
symmetryS S

Article

Asymmetric Density for Risk Claim-Size Data: Prediction and
Bimodal Data Applications

Mansour Shrahili 1 , Ibrahim Elbatal 2 and Haitham M. Yousof 3,*

����������
�������

Citation: Shrahili, M.; Elbatal, I.; M.

Yousof, H. Asymmetric Density for

Risk Claim-Size Data: Prediction and

Bimodal Data Applications. Symmetry

2021, 13, 2357. https://doi.org/

10.3390/sym13122357

Academic Editor: Jewgeni

H. Dshalalow

Received: 12 October 2021

Accepted: 1 December 2021

Published: 7 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Statistics and Operations Research, King Saud University, Riyadh 11451, Saudi Arabia;
msharahili@ksu.edu.sa

2 Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Riyadh 11564, Saudi Arabia; iielbatal@imamu.edu.sa

3 Department of Statistics, Mathematics and Insurance, Benha University, Benha 13513, Egypt
* Correspondence: haitham.yousof@fcom.bu.edu.eg

Abstract: A new, flexible claim-size Chen density is derived for modeling asymmetric data (negative
and positive) with different types of kurtosis (leptokurtic, mesokurtic and platykurtic). The new
function is used for modeling bimodal asymmetric medical data, water resource bimodal asymmetric
data and asymmetric negatively skewed insurance-claims payment triangle data. The new density
accommodates the “symmetric”, “unimodal right skewed”, “unimodal left skewed”, “bimodal
right skewed” and “bimodal left skewed” densities. The new hazard function can be “decreasing–
constant–increasing (bathtub)”, “monotonically increasing”, “upside down constant–increasing”,
“monotonically decreasing”, “J shape” and “upside down”. Four risk indicators are analyzed under
insurance-claims payment triangle data using the proposed distribution. Since the insurance-claims
data are a quarterly time series, we analyzed them using the autoregressive regression model AR(1).
Future insurance-claims forecasting is very important for insurance companies to avoid uncertainty
about big losses that may be produced from future claims.

Keywords: asymmetric data; negatively skewed claims; likelihood; mean of deviations; autore-
gressive regression model; claims forecasting; mean absolute deviations; mean square deviations;
bimodal data

1. Introduction and Motivation

Probability-based distributions can provide adequate descriptions of exposure to risk.
According to [1], the number of exposure is a function often called key risk indicators (RIs).
Such RIs inform risk managers and actuaries about the degree to which their company
is subject to aspects of risk. Many RIs can be considered and studied such as tail-value-
at-risk (TvaR) (or the conditional tail expectation (CTE)) (see [2]), the value-at-risk (VaR)
(see [2–4]), the conditional-VaR (CvaR), tail-variance (TV) (see [5]) and tail-mean-variance
(TMV) (see [6]), among others.

In particular, the VaR is a quantile of the probability distribution of aggregate losses.
Risk managers and actuaries often concentrate on calculating the probability of an adverse
outcome. The probability of an adverse outcome can be expressed through the VaR
indicator at a particular probability/confidence level. The VaR indicator can often be used
in determining the amount of capital required to face such potential adverse outcomes.
Actuaries, regulators, investors and rating agencies are interested in the ability of the
insurance company to face such events. In this paper, some of RIs such as VaR, TVaR, TV
and TMV (see [7]) are considered for the left-skewed insurance-claims data under a new
model called the exponentiated Weibull Chen (EWC) model.

The claim process involves, usually, two independent random variables (RVs): the
first one is the claim-size RV, and other is the claim-count RV. These two RVs can be then
combined to create a third RV called the aggregate-loss RV. Thus, in this paper, the EWC
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model can be considered a distribution of claim-size. The abovementioned RIs are analyzed
under the insurance-claims payment triangle data using the EWC distribution.

2. The New Model

A random variable (RV) X has a Chen distribution (see [8]) with parameter c (write
X ∼ Chen (c)) if X has survival function (SF) given by

1− Hc(x) = exp[1− exp(xc)]|x>0,c>0, (1)

where Hc(x) refers to the corresponding cumulative distribution function (CDF). The
hazard rate function (HRF) of the Chen model has a “bathtub” shape when c < 1 and has a
“monotonically increasing” failure rate function when c ≥ 1. The authors of [8] compared
the C distribution with many other distributions and showed that the Chen distribution has
some merits. The CDF of the exponentiated Weibull G (EW-G) family (see [9]) is defined as

Fa,b,ξ(x) =
{

1− exp
[
−Πb

ξ(x)
]}a∣∣∣x∈R,a,b<0, (2)

where Πξ(x) =
Hξ (x)

Hξ (x)
, Hξ(x) refers to the CDF of the base line model with base line

parameter vector ξ and Hξ(x) = 1− Hξ(x) refers to the survival function of the base line
model with base line parameter vector ξ. Inserting (1) into (2), the CDF of the exponentiated
Weibull Chen (EWC) distribution can be expressed as

FV(x) =

{
1− exp

[
−
(

exp{[1− exp(xc)]}
1− exp{[1− exp(xc)]}

)b
]}a∣∣∣∣∣x,a,b<0, (3)

where V = (a, b, c). The probability density function (PDF) corresponding to (3) can then
be derived as

fV(x) = abc
xc−1exp(xc)σb−1

c (x)
σb

c (x)exp
[
Πb

c(x)
] {1− exp

[
−
(

exp{[1− exp(xc)]}
1− exp{[1− exp(xc)]}

)b
]}a−1

, (4)

where σc(x) = 1− σc(x) and

σc(x) = exp{[1− exp(xc)]}.

For simulating the EWC model, the following quantile function can be used:

Xυ =

(
log

[
1− log

(
1−

{
1 +

[
−log

(
1− u1/a

)]−1/b
}−1

)]) 1
c

, 0 < u < 1. (5)

For exploring the flexibility of the new EWC PDF, we present Figure 1, which shows
the wide flexibility of the new PDF of the EWC model.

Based on Figure 1, we note that the new EWC PDF can be “symmetric”, “unimodal
right skewed”, “unimodal left skewed”, “bimodal right skewed” and “bimodal left skewed”
with different shapes. Analogously, Figure 2 is presented for exploring the flexibility of
the HRF of the EWC model. Based on Figure 2, we note that the new EWC HRF can be
“decreasing–constant–increasing (bathtub)”, “monotonically increasing”, “upside down
constant–increasing”, “monotonically decreasing”, “upside down constant–increasing”
and “upside down”.

We are motivated to define and study the EWC for the following reasons:

• The new PDF in (4) can be “unimodal right skewed with one peak”, “unimodal right
skewed with no peak”, “unimodal left skewed”, “bimodal right skewed”, “symmetric”
and “bimodal left skewed” with different shapes (see Figure 1).
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• The HRF of the EWC model can be “decreasing–constant–increasing (bathtub)”,
“monotonically increasing”, “upside down constant–increasing”, “monotonically de-
creasing”, “upside down constant–increasing” and “upside down” (see Figure 2).

• In reliability analysis, the EWC model may be chosen as the best probabilistic model,
especially in modeling the right heavy tail bimodal asymmetric real data and left
heavy tail bimodal asymmetric real data.
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Figure 1. Some PDF plots for the new model, (a) unimodal right skewed with one peak, (b) reversed-J PDF, (c) one peak 
unimodal right skewed, (d) bimodal right skewed with heavy tail, (e) bimodal right skewed and (f) unimodal left skewed, 
bimodal right skewed. 

(a) (b)

(c) (d)

(e) (f)

Figure 1. Some PDF plots for the new model, (a) unimodal right skewed with one peak, (b) reversed-J
PDF, (c) one peak unimodal right skewed, (d) bimodal right skewed with heavy tail, (e) bimodal
right skewed and (f) unimodal left skewed, bimodal right skewed.
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Figure 2. Some HRF plots for the new model, (a) monotonically increasing, (b) monotonically decreas-
ing, (c) increasing- constant– increasing, (d) decreasing–constant–increasing (bathtub)”, (e) upside
down constant–increasing and (f) constant.

3. Linear Representation

In this section, we summarize and simplify the PDF and the CDF of the EWC model
using some algebra such as the power series, the binomial expansion and generalized
binomial expansion. Simplifying the PDF and the CDF of the EWC model helps us to
derive many of its corresponding mathematical and statistical properties easily. Generally,
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our aim in this section is to re-express the PDF and the CDF of the EWC model in terms of
the exponentiated base line model. After this, the mathematical and statistical properties
of the EWC model can then be directedly derived from those corresponding mathematical
and statistical properties of the exponentiated base line model.

If |b1| < 1 and b2 > 0 is a real non-integer, the power series holds:

(1− b1)
b2−1 =

+∞

∑
b3 = 0

(−1)b3 Γ(b2)

i!Γ(b2 − b3)
bb3

1 . (6)

Applying (6) to the last term in (4) gives

fV(x) = abc
xc−1exp(xc)σb−1

c (x)
σb

c (x)

+∞

∑
i = 0

(−1)iΓ(a)
i!Γ(a− i)

exp

[
−(i + 1)

(
exp{[1− exp(xc)]}

1− exp{[1− exp(xc)]}

)b
]

︸ ︷︷ ︸
Ab,c(x)

. (7)

Expanding the quantity Ab,c(x), we can write

Ab,c(x) =

+∞

∑
ς = 0

(−1)ς(i + 1)ς

ς!
σ

ςb
c (x)

σ
ςb
c (x)

.

Inserting Ab,c(x) in (7), then

fV(x) = abcxc−1exp(xc)σc(x)
+∞

∑
i,ς = 0

(−1)ς+iΓ(a)(i + 1)ς

i!ς!Γ(a− i)
σ
(ς+1)b−1
c (x)

σ
(ς+1)b+1
c (x)

. (8)

Expanding σ
−[(ς+1)b+1]
c (x), we can write

σ
−[(ς+1)b+1]
c (x) =

+∞

∑
ζ = 0

Γ([ς + 1]b + ζ + 1)
ζ!Γ([ς + 1]b + 1)

σζ(x). (9)

Inserting (9) in (8), the EW-C density can then be expressed as

fV(x) =

+∞

∑
ς,ζ = 0

Wς,ζ wψ,c(x)|ψ = (ς+1)b+ζ , (10)

where
wψ,c(x) = ψhc(x)Hψ−1

c (x) = cxc−1exp(xc)σc(x)σψ−1
c (x)

is the exp-C pdf with power parameter ψ and

Wς,ζ =

+∞

∑
i = 0

(−1)ς+iab(i + 1)ςΓ(a)Γ(ψ + 1)
ψi!ς!ζ!Γ(a− i)Γ([ς + 1]b + 1)

.

In this regard, two theorems related to the Ex-C model are presented below:

Theorem 1. Let X be an RV with the Ex-C distribution with parameters c and power parameter ψ.

Then, using the transformation t = [Gc(x)]
1
ψ , the sth ordinary moment of X is given by

µ′s,X = E[Xs] = c
+∞

∑
q1,q2 = 0

ψq1

( s
c

)
ψq2

( s
c
+ q1

) (−1)
2s
c +q1

[c(ψ + q1 + q2) + s]
,
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where ψq1

( s
c
)

is the coefficient of [log(1− t)]
2s
c +q1 in the expansion of{

+∞

∑
}1 = 1

1
}1

[log(1− t)]

} s
c

,

and ψq2

( s
c + q1

)
is the coefficient of tq1+q2+

s
c in the expansion of

(
∑+∞
}2 = 1

t}2
}2

) s
c +q1

.

Theorem 2. Let X be an RV with the Ex-C distribution. Then, the sth conditional moment can be
derived as

E(Xs|X > x) = ψc
+∞

∑
q1,q2 = 0

ψq1

( s
c
)
ψq2

( s
c + q1

)
(−1)

2s
c +q1 σc(x)

[c(ψ + q1 + q2) + s]
{

1− [1− σc(x)]ψ
} .

See [10] for more details.

4. Mathematical and Statistical Properties
4.1. Moments

Based on Theorem 1, the sth ordinary moment of the EWC model can then be ex-
pressed as

µ′s,X = E[Xs] = ψc
+∞

∑ Wς,ζ
ς,ζ,q1,q2 = 0

ψq1

( s
c

)
ψq2

( s
c
+ q1

) (−1)
2s
c +q1

[c(ψ + q1 + q2) + s]
. (11)

4.2. The Conditional Moments

The conditional moments E(Xs|X > x) can be expressed as

E(Xs|X > x) = ψc
+∞

∑
ς,ζ,q1,q2 = 0

Wς,ζ ψq1

( s
c
)
ψq2

( s
c + q1

)
(−1)

2s
c +q1 σc(x)

[c(ψ + q1 + q2) + s]
{

1− [1− σc(x)]ψ
} . (12)

In particular,

E(X|X > x) = ψc
+∞

∑
ς,ζ,q1,q2 = 0

Wς,ζ ψq1

(
1
c

)
ψq2(c + q1)(−1)

2
c +q1 σc(x)

[c(ψ + q1 + q2) + 1]
{

1− [1− σc(x)]ψ
} ,

and

E
(

X2|X > x
)

= ψc
+∞

∑
ς,ζ,q1,q2 = 0

Wς,ζψq1

( 2
c
)
ψq2

( 2
c + q1

)
(−1)

4
c +q1 σc(x)

[c(ψ + q1 + q2) + 2]
{

1− [1− σc(x)]ψ
} .

4.3. Entropies

The Rényi entropy of the RV X is defined by

Iδ(X) =
1

(1− δ)
log
(∫ +∞

−∞
f (x)δdx

)∣∣∣∣δ>0 and δ 6=1.

Using (4), we have

fV(x)δ =

+∞

∑
ς,ζ = 0

τς,ζ xcδ−δexp(δxc)exp{δ[1− exp(xc)]}{1− exp[1− exp(xc)]}bς+ζ+(b−1)δ,
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where

τς,ζ =

+∞

∑
i = 0

(−1)i+ς(cab)δ(δ + i)ςΓ([a− 1]δ + 1)Γ(bς + [b + 1]δ + ζ)

i!ς!ζ!Γ(bς + [b + 1]δ)Γ([a− 1]δ− i + 1)
.

Then,

Iδ(X) =
1

(1− δ)
log

 +∞

∑
ς,ζ = 0

τς,ζ

∫ +∞

0

(
xcδ−δexp(δxc)exp{δ[1− exp(xc)]}
× {1− exp[1− exp(xc)]}bς+ζ+(b−1)δ

)
dx

.

Figure 3 below gives the Rényi entropy index for the EWC model.
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Figure 3. Rényi entropy index for the EWC model for some selected parameters value, (a) a = 0.5, b = 1, c = 0.5,
(b) a = 0.5, b = 1, c = 3, (c) a = 1.5, b = 1, c = 2, (d) a = 9.5, b = 1, c = 2.
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5. RIs
5.1. VaR Indicator

Exposure to risk certainly occurs for any insurance company. Hence, actuaries devel-
oped many risk indicators for evaluating exposure to risk numerically. Generally, the VaR is
the amount of capital required to ensure, with a certain probability, that the company does
not become insolvent technically. The degree of confidence chosen is arbitrary. Therefore,
many VaR amount may be considered under several degrees of confidence. For the entire
enterprise, it can be a high number such as 99.95% or it can be 95% for a single unit or risk
class within the insurance company. These different percentages may reflect inter-risk type
diversification or the inter-unit that exists. Let X denote a loss RV (LRV). The VaR of X
(VaRε(X)) at the 100ε% level, denoted as VaRε(X) or π(q), is the 100ε quantile (or percentile)
of the distribution of X. Then, for EWC distributions, we can simply write

Pr
(

X > c
√

log[1− q(ε; a, b)]
)

=


1%|ε = 99%

5%|ε = 95% ,
...

(13)

where q(ε; a, b) = log

(
1−

{
1 + b

√[
−log

(
1− a
√

ε
)]−1

}−1
)

. Based on (13), when ε = 99%

for a one-year time period, the interpretation is that there is only a very small chance (1%)
that the insurance company will be bankrupted by an adverse outcome over the next year.
Then, the VaRε(X) does not satisfy one of the four criteria for coherence.

5.2. TVaR Risk Indicator

Let X denote an LRV. The TVaRε(X) (TVaRε(X)) at the 100ε% confidence level is the
expected loss given that the loss exceeds 100ε% of the distribution of X. Then, the TVaRε(X)
can be expressed as

ε(X) = E(X|X >π(ε)) =
1

1− ε

∫ +∞

π(q)
x fV(x)dx. (14)

Then, depending on Theorem 2, we have

ε(X) =
ψc

1− ε

+∞

∑
ς,ζ,q1,q2 = 0

Wς,ζ ψq1

(
1
c

)
ψq2(c + q1)(−1)

2
c +q1 σc(x)

[c(ψ + q1 + q2) + 1]
{

1− [1− σc(x)]ψ
} , (15)

where ψq1

(
1
c

)
is the coefficient of [log(1− t)]

2
c +q1 in the expansion

of
{

∑+∞
}1 = 1

1
}1
[log(1− t)]

} 1
c and ψq2

(
1
c + q1

)
is the coefficient of tq1+q2+

1
c in the expansion

of
(

∑+∞
}2 = 1

t}2
}2

) 1
c +q1

. Thus, TVaR ε(X) can be considered the average of all VaR values
above the confidence level q. This means that TVaR ε(X) provides us more information
about the tail of EWC distribution. Finally, TVaR can also be expressed as

e(VaRε(X)) = TVaRε(X)−VaRε(X),

where e(VaRε(X)) is the mean excess loss function evaluated at the 100εth quantile.

5.3. TV Risk Indicator

Let X denote an LRV. The TV risk indicator (TV ε (X)) can be expressed as

ε(X) = E
(

X2|X >π(q)
)
− [TVaR ε(X)

]2
.
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Then, depending on Theorem 2 and (15), we have

ε(X) =
ψc

1− ε

+∞

∑
ς,ζ,q1,q2 = 0

Wς,ζψq1

( 2
c
)
w2

q1,q2
σc(x)

w[2,ψ+q1+q2]

{
1− [1− σc(x)]ψ

} − [TVaR ε(X)]2. (16)

where w2
q1,q2

= ψq2

( 2
c + q1

)
(−1)

4
c +q1 , w2

ψ+q1+q2
= c(ψ + q1 + q2) + 2 and TVaRε(X) is

given in (15).

5.4. TMV Risk Indicator

Let X denote a loss of LRV. The TMV risk indicator (TMVε (X)) can then be expressed as

TMVε(X)
∣∣∣0<π<1 = E

(
X2|X >π(ε)

)
− [TVaR ε(X)

]2
. (17)

Then, for any LRV, TMVε(X) > TVε(X) and for π = 1 the TMV ε(X) = TVaRε(X).

6. Bimodal Asymmetric Data Applications

Let x1, x2, . . . , xn be an observed random sample from the EW-C model with
V = (a, b, c). The function of the log-likelihood according to the maximum likelihood
estimation method can derived from

`V(n) = log

{
n

∏
i = 1

[
fV(xi)

]}

The function of `V(n) can be maximized directly using the “optim function” (using
the R software) or sub-routine of MaxBFGS (using the program of Ox) or the MATH-CAD
software or by solving the nonlinear equations of the likelihood derived from differentiating
`V(n). The score vector components Ea = ∂

∂a `V(n), Eb = ∂
∂b `V(n) and Ec = ∂

∂c `V(n)
can be easily derived from obtaining the nonlinear system Ea = Eb = Ec = 0 and
then simultaneously solved to obtain the maximum likelihood estimates of V. Using the
“Newton–Raphson” algorithms, this system of equations can be solved numerically using
iterative technique.

In this section, two real data sets are analyzed and considered under the maximum
likelihood estimation (MLE) method for showing applicability of the EWC model. For
comparing models, we consider the “−logL” Criteria, Akaike Information Criteria (AIC),
the Consistent Information Criteria (CAIC), the Bayesian Information Criteria (BAIC), the
Cramér–Von Mises (CvM) test and the Anderson–Darling (AD) test. Additionally, the
Kolmogorov–Smirnov (K.S) test and its corresponding p-Value is also performed. The
parameters of models have been estimated by the MLE method. The first data set (1.1, 1.4,
1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2) is called the relief times
of 20 patient data. The second data set (43.86, 44.97, 46.27, 51.29, 61.19, 61.20, 67.80, 69.00,
71.84, 77.31,85.39, 86.59, 86.66, 88.16, 96.03, 102.00, 108.29, 113.00, 115.14, 116.71, 126.86,
127.00, 127.14, 127.29, 128.00, 134.14, 136.14, 140.43, 146.43, 146.43,148.00, 148.43, 150.86,
151.29, 151.43, 156.14, 163.00, 186.43) is called the minimum flow. For more real data sets,
see [11–14].

Table 1 gives statistics tests for comparing the competing Chen extensions using the
relief times real data set. Table 2 lists the MLEs and their standard errors (SEs) for the relief
times real data set. The competing Chen extensions listed in Tables 1 and 2 are the EW-C
(the proposed model), Gamma-Chen (GC), Kumaraswamy Chen (KC), Beta-Chen (BC),
Marshall–Olkin Chen (MOC), Transmuted Chen (TC) and standard two-parameter Chen.
Table 3 gives statistics tests for comparing the competing models under the minimum flow
data set. Table 4 lists the MLEs and SEs for the minimum flow data set. For describing the
two real data sets, box plots, quantile–quantile (Q–Q) plots, total-time-in-test (TTT) plots
and nonparametric-Kernel-density-estimation (NKDE) plots are presented. Figure 4 gives



Symmetry 2021, 13, 2357 10 of 35

the box plots. Figure 5 gives the Q–Q plots. Figure 6 shows the TTT plots. Figure 7 gives the
NKDE plots. The box plots show that the data for relief times have one extreme value (see
Figure 5 left panel) and that the minimum flow data have one extreme value (see Figure 5
right panel). The Q–Q plots support the results obtained by the box plots. The dashed line
in all of the Q–Q plots refers to the safe boundaries for the standard errors. The TTT plots
show that the HRFs for the data on relief times are “monotonically increasing” (Figure 6
left panel) and that the HRFs for the data on relief times are “monotonically increasing”
(see Figure 6 right panel). The NKDE plots show that the KDE is “asymmetric bimodal
density” with a right tail (see Figure 7 left panel) and that the KDE of minimum flow data is
“asymmetric bimodal density” (see Figure 7 right panel). The competing Chen extensions
listed in Tables 3 and 4 are the EW-C (the proposed model), Transmuted Exponentiated
Chen (TEC), GC, KC, BC, MOC, TC and standard two-parameter Chen model.

Table 1. Comparing models under the relief data set.

Model BIC AIC AD CVM p-Value K.S

EWC 40.62 37.63 0.241 0.042 0.952 0.116
GC 50.33 46.35 0.285 0.046 <0.01 0.992
BC 44.49 40.51 0.346 0.065 0.769 0.155
TC 56.62 53.63 1.575 0.274 0.243 0.233
KC 44.32 40.02 0.303 0.059 0.820 0.140

MOC 47.87 44.88 0.847 0.147 0.774 0.157
Chen 55.13 53.14 1.667 0.297 0.206 0.244

Table 2. The MLEs and SEs for the relief data set.

Model MLE (SEs)

EWC(a,b,c) 1663.34, 1.167, 0.121
(3.86), (2.487), (5.759)

GC(γ,a,b,c) 7.5914, 1.988, 5.0023, 0.534
(2.09), (0.46), (1.07), (0.003)

MOC(a,b,c) 400.0123, 2.3243, 0.434
(488.06), (0.64), (0.08)

KC(γ,a,b,c) 160.07, 0.491, 2.212, 0.5234
(222.41), (0.51), (0.75), (0.21)

BC(γ,a,b,c) 85.873, 0.481, 2.013, 0.552
(103.1), (0.512), (0.69), (0.20)

TC(a,b,c) 0.7455, 0.0714, 1.022
(0.284), (0.034), 0.09)

Chen(b,c) 0.1388, 0.945
(0.0511, 0.09)

Table 3. Comparing models under the flow data set.

Model BIC AIC AD CVM p-Value K.S

EWC 394.37 389.36 0.60 0.11 0.705 0.11
MOC 395.47 390.56 0.61 0.09 0.689 0.12
GC 398.03 391.48 1.71 0.28 <0.01 0.57

Chen 401.90 398.62 0.64 0.10 0.262 0.16
BC 398.76 392.21 0.75 0.12 0.343 0.15
KC 397.79 391.24 0.66 0.11 0.409 0.14
TEC 398.29 391.74 0.70 0.11 0.377 0.15
TC 394.44 389.53 0.66 0.11 0.383 0.15
EC 394.82 389.91 0.72 0.13 0.348 0.15
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Table 4. The MLEs and SEs for the minimum flow data.

Model MLE (SEs)

EWC(a,b,c) 19.7987, 0.0537, 0.2449
(4.66), (0.0049), (0.0036)

BC(γ,a,b,c) 3.014, 0.774, 0.014, 0.354
(1.90), (1.24), (0.01), (0.05)

KC(γ,a,b,c) 4.514, 21.1104, 0.022, 0.273
(2.02), (42.85), (0.02), (0.05)

GC(γ,a,b,c) 3.135, 4.364, 0.096, 0.345
(1.143), (4.4), (0.02), (0.02)

MOC(a,b,c) 13.001, 0.0232, 0.3454
(18.66), (0.02), (0.04)

EC(a,b,c) 2.859, 0.0144, 0.355
(0.983), (0.004), (0.0234)

TEC(γ,a,b,c) 2.737, −0.248, 0.01, 0.348
(1.213), (0.466), (0.01), (0.02)

TC(a,b,c) −1.004, 0.0039, 0.368
(0.70), (0.002), (0.01)

Chen(b,c) 0.0032, 0.365
(0.001), (0.01)
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Based on Table 1, µ′1,X = 1.87197, variance = 0.3450812, skewness = 1.460947, kurto-
sis = 6.900911 and dispersion index = 0.1843413. Based on Table 1, µ′1,X = 0.008823, vari-
ance = 0.062213, skewness = 31.1491, kurtosis = 1024.202 and dispersion index = 7.050972.
Based on Table 1, it is noted that the EWC model provides the best results: AIC = 37.63,
BIC = 40.62, CVM = 0.042, AD = 0.241, K.S = 0.116 and p-value = 0.952. Table 3 gives the
MLEs (SEs) for the data on relief times. Based on Table 3, it is noted that the EWC model
provides the best results: AIC = 389.36, BIC = 394.37, CVM = 0.11, AD = 0.60, K.S = 0.11 and
p-value = 0.705. Figures 7 and 8 give the estimated-PDF (E-PDF), estimated-HRF (E-HRF),
Probability–Probability (P–P) and the Kaplan–Meier survival plot for the relief times and
the minimum flow data sets. According to Figures 8 and 9, the new model showed a very
close fit to the empirical functions in modeling the relief times and minimum flow data sets.
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Figure 8. (a) P–P, (b) E-PDF, (c) E-HRF and (d) Kaplan–Meier plots for the data on relief times.
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Figure 9. (a) P–P, (b) E-PDF, (c) E-HRF and (d) Kaplan–Meier plot for the minimum flow data.

7. Risk and Time Series Analysis for Future Insurance-Claims Forecasting

Real data sets for insurance payments are usually positive and often has a right tail or
a heavy right tail; it also can be unimodal (see [1,15–17] for more details). In this section,
we analyze negatively skewed insurance-claims payment data for the first time under a
new Chen extension. As illustrated in Section 2, the EWC density can be “symmetric”,
“unimodal right skewed”, “unimodal and negatively skewed”, “bimodal and positively
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skewed” and “bimodal and negatively skewed” shapes. Since the insurance-claims data in
the following subsection is a quarterly time series, we analyze the insurance-claims data
using the AR(1) model. For exploring the autocorrelation between any two claims values,
the autocorrelation function and the partial autocorrelation function plots are presented.

7.1. Insurance-Claims Application

In this section, we analyze the insurance-claims payment triangle from a U.K. motor
non-comprehensive account; see [18]. We set the origin period as being from 2007 to
2013. The insurance-claims payment data frame presents the claims data in its typical
form as it would be stored in a database. The first column presents the origin year from
2007 to 2013, the second column presents the development year and the third column
has the incremental payments. It is worth mentioning that this insurance-claims data are
first analyzed under a probability-based distribution. However, many other interesting
insurance data can be analyzed using the new model; see, for example, [19] (for extreme
value theory as a risk management tool with useful applications), [20] (for a review in
skewed distributions in finance and actuarial science), [21] (for details about modeling
claims data with composite Stoppa models), [22] (for more right censored medical and
reliability data sets), [23] (for the jointly modeling area-level crash rates by severity with
Bayesian multivariate random-parameters spatiotemporal Tobit regression), [24] (for the
investigating the impacts of real-time weather conditions on freeway crash severity), [25]
(for more copulas and a modified right censored test for validation) and [26] (for an
alternative four-parameter exponentiated Weibull model with Copula, properties and real
data modeling). For modeling the claims data, we first need to explore it. A real data
set can be explored either numerically, graphically or both. In this section, we consider
the numerical technique (see Table 5) and many graphical techniques such as the Cullen–
Frey plot for exploring initial fit to the theoretical common distributions such as uniform,
normal, exponential, beta, lognormal, logistic and Weibull models. The bootstrapping
method is also applied and plotted in the same plot. Note that the Cullen–Frey plot is used
just to compare the models in the space of squared skewness and kurtosis. Many other
graphical plots are used, such as the NKDE plot, the Q–Q plot, the TTT plot and the box
plot. For exploring the autocorrelation between any two claims value, the autocorrelation
function (ACF) plots are presented. The theoretical ACF and the partial ACF (Lag = 1) are
also presented.

Table 5. Statistical description for the insurance-claims data.

Statistic Value

Mean 7.68589
Variance 0.54443
Skewness −0.74828
Kurtosis 2.78846
Dis. Ix 0.07084

Median 7.74019
Length 28

Quantile (0.25%, 0.75%) 7.16935, 8.28125

Figure 10 (top left) gives the box plot for the insurance claims. Figure 10 (top right)
gives the Q–Q plot for the insurance claims. Figure 10 (bottom left) gives the TTT plot
for the insurance claims. Figure 10 (bottom right) gives the NKDE plot for the insurance
claims. Figure 11 (first, second and third plots) shows the scattergrams for insurance claims
(Lag = k = 1). Figure 11 (fourth plot) gives the Cullen–Frey plot for the insurance claims.
Based on Figure 11 (fourth plot), it is noted that we have left-skewed data and do not
follow any of the above theoretical models. Figure 11 (fifth and sixth plots) gives the ACF
(Lag = k = 1) and partial ACF (Lag = k = 1), respectively. Based on Figure 10 (top
left and top right), we see that no extreme observations were spotted. Based on Figure 10



Symmetry 2021, 13, 2357 16 of 35

(bottom left), it is noted that the HRF of the claims is “monotonically increasing”. Figure 10
(bottom right) shows that the initial NKDE is an asymmetric function with a left tail. Based
on Figure 11 (fifth and sixth plots), we note that that the first lag value (Lag = k = 1)
is statistically significant, whereas the other partial autocorrelations for all other lags are
not significant. Thus, the AR(1) model is suggested for the claims distribution. Table 5
below lists a statistical summary for the claims payment. Based on Table 5, it is noted that
the Kurtosis of claims = 2.788464 < 3, skewness of claims = −0.748278 (left-skewed claims
data) and dispersion index of claims (Dis.Ix) = 0.0708352 (under dispersed claims data).
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Figure 10. (a) NKDE, (b) Q–Q, (c) TTT and (d) box plots for raw claims data.
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For modeling the insurance-claims data using a probability distribution, we consider
some competitive potential probability distribution and hence compare those models with
our new model under some goodness-of-fit test statistics. For this purpose, we consider
some Chen extensions such as reduced Rayleigh Chen (RRC), the standard exponentiated
distribution, the Burr X exponentiated Chen (BXEC) distribution, Burr XII Chen (BXIIC)
distribution, Marshall–Olkin generalized Chen (MOGC) distribution, exponential Chen
(EC), reduced Burr X Chen (RBXC), Weibull Chen (WC) and Lomax Chen (LxC) among
others. The results of the statistical analysis for the insurance-claims data are presented in
Tables 2 and 3. Table 6 gives the competitive models, estimates and standard error (SEs) for
insurance-claims data. Table 7 lists the test statistics for insurance-claims data. Figure 7
presents estimated PDF (E-PDF), estimated HRF (E-HRF) and Kaplan–Meier survival plots
for insurance-claims data. Figure 7 gives the probability–probability (P–P) plots for all of
the competitive models. Based on Figure 12 (left panel), it is seen that the E-PDF of the EWC
fits the histogram of the insurance-claims payments and that the two shapes are negative
skewed. Based on Figure 12 (middle panel), it is seen that the E-HRF is increasing. Based
on Figure 12 (right panel), it is seen that the estimated survival function of the EWC fits the
Kaplan–Meier survival plot of the insurance-claims data. Based on Figure 12 (the E-PDF,
E-HRF and the Kaplan–Meier survival plots), it is seen that the EWC model provided an
adequate fit to the negative skewed claims payments. According to the P–P plots (see
Figure 13), one can clearly note that the EWC model is the most reasonable probability
model out of all other competitive Chen models. Based on Table 6 under the AIC, BIC, CvM,
AD, the Kolmogorov–Smirnov test and its corresponding p-value (under the chi-square
goodness-of-fit test), the EWC model is the best among all competitive Chen models.

Table 6. Models, estimates and SEs for insurance-claims data.

Models MLE (Standard Errors)

E(a) 0.130125
(0.02459)

RRC(a) 0.0035352
(0.000594)

EC(a) 0.0314453
(0.005000)

RBXC(a,b) 1.11 × 103, 3.49 × 10−3

(2.09 × 102), (5.85 × 10−4)
WC(a,b) 0.0280327, 0.593369

(0.003384), (0.00187)
LxC(a,b) 0.0357072, 0.5933183

(0.006761), (0.001931)
EWC(a,b,c) 30.859366, 0.0492140, 0.594392

(8.163415), (0.002981), (0.00266)
BXIIC(a,b,c) 0.4928822, 0.0723965, 0.593369

(1.817779), (0.267182), (0.00186)
BXEC(a,b,c,γ) 1.540293, 0.64830, 3.99381, 0.165361

(0.34155), (0.186506), (0.88559), (0.0531)
MOGC(a,b,c,γ) 0.037152, 0.9789827, 0.316193, 0.7187880

(0.01485), (0.48380), (0.0024), (0.00190)

Table 7. Comparing models under the insurance data set.

Models BIC AIC AD CvM K.S (p-Value)

EWC 71.51872 67.52211 0.6173 0.1008 0.18832 (0.2416)
BXEC 142.6455 137.3167 0.7658 0.12082 0.5073 (3 × 10−7)
BXIIC 139.7025 135.7059 0.6819 0.1092 0.45878 (7 × 10−6)

MOGC 121.0229 115.6941 0.6353 0.1028 0.36671 (6 × 10−7)
E 173.538 172.2056 0.8219 0.12899 0.5316 (6.5 × 10−8)

WC 173.9965 171.3321 0.5077 0.0865 0.7932 (7.8 × 10−16)
EC 461.0206 459.6884 0.8588 0.1345 0.9961 (8 × 10−16)

RRC 1383.541 1382.209 0.8721 0.1365 1 (8 × 10−16)
RBXC 994.1684 991.504 0.8732 0.1366 1 (8 × 10−16)
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Based on Figure 1 (fifth and sixth plots), the AR(1) model is suggested to present the
insurance-claims payments. Figures 14–17 give some artificial claims payments with ACF
(ρ[k]) and partial ACF (Φ[kk]) generated based on some positive and negative values of
the parameter ϕ =

(
±10−7,±10−4,±0.10,±0.20

)
. Figures 18–21 give some artificial claims

payments with ACF (ρ[k]) and partial ACF (Φ[kk]) generated based on some positive and
negative values of the parameter ϕ = (±0.25,±0.30,±0.35,±0.40). For a positive value of
the parameter ϕ (ϕ+) the ACF → 0 exponentially as lag→+∞. For negative values of the
parameter ϕ (ϕ−), the ACF → 0 exponentially as lag→+∞. For a positive value of the
parameter ϕ, the partial ACF shuts off after the first lag since ϕ < 1. For negative values of
the parameter ϕ, the partial ACF shuts off after the first lag since ϕ < 1. Table 8 provides
the point prediction (the future values y29, y30 and y31) for the claims payments in millions.
In Table 8, ρ[k]

∣∣∣
k≥1

and Φ[11] are also calculated for each value of ϕ.
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Figure 13. P–P plots for some competitive models.
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Figure 19. Artificial claims with ACF and partial ACF for 𝜑 =  0.35 and 𝜑 =  0.4. Figure 19. Artificial claims with ACF and partial ACF for ϕ = 0.35 and ϕ = 0.4.
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Figure 20. Artificial claims with ACF and partial ACF for ϕ = −0.25 and ϕ = −0.3.
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Table 8. Point prediction for the claims payments in millions.

Forecasting→ ρ[k]|k≥1 Φ[11] Point Forecasting

ϕ↓ 1 2 3 4 y29 y30 y31

10−7 10−7 10−14 10−21 10−28 10−7 7.685890 7.68589 7.68589
−10−7 −10−7 10−14 −10−21 10−28 −10−7 7.685890 7.68589 7.68589
+10−4 10−4 10−8 10−12 10−16 10−4 7.685996 7.68589 7.68589
−0.10−4 −10−4 10−8 −10−12 10−16 −10−4 7.685784 7.68589 7.68589

+0.10 +0.1 10−2 +10−3 10−4 0.10 7.791861 7.696487 7.68695
−0.10 −0.1 10−2 −10−3 10−4 −0.10 7.579919 7.696487 7.68483
+0.20 0.20 0.04 0.008 0.0016 0.20 7.897833 7.728279 7.694368
−0.20 −0.20 0.04 −0.008 0.0016 −0.20 7.473947 7.728279 7.677412
+0.25 0.25 0.0625 0.0156 0.00391 0.25 7.950818 7.752122 7.702448
−0.25 −0.25 0.0625 −0.0156 0.00391 −0.25 7.420962 7.752122 7.669332
+0.30 0.3 0.09 0.027 0.0081 0.3 8.003804 7.781264 7.714502
−0.30 −0.3 0.09 −0.027 0.0081 −0.3 7.367976 7.781264 7.657278
+0.35 0.35 0.1225 0.04288 0.0150 0.35 8.05679 7.815705 7.731325
−0.35 −0.35 0.1225 −0.04288 0.0150 −0.35 7.31499 7.815705 7.640455
+0.40 0.40 0.16 +0.64 0.0256 0.40 8.109775 7.855444 7.753712
−0.40 −0.40 0.16 −0.64 0.0256 −0.40 7.262005 7.855444 7.618068

The future values y29, y30 and y31 are very important for the insurance companies for
avoiding big losses under uncertainty, which may be produced from future claims. Table 9
gives the deviations (Ds), sum of deviations (SDs), the mean of deviations (MDs), absolute
deviations (ADs), sum of absolute deviations (SADs), mean absolute deviations (MADs),
square deviations (SDs), sum of square deviations (SSDs) and mean square deviations
(MSDs) for y29. Table 10 gives the Ds, SDs, MDs, ADs, SADs, MADs, SDs, SSDs and
MSDs for y30. Table 11 gives the Ds, SDs, MDs, ADs, SADs, MADs, SDs, SSDs and MSDs
for y31. Based on Table 9, the AR(1) model is suggested for obtaining future values y29
with ϕ = 10−7 or ϕ = −10−7 since deviation = absolute deviation = square deviation
∼= 0. Based on Table 10, the AR(1) model is suggested for obtaining future values y30
with ϕ = ±10−7 or ϕ = 10−4 since deviation = absolute deviation = square deviation
∼= 0. Based on Table 11, the AR(1) model is suggested for obtaining future values y31 with
ϕ = ±10−7 or ϕ = ±10−4 since deviation = absolute deviation = square deviation ∼= 0.

Table 9. Forecasting deviations for y29.

ϕ D1(y29) |D1(y29)| [D1(y29)]2

+10−7 <10−10 <10−10 <10−10

−10−7 <10−10 <10−10 <10−10

+0.0001 −0.000106 0.000106 1.123600 × 10−8

−0.0001 0.000106 0.000106 1.123600 × 10−8

+0.10 −0.105971 0.105971 1.122985 × 10−2

−0.10 0.105971 0.105971 1.122985 × 10−2

+0.20 −0.211943 0.211943 4.491984 × 10−2

−0.20 0.211943 0.211943 4.491984 × 10−2

+0.25 −0.264928 0.264928 7.018685 × 10−2

−0.25 0.264928 0.264928 7.018685 × 10−2

+0.30 −0.317914 0.317914 1.010693 × 10−2

−0.30 0.317914 0.317914 1.010693 × 10−2

+0.35 −0.370900 0.370900 1.375668 × 10−2

−0.35 0.370900 0.370900 1.375668 × 10−2

+0.40 −0.423885 0.423885 1.796785 × 10−2

−0.40 0.423885 0.423885 1.796785 × 10−2

∑ −6.217249 × 10−15 3.391294 1.0893020

M −3.88578 × 10−16 0.2119559 0.0680814
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Table 10. Forecasting deviations for y30.

ϕ D1(y30) |D1(y30)| [D1(y30)]2

+10−7 <10−10 <10−10 <10−10

−10−7 <10−10 <10−10 <10−10

+0.0001 <10−10 <10−10 <10−10

−0.0001 <10−10 <10−10 <10−10

+0.10 −0.010597 0.010597 0.0001122964
−0.10 −0.010597 0.010597 0.0001122964
+0.20 −0.042389 0.042389 0.0017968273
−0.20 −0.042389 0.042389 0.0017968273
+0.25 −0.066232 0.066232 0.0043866778
−0.25 −0.066232 0.066232 0.0043866778
+0.30 −0.095374 0.095374 0.0090961999
−0.30 −0.095374 0.095374 0.0090961999
+0.35 −0.129815 0.129815 0.0168519342
−0.35 −0.129815 0.129815 0.0168519342
+0.40 −0.169554 0.169554 0.0287485589
−0.40 −0.169554 0.169554 0.0287485589

∑ −1.027922 1.027922 0.121985

M −0.064245 0.064245 0.0076241

Table 11. Forecasting deviations for y31.

ϕ D1(y31) |D1(y31)| [D1(y31)]2

+10−7 <10−10 <10−10 <10−10

−10−7 <10−10 <10−10 <10−10

+0.0001 <10−10 <10−10 <10−10

−0.0001 <10−10 <10−10 <10−10

+0.10 −0.001060 0.001060 1.123600 × 10−6

−0.10 0.001060 0.001060 1.123600 × 10−6

+0.20 −0.008478 0.008478 7.187648 × 10−5

−0.20 0.008478 0.008478 7.187648 × 10−5

+0.25 −0.016558 0.016558 2.741674 × 10−4

−0.25 0.016558 0.016558 2.741674 × 10−4

+0.30 −0.028612 0.028612 8.186465 × 10−4

−0.30 0.028612 0.028612 8.186465 × 10−4

+0.35 −0.045435 0.045435 2.064339 × 10−3

−0.35 0.045435 0.045435 2.064339 × 10−3

+0.40 −0.067822 0.067822 4.599824 × 10−3

−0.40 0.067822 0.067822 4.599824 × 10−3

∑ −5.32907 × 10−15 0.33593 0.01565995

M −0.064245 0.064245 0.0076241

Generally, a very small value of the parameter ϕ is preferable for claims forecast-
ing. Based on Tables 9–11, it is noted that MDs for y29 = −3.885781 × 10−16, MDs for
y30 = 0.064245 and MDs for y31 = −3.330669 × 10−16; MADs for y29 = 0.2119559, MADs
for y30 = 0.064245 and MADs for y31 = 0.020996; and MSDs for y29 = 0.0680814, MSDs for
y30 = 0.0076241 and MSDs for y31 = 0.00097875.

Figure 22 (first row-left panel) gives the scattergrams for the deviations under ϕ+ for
the future value y29. Figure 22 (first row, left panel) gives the scattergrams for the deviations
for ϕ− for the future value y29. Figure 22 (second row, left panel) gives the scattergrams
for the deviations under ϕ+ for the future value y30. Figure 22 (second row, left panel)
gives the scattergrams for the deviations for ϕ− for the future value y30. Figure 22 (third
row, left panel) gives the scattergrams for the deviations under ϕ+ for the future value y31.
Figure 22 (third row, left panel) gives the scattergrams for the deviations for ϕ− for the
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future value y31. Figure 22 (first row) gives the deviations, absolute deviations and square
deviations against ϕ+ (the future value y29 (left), the future value y30 (middle) and the
future value y31 right)). Figure 16 (second row) gives the deviations, absolute deviations
and square deviations against ϕ− (the future value y29 (left), the future value y30 (middel)
and the future value y31 right)). Figure 23 gives the deviations, absolute deviations and
square deviations for ϕ+ (((a),(b),(c))) and ϕ− ((d),(e),(f)).
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and square deviations for ϕ−

∣∣y31 .

7.2. An Application for Risk Analysis under the Insurance-Claims Payment Data

In this subsection, we present an application for risk analysis under the VaR, TVaR,
TV and TMV measures presented in (13), (15), (16) and (17) using the insurance-claims
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payment data. The risk analysis is performed using some confidence levels (ε = 70%,
75%, 80%, 85%, 90%, 95%, 99%). The four measures are estimates for the EWC and the
MOGC models.

The MOGC model is considered the best competitive model. Table 8 below gives the
RIs for the EWC the MOGC models. For the EWC model, the VaRε for EWC ranges from
9.003261 to 11.999004, the TVaRε for EWC ranges from 11.999302 to 14.00635, the TVε for
EWC ranges from 2.008071 to 2.9989921 and the TMVε for EWC ranges from 12.190242 to
16.450089. The VaRε for MOGC ranges from 6.004395 to 9.642490, the TVaRε for MOGC
ranges from 6.721463 to 9.909357, the TVε for MOGC ranges from 1.011332 to 2.102319
and the TMVε MOGC ranges from 6.961463 to 12.909357. The following conclusion can
be summarized:

1. VaRε for EWC > VaRε for MOGC and TVaRε for EWC > TVaRε for MOGC.
2. TVε for EWC > TVε for MOGC and TMVε for EWC > TMVε for MOGC.
3. VaRε(X) < TVaRε(X) < TMVε(X) ∀ ε.

8. Conclusions

A novel, flexible extension of the Chen distribution that accommodates “decreasing–
constant–increasing (bathtub)”, “monotonically increasing”, “upside down constant–increasing”,
“monotonically decreasing”, “J” and “upside down” failure rates was defined and studied.
The new model was motivated by its wide applicability in modeling “unimodal right-
skewed”, “unimodal left-skewed”, “bimodal right-skewed” and “bimodal left-skewed”
real data. Relevant statistical properties of the novel model were derived such as con-
ditional moments, mean residual life and mean past lifetime. The method of maximum
likelihood estimation was considered for estimating the model parameters. In the medical
field, the proposed distribution was used for modeling data on the relief times of patients,
which was characterized as being asymmetric bimodal with a right tail and has one ex-
treme observation. Many risk indicators were considered and studied such as the value at
risk, the tail value at risk (conditional tail expectation), the conditional value at risk, the
tail variance and the tail mean variance. The four indicators were applied and the data
on insurance-claims payments were negatively skewed. Since the insurance-claims data
were a quarterly time series, we analyzed it using the AR(1) model. The autocorrelation
function and the partial autocorrelation function plots were presented. The AR(1) model
was suggested for obtaining the future values y29 (2014 first quarter) with ϕ = 10−7 or
ϕ = −10−7 since deviation = absolute deviation = square deviation ∼= 0. The AR(1) model
was suggested for obtaining the future values y30 (2014 s quarter) with ϕ = ±10−7 or
ϕ = ±10−4 since deviation = absolute deviation = square deviation ∼= 0. The AR(1) model
was suggested for obtaining the future values y31 ((2014 third quarter)) with ϕ = ±10−7

or ϕ = ±10−4 since deviation = absolute deviation = square deviation ∼= 0.
The new model has multiple applications in the field of statistical modeling and

forecasting, as illustrated below:

• In the medical field, the EWC distribution can be used to model the data on patient’s
relief times, which is characterized as being asymmetric bimodal with a right tail
and has one extreme observation. Although there are many competing distributions
in the field of statistical modeling in the medical field such as Gamma-Chen distri-
bution, Kumaraswamy Chen distribution, Beta-Chen distribution, Marshall–Olkin
Chen distribution, Transmuted Chen distribution and standard two-parameter Chen
distribution, the EWC distribution proved its superiority in the statistical modeling of
the data on relief times with minimum values for the Akaike Information Criteria, the
Bayesian Information Criteria, the Cramér–Von Mises test, the Anderson–Darling test,
Kolmogorov–Smirnov test and their corresponding p-values.

• In the field of planning and management of the use of water resources, we modeled the
lower discharge of at least seven consecutive days and return period (time) of ten years
for the Cuiaba River, Cuiaba, Mato Grosso, Brazil over 38 years using the EWC distri-
bution. These data were characterized as being asymmetric and bimodal. Although
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there are many competing distributions in the field of statistical modeling for data in
the planning and management of the use of water resources such as Gamma-Chen dis-
tribution, Kumaraswamy Chen distribution, Beta-Chen distribution, Marshall–Olkin
Chen distribution, Transmuted Chen distribution, Transmuted exponentiated Chen
distribution and standard two-parameter Chen distribution, the EWC distribution
proved its superiority in statistical modeling for data in the planning and manage-
ment of the use of water resources with minimum values for the Akaike Information
Criteria, the Consistent Information Criteria, the Bayesian Information Criteria, the
Hannan–Quinn Information Criteria, the Cramér–Von Mises, the Anderson–Darling
test, the Kolmogorov–Smirnov (K.S) test and their corresponding p-value.

• In the insurance and actuarial science field, we analyzed the insurance-claims payment
triangle from a U.K. motor non-comprehensive account using the EWC distribution.
These data were characterized as being asymmetric bimodal and negatively skewed.
Although there are many competing distributions in the field of statistical modeling
for data in insurance and actuarial sciences such as standard exponential distribution,
standard Chen distribution, Rayleigh Chen distribution, exponential Chen distribu-
tion, Marshall–Olkin generalized Chen distribution, reduced Burr X Chen distribution,
Weibull Chen distribution, Lomax Chen distribution, standard exponentiated dis-
tribution, Burr X exponentiated Chen distribution, Burr XII Chen distribution and
Log logistic Chen distribution, the EWC distribution proved its superiority in sta-
tistical modeling for data in insurance and actuarial science with minimum values
for the Akaike Information Criteria, the Bayesian Information Criteria, the Cramér–
Von Mises test, the Anderson–Darling test, the Kolmogorov–Smirnov test and their
corresponding p-value.

• The HRF of the new Chen extension can be “decreasing–constant–increasing (bath-
tub)”, “monotonically increasing”, “upside down constant–increasing”, “monotoni-
cally decreasing”, “J shape” and “upside down”. However, the HRF function of the
Chen distribution can only be “monotonically increasing” and a “bathtub (U)” shape.
The density of the EWC distribution accommodates the “unimodal right-skewed”,
“unimodal left-skewed”, “bimodal right-skewed” and “bimodal left-skewed” shapes.
Various HRFs provide an advantage for the EWC distribution against the standard
exponential distribution, standard Chen distribution, Marshall–Olkin generalized
Chen distribution, Rayleigh Chen distribution, exponential Chen distribution, the
standard exponentiated distribution, Burr X exponentiated Chen distribution, Burr
XII Chen distribution, reduced Burr X Chen distribution, Weibull Chen distribution,
Lomax Chen distribution and Log logistic Chen distribution in modeling medical data,
planning and management of the use of water resource data, and insurance-claims
payment triangle data.
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