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Abstract: The goal of the present investigation is to introduce a new class of analytic functions (Kt,q),
defined in the open unit disk, by means of the q-difference operator, which may have symmetric or
assymetric properties, and to establish the relationship between the new defined class and appropriate
subordination. We derived relationships of this class and obtained sufficient conditions for an analytic
function to be Kt,q. Finally, in the concluding section, we have taken the decision to restate the clearly-
proved fact that any attempt to create the rather simple (p, q)-variations of the results, which we
have provided in this paper, will be a rather inconsequential and trivial work, simply because the
added parameter p is obviously redundant.

Keywords: analytic functions; close-to-convex functions; Schwartz’s lemma; differential subordination;
q-derivative

1. Introduction

The exceptional importance and necessity of introducing new subclasses of analytic
functions and investigating their properties, such as convexity, close-to-convexity, distortion
properties, and coefficient estimates, are due to their applications in a wide variety of areas,
including mathematics, physics, mechanics, electrotechnics, and many others. In geometric
function theory, different classes of analytic functions have already been considered and
examined through several views; nowadays, new prospects are destined to encourage
interest among the mathematicians in this area. A bright interest in geometric properties,
such as univalency, starlikeness, convexity, and uniform convexity of several special
functions, such as Bessel, hyper-Bessel, Struve, Wright, Lommel, q-Bessel functions, and
Mittag-Leffler functions has been noticed in recent years. Toklu et al. studied, in [1], the
radii of lemniscate starlikeness, lemniscate convexity, Janowski starlikeness, and Janowski
convexity of a certain normalized hyper-Bessel function. In [2], Aktas et al. obtained several
original results by extending, in a natural way, the features of classical Bessel functions to
hyper-Bessel functions.

The field of q-analysis, in the recent past, has captivated the significant consideration
of mathematicians. An exhaustive research, applying q-analysis in function theory, can be
accessed in [3]. As a result of this expansion in operator theory, several researchers were
inspired, as has been seen in many articles. The q-calculus offers precious instruments
that have been comprehensively utilized for the goal of investigating several classes of
analytic functions. Several geometric features, such as coefficient estimates, distortion
bounds, radii of starlikeness, convexity, and close to convexity, have been considered for
such proposed classes of functions. Ismail et al. [4] were the first to use the q-derivative
operator Dq to investigate a certain q-analogue of the class of starlike functions in open
unit disk. Purohit and Raina [5] have introduced the generalization q-Taylor’s formula
in fractional q-calculus. Mohammed and Darus [6] designed geometric properties and
approximation of q-operators in some subclasses of analytic functions in compact disks.
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By utilizing the concept of the conic domain, Kanas and Raducanu [7] applied the fractional
q-calculus operators in examinations of certain classes of functions. Ramachandran et al. [8]
already used the fractional q-calculus operators in the study of certain bounds for q-starlike
and q-convex functions, with respect to symmetric points. Srivastava et al. [9] established
several general results, concerning the partial sums of meromorphically starlike functions,
defined by means of a certain class of q-derivative operators. Ibrahim et al. [10] established
a new q-differential operator in the open unit disk that characterizes the analytic geometric
representation of the solution of the widely known Beltrami differential equation in a
complex domain. In [11], Nezir et al. have introduced certain subclasses of analytic and
univalent functions in the open unit disk defined by q-derivative. and they studied several
conditions for an analytic and univalent function belonging to these classes. Through the
use of the well-known idea of neighborhoods of analytic functions, Deniz et al. [12] have
researched the (j, δ)-neighborhoods of different subclasses of convex and starlike convex
functions, defined by the q-Ruscheweyh derivative operator. All these, and many other
results, motivate significant further developments on q-calculus and fractional q-calculus
in geometric function theory of complex analysis.

The results contained in this study were inspired by the outstanding results previously
obtained for certain classes of functions analytic in the open disk, making use of differential
operators. In our current investigation, we present a new class of analytic functions,
defined in the open unit disk by means of a new q-difference operator, and we obtain
some interesting results in this generalized class. The relations with this new class, and
the appropriate subordination, is discussed. Among the results investigated for the new
introduced class, we derive the relationship of this class and obtain sufficient conditions
for an analytic function to belong to this class. The Bieberbach-de Branges theorem for the
class Kt,q is also given.

Let A be the class of analytic functions ( f ), defined on the open unit disk U =

{z : |z| < 1} with the normalization f (0) = 0 = f
′
(0)− 1. In other words, functions ( f ) in

A have the power set representation

f (z) = z +
∞

∑
n=2

anzn, z ∈ U . (1)

Let Ω be the family of functions, which are regular in U and satisfying the conditions
φ(0) = 0 and |φ(z)| < 1 for every z ∈ U. Denote, by P , the family of functions p(z) =
1 + p1z + p2z2 + . . . regular in U and such that p(z) is P if, and only if, p(z) ≺ 1+z

1−z ⇐⇒
p(z) = 1+φ(z)

1−φ(z) , for some function φ(z) ∈ Ω and every z ∈ U [13].
Principle of subordination (see [14]): If f and g are two analytic functions in U, we say

that f is subordinate to g, written as f ≺ g, if there exists a Schwarz function w analytic
in U, with w(0) = 0 and |w(z)| < 1, such that f (z) = g(w(z)), for all z ∈ U. In particular,
if the function g is univalent in U, the above subordination is equivalent to f (0) = g(0)
and f (U) ⊂ g(U).

For two functions f (z) = z + ∑∞
n=2 anzn and g(z) = z + ∑∞

n=2 bnzn, analytic in the
open unit disk U, the convolution product (or Hadamard product) of f (z) and g(z), written
as ( f ∗ g)(z), is defined by:

( f ∗ g)(z) = f (z) ∗ g(z) = z +
∞

∑
n=2

anbnzn .

Let C, K, and S∗ signify the common subclass of A, whose members are convex,
close-to-convex, and starlike in the open unit disk U. We also denote, by S∗(α), the class of
starlike functions of order α, 0 ≤ α < 1. The subclasses of K, C, and S∗ were investigated
by several researchers (see [15–22]).
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Gao and Zhou [16] introduced the class Ks of analytic functions, which is a subclass
of the class C. We assert that a function f ∈ A is in the class Ks, if there exists a starlike
function, g ∈ S∗

(
1
2

)
, for which:

Re

(
z2f

′
(z)

g(z)g(−z)

)
> 0, z ∈ U.

In [18], Goyal et al. defined and studied a subclass of analytic functions related to
starlike functions. If f ∈ A, we say that f ∈ Ks(A, B; u, v), if there exists a function g ∈
S∗
(

1
2

)
, such that:

uvz2 f
′
(z)

g(uz)g(vz)
≺ 1 + Az

1 + Bz
, z ∈ U,

( u, v ∈ C∗, |u| ≤ 1, |v| ≤ 1, 1 ≤ B < A ≤ 1).
Recently, Prajapat [20] introduced and studied a new subclass of analytic functions

χt(γ). A function f ∈ A is said to be in the class χt(γ), (|t| ≤ 1, t 6= 0, 0 ≤ γ < 1) if there
exists a function g ∈ S∗

(
1
2

)
, for which:

Re

(
tz2f

′
(z)

g(z)g(tz)

)
> fl, z ∈ U.

In the current article, inspired by the work of Goyal et al. [18] and Prajapat [20], we
introduce a new class of analytic functions (Kt,q), by means of a q-analogue of a difference
operator acting on analytic functions in the unit disk U, and we obtain several results in
this generalized class.

We recall some concepts and notations of q-calculus that will be used throughout
this paper.

The theory of q-analogues or q-extensions of classical formulas and functions, based
on the observation that:

lim
q→1−

1− qn

1− q
= n, q ∈ (0, 1), n ∈ N, (2)

therefore, the number 1−qn

1−q is sometimes called the basic number ([n]q). The q-factorial
([n]q!) is defined by:

[n]q! =
{

[n]q · [n− 1]q · · · [1]q, for n = 1, 2, ...;
1 , for n = 0.

(3)

As q → 1−, [n]q → n, and this is the bookmark of a q-analogue: the limit as q → 1−

recovers the classical object.
In 1908, Jackson introduced the Euler–Jackson q-difference operator.
The q-difference operator

(
Dq f

)
(z), acting on functions f (z) ∈ A, is defined by:

(
Dq f

)
(z) =

f (z)− f (qz)
(1− q)z

, z 6= 0, (4)

and
(

Dq f
)
(0) = f

′
(0), where q ∈ (0, 1). One can see that

(
Dq f

)
(z) → f

′
(z) as q → 1−.

The q-difference operator plays a notable place in the theory of hypergeometric series and
quantum phisics (see [23,24]).

Therefore, for a function f (z) = zn the q-derivative is given by

(
Dq f

)
(z) = Dq(zn) =

1− qn

1− q
· zn−1 = [n]qzn−1, (5)
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then lim
q→1−

(
Dq f

)
(z) = lim

q→1−
[n]qzn−1 = nzn−1 = f

′
(z), where f

′
(z) is the ordinary derivative.

The difference operator helps us to generalize the class of starlike, convex, and close-
to-convex functions analytically. The q-analogues, to the functions classes S∗ and K, are
given as follows.

A function f ∈ A is said to belong to the class S∗q of q-starlike functions if it satisfies:∣∣∣∣∣ z
(

Dq f
)
(z)

f (z)
− 1

1− q

∣∣∣∣∣ ≤ 1
1− q

, z ∈ U. (6)

A function f ∈ A is said to belong to the class Kq of q-close-to-convex functions if
there exists a starlike function g ∈ S∗, such that:∣∣∣∣∣ z

(
Dq f

)
(z)

g(z)
− 1

1− q

∣∣∣∣∣ ≤ 1
1− q

, z ∈ U. (7)

We say that f ∈ Kq, with respect to g.
In [22,25], the authors described and investigated some important properties of func-

tions f in the class Kq. In [26], Y. Polatoglu studied essential description, growth, and
distortion theorem for the class S∗q .

In following, we present a generalization of the class introduced in [20], by using the
q-difference operator.

Definition 1. A function f ∈ A is said to be in the class Kt,q, (|t| ≤ 1, t 6= 0, q ∈ (0, 1)), if there

exists a function g ∈ S∗
(

1
2

)
, for which:∣∣∣∣∣ tz2(Dq f

)
(z)

g(z)g(tz)
− 1

1− q

∣∣∣∣∣ ≤ 1
1− q

, z ∈ U. (8)

We say that f ∈ Kt,q, with respect to g.

We give an example of a function belonging to this class.

Example 1. The function f0(z) = z + z2

1+q belongs to the class Kt,q, with respect to g0(z) =

z, |t| ≤ 1, t 6= 0, q ∈ (0, 1), z ∈ U. Indeed, f0 is analytic in U, with f0(0) = 0 = f
′
0(0)− 1 and

g0 ∈ S∗
(

1
2

)
. We have:∣∣∣∣∣ tz2(Dq f

)
(z)

g(z)g(tz)
− 1

1− q

∣∣∣∣∣ ≤ 1
1− q

, z ∈ U ⇐⇒ |z(1− q)− q| ≤ 1, z ∈ U .

This means that f0 ∈ Kt,q, with respect to g0(z) = z.

2. Main Results

We will prove the first result.

Theorem 1. Let g ∈ S∗
(

1
2

)
, defined by:

g(z) = z +
∞

∑
n=2

bnzn, z ∈ U, (9)

and

G(z) =
g(z)g(tz)

tz
= z +

∞

∑
n=2

cnzn, z ∈ U, (10)
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where cn =
n
∑

j=1
bjbn−j+1tj−1, with b1 = 1, |t| ≤ 1, t 6= 0. Then, G(z) ∈ S∗.

Proof. Since g ∈ S∗
(

1
2

)
, and from the definition of starlike functions, we get Re

(
zg
′
(z)

g(z)

)
>

1
2 , z ∈ U. We note that for z ∈ U, we have |tz| ≤ |z| ≤ 1. So, we obtain Re

(
tzg
′
(tz)

g(tz)

)
> 1

2 .

Therefore, Re
(

zG
′
(z)

G(z)

)
= Re

(
zg
′
(z)

g(z) +
tzg
′
(tz)

g(tz) − 1
)
> 1

2 + 1
2 − 1 = 0.

This proves the conclusion of the theorem.

Remark 1. From theorem 1, (8) is equivalent to
∣∣∣∣ z(Dq f )(z)

G(z) − 1
1−q

∣∣∣∣ ≤ 1
1−q , thus it is obvious that

Kt,q ⊂ Kq.

Theorem 2. Let f ∈ A, given by (1). We have f ∈ Kt,q, with respect to the function g ∈ S∗
(

1
2

)
,

if, and only if:
tz2(Dq f

)
(z)

g(z)g(tz)
≺ 1 + z

1− qz
, z ∈ U. (11)

Proof. Let f (z) be a member of Kt,q. We have:∣∣∣∣∣ tz2(Dq f
)
(z)

g(z)g(tz)
− 1

1− q

∣∣∣∣∣ ≤ 1
1− q

, q ∈ (0, 1), |t| ≤ 1, t 6= 0, z ∈ U,

which is equivalent to:∣∣∣∣∣ tz2(Dq f
)
(z)

g(z)g(tz)
−M

∣∣∣∣∣ ≤ M, M =
1

1− q
, M > 1, |t| ≤ 1, t 6= 0, z ∈ U.

So, the function:

ϕ(z) =
1
M

tz2(Dq f
)
(z)

g(z)g(tz)
− 1,

has modulus at most 1 in the unit disk U. Therefore,

φ(z) =
ϕ(z)− ϕ(0)

1− ϕ(0)ϕ(z)
=

1
M

tz2(Dq f )(z)
g(z)g(tz) −

(
1
M − 1

)
1−

(
1
M − 1

)(
1
M

tz2(Dq f )(z)
g(z)g(tz) − 1

) , (12)

satisfies the conditions φ(0) = 0 and |φ(z)| < 1. By Schwarz Lemma, we get:

φ(z) ≤ z. (13)

From (12) and (13), we obtain:

tz2(Dq f
)
(z)

g(z)g(tz)
=

1 + φ(z)

1−
(

1− 1
M

)
φ(z)

=
1 + φ(z)
1− qφ(z)

. (14)

The equality (14) shows that:

tz2(Dq f
)
(z)

g(z)g(tz)
≺ 1 + z

1− qz
, z ∈ U.
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Conversely, let
tz2(Dq f )(z)

g(z)g(tz) ≺
1+z
1−qz . We have:

tz2(Dq f
)
(z)

g(z)g(tz)
=

1 + φ(z)

1−
(

1− 1
M

)
φ(z)

, M =
1

1− q
, M > 1, |t| ≤ 1, t 6= 0, z ∈ U.

So,
tz2(Dq f

)
(z)

g(z)g(tz)
−M = M

1−M
M + φ(z)

1 + 1−M
M φ(z)

.

On the other hand, the function
(

1−M
M +φ(z)

1+ 1−M
M φ(z)

)
, with φ(0) = 0 and |φ(z)| < 1 maps the

unit circle onto itself, so that:∣∣∣∣∣ tz2(Dq f
)
(z)

g(z)g(tz)
−M

∣∣∣∣∣ =

∣∣∣∣∣M 1−M
M + φ(z)

1 + 1−M
M φ(z)

∣∣∣∣∣ < M⇒∣∣∣∣∣ tz2(Dq f
)
(z)

g(z)g(tz)
− 1

1− q

∣∣∣∣∣ ≤ 1
1− q

, q ∈ (0, 1), |t| ≤ 1, t 6= 0, z ∈ U,

and the proof is now complete.

Remark 2. If we use the notation (10), the relation (11) is equivalent to:

z
(

Dq f
)
(z)

G(z)
≺ 1 + z

1− qz
, q ∈ (0, 1), z ∈ U. (15)

Corollary 1. Let f ∈ Kt,q, with respect to the function g ∈ S∗
(

1
2

)
. Then:

1− r
1 + qr

≤
∣∣∣∣∣ tz2(Dq f

)
(z)

g(z)g(tz)

∣∣∣∣∣ ≤ 1 + r
1− qr

, q ∈ (0, 1), |t| ≤ 1, t 6= 0, z ∈ U. (16)

Proof. The linear transformation ω(z) = 1+z
1−qz maps |z| = r onto the circle with the centre

C
(

1+qr2

1−q2r2 , 0
)

and radius ρ(r) = (1+q)r
1−q2r2 . By using the subordination principle, we obtain:∣∣∣∣∣ tz2(Dq f

)
(z)

g(z)g(tz)
− 1 + qr2

1− q2r2

∣∣∣∣∣ ≤ (1 + q)r
1− q2r2 , q ∈ (0, 1), |t| ≤ 1, t 6= 0, z ∈ U,

which implies the desired result.

Theorem 3. Let f ∈ Kt,q with respect to the function g, f given by (1), g(z) = z +
∞
∑

n=2
bnzn, g ∈

S∗
(

1
2

)
. Then:

k

∑
n=1

∣∣∣∣an
1− qn

1− q
− cn

∣∣∣∣2 ≤ k−1

∑
n=1

∣∣∣∣an
q− qn+1

1− q
+ cn

∣∣∣∣2, (17)

where a1 = 1, cn =
n
∑

j=1
bjbn−j+1tn−j, with b1 = 1, |t| ≤ 1, t 6= 0, q ∈ (0, 1), z ∈ U.

Proof. Using the above theorem and Remark 2, we have:

z
(

Dq f
)
(z)

G(z)
=

1 + φ(z)
1− qφ(z)

⇔ z
(

Dq f
)
(z)− zqφ(z)

(
Dq f

)
(z) =

G(z) + G(z)φ(z) ⇔ z
(

Dq f
)
(z)− G(z) = φ(z)

(
zq
(

Dq f
)
(z) + G(z)

)
.
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From the definition of
(

Dq f
)
(z), we get:

∞

∑
n=1

(
an

1− qn

1− q
− cn

)
zn = φ(z)

∞

∑
n=1

(
an

q− qn+1

1− q
+ cn

)
zn,

where a1 = 1, cn =
n
∑

j=1
bjbn−j+1tn−j, with b1 = 1, |t| ≤ 1, t 6= 0, q ∈ (0, 1), z ∈ U. Thus,

k

∑
n=1

(
an

1− qn

1− q
− cn

)
zn +

∞

∑
n=k+1

dnzn = φ(z)
k−1

∑
n=1

(
an

q− qn+1

1− q
+ cn

)
zn,

where the sum
∞
∑

n=k+1
dnzn is convergent in U. Let z = reiθ . Since |φ(z)| < 1, we deduce that:

k

∑
n=1

∣∣∣∣an
1− qn

1− q
− cn

∣∣∣∣2r2k ≤
k−1

∑
n=1

∣∣∣∣an
q− qn+1

1− q
+ cn

∣∣∣∣2r2k . (18)

Passing to the limit in (18) as r → 1, we obtain the inequality (17), which completes
our proof.

This proof is based on a method introduced by Clunie (see [17]).
If we consider g(z) = z, in theorem 3, we get the following result.

Corollary 2. Let f ∈ Kt,q, with respect to the function g, f given by (1) and g(z) = z,

g ∈ S∗
(

1
2

)
. Then:

k

∑
n=2
|an|2

(
1− qn

1− q

)2
≤ (1 + q)2 +

k−1

∑
n=2
|an|2

(
q− qn+1

1− q

)2

, (19)

where |t| ≤ 1, t 6= 0, q ∈ (0, 1), z ∈ U.

Next, we provide a sufficient condition for functions to belong to the class Kt,q.

Theorem 4. Let f ∈ A, given by (1), g(z) = z+
∞
∑

n=2
bnzn, g∈ S∗

(
1
2

)
, and cn =

n
∑

j=1
bjbn−j+1tzj−1,

with b1 = 1, |t| ≤ 1, t 6= 0. If

∞

∑
n=2

(∣∣∣∣ cn

1− q
− an[n]q

∣∣∣∣+ |cn|
1− q

)
≤ 1, q ∈ (0, 1), z ∈ U, (20)

then f ∈ Kt,q, with respect to g.

Proof. If f ∈ Kt,q, the relation (8) is equivalent to:

q +
∞
∑

n=2
|cn − an(1− qn)|

1−
∞
∑

n=2
|cn|

≤ 1, q ∈ (0, 1), |t| ≤ 1, t 6= 0, z ∈ U. (21)

From (21) we obtain:∣∣∣∣qz +
∞
∑

n=2
(cn + anqn − an)zn

∣∣∣∣∣∣∣∣z + ∞
∑

n=2
cnzn

∣∣∣∣ ≤ 1, q ∈ (0, 1), |t| ≤ 1, t 6= 0, z ∈ U ,
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or, equivalently:∣∣∣∣∣ z
(

Dq f
)
(z)

G(z)
− 1

1− q

∣∣∣∣∣ ≤ 1
1− q

, q ∈ (0, 1), |t| ≤ 1, t 6= 0, z ∈ U. (22)

Therefore, if the function f satisfies the inequality (20), then f ∈ Kt,q, with respect to g.
The proof of our theorem is now complete.

Remark 3. In the particular case, when f0(z) = z + z2

1+q and g0(z) = z, |t| ≤ 1, t 6= 0,
q ∈ (0, 1), z ∈ U, f0 belongs to the class Kt,q, with respect to g0 (see Example 1). However,

∞

∑
n=2

(∣∣∣∣ cn

1− q
− an[n]q

∣∣∣∣+ |cn|
1− q

)
=

1
1− q

[2]q = 1 + q � 1, q ∈ (0, 1).

This show that (20) is only a sufficies condition.

Next, we will prove the Bieberbach-de Branges theorem for the generalized class Kt,q.
We need the following result:

Lemma 1. A function f ∈ Kt,q, with respect to g if, and only if, there exists a function g ∈ S∗
(

1
2

)
,

such that:

|g(z)g(tz) + tz( f (qz)− f (z))|
|g(z)g(tz)| ≤ 1, |t| ≤ 1, t 6= 0, q ∈ (0, 1), z ∈ U. (23)

Proof. The proof can be obtained from:
tz2(Dq f )(z)

g(z)g(tz) = tz( f (qz)− f (z))
g(z)g(tz)(q−1) .

If we use the notation (10), the inequality (23) is equivalent to:

|G(z) + f (qz)− f (z)|
|G(z)| ≤ 1, q ∈ (0, 1), z ∈ U. (24)

We now proceed to state and prove the Bieberbach-de Branges theorem for the gen-
eralized class Kt,q. The Bieberbach-de Branges conjecture for close-to-convex functions
is proved by Reade (see [21]). It states that if f ∈ K, then |an| ≤ n, for all n ≥ 2. The
Bieberbach-de Branges theorem for the class of q-close-to-convex functions is proved
in [22].

Theorem 5. Let f ∈ Kt,q, with respect to g, f given by (1), g(z) = z+
∞
∑

n=2
bnzn, g ∈ S∗

(
1
2

)
, then:

|an| ≤
1− q
1− qn

[
n + (1 + q)

n(n− 1)
2

]
, for all n ≥ 2. (25)

Proof. Since f ∈ Kt,q, by (24), there exists a function w : U →
_

U,w(z) = q +
∞
∑

n=2
wnzn,

such that:
G(z) + f (qz)− f (z) = w(z)G(z). (26)

Evidently, w(0) = q. By assuming a1 = c1 = 1, we have:

∞

∑
n=1

(cn + anqn − an)zn =
∞

∑
n=1

qcnzn +
∞

∑
n=2

(
n−1

∑
j=1

wn−jcj

)
zn, q ∈ (0, 1).
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Equating the coefficients of zn, for n ≥ 2, we obtain:

an(qn − 1) = cn(q− 1) +
n−1

∑
j=1

wn−jcj, q ∈ (0, 1).

It is easy to verify that |wn| ≤ 1−
∣∣w2

0

∣∣ = 1− q2, for all n ≥ 1, q ∈ (0, 1). Since G(z) ∈
S∗, then |cn| ≤ n, for all n ≥ 2. Therefore, we get the bound:

|an| ≤
1− q
1− qn

[
n + (1 + q)

n−1

∑
j=1

j

]
, q ∈ (0, 1), for all n ≥ 2,

which shows that the desired assertion (25) holds.

Corollary 3. Let f ∈ Kt,q, with respect to g = z
1−z ∈ S∗

(
1
2

)
, f given by (1), q ∈ (0, 1), |t| ≤ 1,

t 6= 0, then, for all n ≥ 2, we have:

|an| ≤
1

[n]q

1
1− t

[
(1 + q)(n + 1) +

(1− tn)(t + q)
t− 1

]
, q ∈ (0, 1). (27)

Proof. By rewriting the function g(z) = z
1−z = z +

∞
∑

n=2
zn, we get:

G(z) =
g(z)g(tz)

tz
=

∞

∑
n=1

tn − 1
t− 1

zn, |t| ≤ 1, t 6= 0, z ∈ U.

From (1), we obtain:

∞

∑
n=1

tn − 1
t− 1

zn + (q− 1)z +
∞

∑
n=2

(qn − 1)anzn =

(
q +

∞

∑
n=2

wnzn

)
∞

∑
n=1

.
tn − 1
t− 1

zn.

This is equivalent to:

∞

∑
n=2

(qn − 1)anzn = (1− q)z + (q− 1)
∞

∑
n=1

.
tn − 1
t− 1

zn +
∞

∑
n=1

.
tn − 1
t− 1

zn
∞

∑
n=2

wnzn.

Equating the coefficients of zn, on both sides of (1), for n ≥ 2, we have:

(qn − 1)an = (q− 1).
tn − 1
t− 1

+ w2
tn − 1
t− 1

+ w3
tn−1 − 1

t− 1
+ ... + wn−1.

Since |wn| ≤ 1−
∣∣w2

0

∣∣ = 1− q2, for all n ≥ 1, q ∈ (0, 1), |t| ≤ 1, t 6= 0, we get:

(qn − 1)|an| ≤ (q− 1).
tn − 1
t− 1

+
(

q2 − 1
)( tn − 1

t− 1
+

tn−1 − 1
t− 1

+ . . . + 1
)

,

which implies:

|an| ≤
1− q
1− qn

[
1− tn

1− t
+ (1 + q)

n−1

∑
k=1

1− tn−1

1− t

]
, for n ≥ 2.

Or, equivalently:

|an| ≤
1

[n]q

1
1− t

[
(1 + q)(n + 1) +

(1− tn)(t + q)
t− 1

]
, for n ≥ 2.

This completes the proof.
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If we consider g(z) = z, in theorem 5, we obtain:

Corollary 4. Let f ∈ Kt,q, with respect to g(z) = z ∈ S∗
(

1
2

)
, f given by (1), q ∈ (0, 1), |t| ≤ 1,

t 6= 0, then for all n ≥ 2, we have:

|an| ≤
1 + q
[n]q

, q ∈ (0, 1), for all n ≥ 2. (28)

Remark 4. Our usages in the current investigation potentially own local or non-local symmetric
or asymmetric properties. Our purpose for further investigation is to study the local symmetry
in the new introduced class of analytic functions and also to introduce and study an extention,
symmetric under the interchange of q and q−1.

3. Discussion

By making use the previously introduced q-difference operator, we formulated a new
class of analytic functions (Kt,q) in the unit disk (U), and we obtained some results in this
generalized class. The relationship between the new defined class, and the appropriate
subordination were investigated; additionally, we derived relationships of this class and
obtained sufficient conditions for an analytic function to be Kt,q. The Bieberbach-de
Branges theorem, for the class Kt,q, has also been given.

In the past few decades, applications of q-calculus have been considered and explored
comprehensively. Stimulated by these applications, numerous mathematicians have created
the theory of quantum calculus based on two parameter (p, q)-integer (with 0 < q <
p 5 1). In the newly published survey-cum-expository review article by Srivastava it
was clearly highlighting the triviality and inconsequential nature of the (p, q)-variation
of the traditional q-calculus, the extra parameter (p), being obviously superfluous (see,
for additional information, [27], p. 340). This remark by Srivastava [27] will certainly utilize
any attempt to create the quite simple (p, q)-variations of the outcomes, which we have
provided in this article. These observations have already been addressed in many papers,
as seen in [28–30].

We hope that this work offers a foundation for further study in investigating several
other classes of analytic functions, by using the previously introduced q- difference opera-
tors and their varied geometric properties, such as their associated coefficient estimates,
sufficiency criteria, radii of starlikeness, convexity, and close to convexity, extreme points,
and distortion bounds, which can be considered for such classes of analytic functions.

Author Contributions: Conceptualization, V.-A.C. and L.A.; methodology, L.A.; software, V.-A.C.;
validation, V.-A.C. and L.A.; formal analysis, V.-A.C. and L.A.; investigation, V.-A.C.; resources, L.A.;
data curation, L.A.; writing—original draft preparation, V.-A.C.; writing—review and editing, L.A.;
visualization, V.-A.C.; supervision, L.A.; project administration, L.A.; funding acquisition, V.-A.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Toklu Kara, E.; Radii, O. Problems for Normalized Hyper-Bessel Function. Turk. J. Sci. 2020, 5, 16–22.
2. Aktas, A.; Baricz, S.S. Geometric and monotonic properties of hyper-Bessel functions. Ramanujan J. 2020, 51, 275–295. [CrossRef]
3. Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013.
4. Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [CrossRef]

http://doi.org/10.1007/s11139-018-0105-9
http://dx.doi.org/10.1080/17476939008814407


Symmetry 2021, 13, 2361 11 of 11

5. Sunil, D. Purohit and Ravinder Krishna Raina, Certain subclasses of analytic functions associated with fractional q-calculus
operators. Math. Scand. 2011, 109, 55–70.

6. Aabed, M.; Maslina, D. A generalized operator involving the q hypergeometric function. Mat. Vesnik 2013, 65, 454–465.
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