (w,0) Jo 1 (8)a(©)dE,

w

where M(u, v) = F(u)XPu)FF¥0)XP), N(u, v) = Fu)XPu)F¥(0)xP(v),
My(u,v) = [Mi((n,0), 8), M*((w,0), 0)] and Ny(u,v) = [Ni((n,0), 8), N*((u,0), 9)).

Proof. By hypothesis, for each 6 € [0, 1], we have

. (45,0) x T. (35, 6)
(5, 0) x T (45, 9)

< hl(%)hz(%) <¢u+ 1= 9))2‘7}*(61;;115;;’92

équulU v’ 9) x "7*(§11+111U S’

Y
((1 QT 9) Xj*(€”+1 5 9)
+Y*(§u+ 1-¢)v’ 0) xJ” (1- ELH-CU’ 6
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< (3)1a(3) _ ?*<¢u+<1 i )Xj*(éuﬂ i 0
SOV (s 0) % T (s
607, 6) a1 (0 )
X(hy(1—=¢8)Tx(u, 0) +h v, 0
i (3)h(3) (- ) 9)+hi( V¥, (v, 0))
L ((( ) T (u, 9)>+h2(1(—§)-7*(v 9))
Ny 5u+(1 i 0)x I\ artizaw
§h1<2)h2(2) 4 iju-&-(l o0 9) Xj*(gu-t,-l = 9)
T (M@ (u, 0) + (1= )Y (v, 0))
X (h2(1 = &) T*(u, 0) + ha(§)T*(v, 0))
x (h2(1—¢) 0))
x (h2(8)T*( 0))

)T

¥ (vt )Xj*(cmg 0) ]
0

{h <+%<5”+(h ™ 5% (e, v), 9)

+ hy(1— 1- «( ),
(1)m(3)| +{hll(§)hé(1 “o+ h1<>1 Z C)h(z(é)}/\/l*((u/)v)/ b |
i (\n (L cu+(1-g)v’ cu+(1-g)v’

v Z(Zih <+>lz*< W ?)hX(J* (éf}*ﬁ‘fi”' 9>> 0)

+ — 1-— *((u,v),
m(3)m() | ) O e |
|

0, 1], gives

)
)
)
)

J (v,
T*(u, 0) +ha(8) T (v,
u, 0) +hy(1—-8) T (v,

Integrating over

1 Y*<2uv 9) xj*(ﬂ,Q) < L f IF* w 9) xj*(w 9)

W ut+v’ u+v = v—u
+ M. ((1,0), 0) [y 11 (E)ha(1 — &)dE
+ N ((1,0), 8) f) I <¢> 2(&)dE,
m‘f/(fﬁﬁ)xf(%w 0) < o2 (R) J, ¥*(w,0) x T*(w, 0)dw
+ M*((1,0), 8) [y 11 (E)ha(1 — &)dE
TN ((1,0), 8) [ 1 (8)ha(E)dE,
that is

2 (2)h2(2)

< < (FR) [ HP @0 1 M(w,0) [ 1 (@)ha(1 = g N (w,0) [ b (2)ha(€)de.
The theorem has been proved. [J

We now discuss an inequality related with the right part of the classical H - H Fejér
inequality for harmonically s-convex F-I-V-Fs through a fuzzy order relation, called second
fuzzy H - H Fejér inequality.

Theorem 8. (Second fuzzy H - H Fejér inequality) Let ¥ € HFSX([u, v], Fo, h), whose 6-levels
define the family of I-V-Fs ¥y : [u, v] C R — K} that are given by ¥y (w) = [¥i(w,0), ¥*(w,0)]

for all w € w,v], 6 € [0, 1]. If ¥ c FR(u,v), 0 and
Vilu, v] =R, V(w) =V (w) >0, then

)G (w)dw < [‘?(u) l?(v)} /Olh(g)v(myg. (25)
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If ¥ € HFSV([u, v], Fy, h), then inequality (25) is reversed such that

0 er) [T gy - [#) T 0] [ 09 (7 i=as )

v—u w? 0

Proof. Let ¥ be a h-convex F-I-V-F. Then, for each 6 € [0, 1], we have

¥ (i 0) (otiws)

< (R(E) ¥ (, 0) + (1= ) ¥ (v, )V (s ),
b ( (17511}1+§v’ 9) \% ( (17511]l+§v)

< (@)¥* (v, 0) +h(1 =¥ (v, )V (=it ).

(26)

Similarly, we can write

<§u+lr§

< (h(1 = O)¥.(, 0) + h(@)¥u(v, 0))V (5risys ).
¥ (et )V (et
< (1= §)¥*(u, 0) + W)Y (v, 0)V gty )

After adding (26) and (27), and integrating over [0, 1], we obtain

I ‘f’*(u Horzr 0)V (g )4
+Jo ‘f/*(éuﬂ v’ 9)v<m)d§

¥, (u, 9) (6) (1—- § u+§v

< fl ( ) Cu+( 1 [ dg,

0
(v, 9){ 1= OV a=te
Q)Y (st

fl *((1 51;+gu' 9>V((1 é)quév)dér
+fo 171W(z;wr(l Do’ )V<W 46
¥(u, 0) h(§)V (ch)

< +th(1-¢)V m iz,

. h(1 = OV i=fze
¥Y*(v, 0
o ){ +h(§)v(é‘u+(1—é)v)

(27)

¥ (artisge 0)V )
¥

=2%.(u, 0) fy W@V (hts) ¢
+2¥. (v, 0) fol h(é)v<§u+( ) 4,
=2¥*(u, 6) [} h(@)v((l §>u+év> 4
+2¥*(v, 6) fol h(é‘)v(guﬂlf@l’) 4.

Since V is symmetric, then

= 2. (u, 0) + ¥ (v, 0)] fy W@V (5riiey ) 48

(28)
= 2[¥*(u, 0) +¥*(v, )] fy WOV (5riiey ) de.

Therefore, results
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Jy #(u+ (1= 2w, 0V (fi )de
1
= Jo L(Q=Qu+iv, O)V (%)dé
_ uv_ f IP* ZU Q)V(w)dw (29)

R 2 2w, 00 (gt i
= Jo ¥ @t (1=, OV (arligy )48
= [, 0V ()

From (28) and (29), we have

1/ u fu IP* w Q)V(w)dw

< [We(u, 0) + ¥i(v, 0)] fo tj)V(ﬁ) 4z
2 [ (w,0)V (w)dw

< [¥*(u, 0) +¥* (v, 0)] [ h(C)V(W) 4,
that is

[ [V (w, 0)V(w)dw, 2 [V ¥ (w,0)V (w)dw]
< [Fulu, 0) + ¥ (v, 0), ¥*(u, 0) +¥*(v, 0)] [} h v(gu+ )

and hence

e [ D@ < [760 T #0)] [ 009 (i Ve

concludes the proof. [

Next, we construct first H-H Fej’er inequality for harmonically h-convex F-I-V-F,
which generalizes first H-H Fejer inequality for harmonically convex function.

Theorem 9. (First fuzzy fractional H — H Fejér inequality) Let ¥ € HFSX([u, v], Fo, h),
whose O-levels define the family of I-V-Fs ¥p : [u, v] C R — K} that are given by ¥p(w) =
[¥.(w,0), ¥*(w,0)] for all w € [u,v], 8 € [0,1. If ¥ € FR([u,v), 0 and
Vi:lu v] =R, V( 1 ) = V(w) >0, so that

1,1 _1
uto—w

oy P [T [ e o

If¥ € HFSV([u, v], Fy, h), then inequality (30) is reversed such that

ZhE ) qj(ffv) /uv YZE; Jaw > (FR) /uv T;?)V(w)dw.

1
2

Proof. Since ¥ is a harmonically h-convex, then for 6 € [0, 1], we have

h( )( ‘P*(W, 9) +Yf*<m, 9) )
‘F*(%, 0) <h(1) (¥ (=t 0) + ¥ (e 0) ). (31)
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"

2uv
u—+v

By multiplying (31) by V ((1_57;"%0) =V (M‘%QU) and integrating it by ¢ over
[0, 1], yields

3—7—1;’ ) §u+1 [ )dé
( fo ‘f’* = (;‘ul:l-‘rgli' ) (§u+1g ) )
+fo IIU* gu+ o ¢) Viari-as )96 32)
+ ) i;u(+ 1 Zur(1—-&)o )d ) ( )
1 fo (= (’;m;+§u' Tut( 1 ) )
(2)( o (gt ©)V (artise )4
Therefore, results
fO Ilt/*(1 gfulL}H-év’ ) ((1 (ju-l-é‘v)
=h Y’*(r:w(l v’ 9)v<éu+(1 st )46
2 [V (w,0)V (w)dw (33)

fO 11U*(éu-l—ulvéu’ ) <iju (1- 5)“)

- fO Y*( 1— éut)t+(;‘u G)V( 1- g’.u+§v)d':’
= M [V (w,0)V

From (32) and (33), results

2h(}
% 2h(% .
(2, 0) < e [ (0,09 (w)d,

from which, we have

,9), Y*(Z“", 9)}3 ffg(é[/u”%(wlg)v(w)dw, /uv‘{f*(w,ﬂ)v(w)dw ,

u+v

u

thatis

is completes the proof. [
Remark 4. If V(w) = 1, then from Theorems 10 and 11, we obtain inequality (17).

If h(¢) = ¢, then from Theorems 10 and 11, we obtain results for harmonically convex
F-I-V-Fs, see [28].

If ¥ (w,0) = ¥*(w, 6) with® = 1 and h(¢) = ¢, then Theorems 10 and 11 reduce
to the classical first and second classical H-H Fejér inequality for classical harmonically
convex function.

4. Conclusions and Future Plan

In this paper, we proposed an approach for the Hermite-Hadamard type integral
inequalities via harmonically h-convex F-I-V-Fs. The main findings include some new
bounds of integral mean of harmonically h-convex F-I-V-Fs with error estimations via
fuzzy Riemann integrals. We also proved Fej er type inequality with the same argument.
We find in the literature several papers with classical integrals and fundamental concepts.
These papers aim to provide new estimations and optimal approaches for harmonically
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h-convex F-I-V-Fs. The main idea of this paper is that we can obtain new results by using
fuzzy integrals for harmonically h-convex F-I-V-Fs calculus. In future, we will explore this
concept via the fuzzy Riemann-Liouville nd Hes fractional integrals.
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