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Abstract: Investigation of the risk factors associated with cardiovascular disease (CVD) plays an
important part in the prevention and treatment of CVD. This study investigated whether alteration
in the multi-scale time irreversibility of sleeping heart rate variability (HRV) was a risk factor for
cardiovascular events. The D-value, based on analysis of multi-scale increments in HRV series, was
used as the measurement of time irreversibility. Eighty-four subjects from an open-access database
(i.e., the Sleep Heart Health Study) were included in this study. None of them had any CVD history
at baseline; 42 subjects had cardiovascular events within 1 year after baseline polysomnography and
were classed as the CVD group, and the other 42 subjects in the non-CVD group were age matched
with those in the CVD group and had no cardiovascular events during the 15-year follow-up period.
We compared D-values of sleeping HRV between the CVD and non-CVD groups and found that the
D-values of the CVD group were significantly lower than those of the non-CVD group on all 10 scales,
even after adjusting for gender and body mass index. Moreover, we investigated the performance of
a machine learning model to classify CVD and non-CVD subjects. The model, which was fed with a
feature space based on the D-values on 10 scales and trained by a random forest algorithm, achieved
an accuracy of 80.8% and a positive prediction rate of 86.7%. These results suggest that the decreased
time irreversibility of sleeping HRV is an independent predictor of cardiovascular events that could
be used to assist the intelligent prediction of cardiovascular events.

Keywords: cardiovascular disease; heart rate variability; irreversibility; sleeping; random forest

1. Introduction

Cardiovascular disease (CVD) has become the most common chronic disease [1].
The early and accurate prediction of CVD risk is thus of vital importance for the timely
prevention and treatment of CVD events. The assessment of CVD risk and prediction of
CVD events have been topics of great interest in recent decades. Multiple cardiovascular
risk assessment systems, including the Framingham risk score, have been proposed and
applied in clinical diagnosis. However, it remains a challenge to improve the accuracy
of methods to identify the risk of CVD events automatically. Thus, exploring effective
biomarkers of CVD events is of great significance.

As a reflection of the cardiovascular dynamical system, electrocardiograms (ECGs)
contain substantial information associated with the physiological and pathological activity
of the heart [2]. Heart rate variability (HRV), which is defined as the variation in the
continuous interval of heart beats, can be extracted from ECG signals. It is widely accepted
that HRV is controlled by a variety of factors, including autonomic modulation, body fluids,
and blood pressure. As a non-invasive method, HRV analysis has been used in numerous
studies to investigate the alterations in cardiovascular dynamics related to CVD [3,4].

It has been established and is now generally accepted that the cardiovascular system
is chaotic and nonlinear [5], as it is coordinated and controlled by many factors; these
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include the autonomic nervous system (ANS), which is composed of the sympathetic and
parasympathetic nervous systems. Time irreversibility is an important nonlinear aspect
and fundamental property of the cardiovascular system [6]. If a dynamic system is time
irreversible, it can return to its past state when time is reversed. In statistics, a time series
is generally regarded as time irreversible only when its statistical characteristics will not
change after time is reversed [7].

In recent decades, time irreversibility analysis has been widely applied in many re-
search fields including dynamics, finance, and physiological signals [8–12]. Cammarota et al.
proposed that the HRV signal in healthy people was time irreversible [13], whereas
Costa et al. reported that the time irreversibility of HRV signals decreased with aging
and with the occurrence of CVD [14]. However, despite studies showing that HRV signals
in healthy controls were time irreversible and became more symmetrical with the emer-
gence of diseases, especially CVD, it has remained unclear whether the time irreversibility
of HRV has predictive value for cardiovascular events.

Almost all previous studies on time irreversibility analysis focused on 24 h HRV
signals [13,14] or signals that had been sampled during the daytime when the participants
were awake [15,16]. However, about a third of a person’s lifetime is spent in sleep. Numer-
ous studies have shown that sleep has important roles in human attention [17,18], working
memory [19], visual learning [20], mood regulation [21], cognitive function [22,23], etc.
Furthermore, the sleep–wake cycle also affects the regulation of the cardiovascular system
by the ANS [24,25]. As demonstrated by Morris et al. and Neufeld et al., circadian mis-
alignment increases CVD risk factors in humans [26], and sleep deprivation may increase
the risk of CVD [27]. In addition, alterations in HRV during sleep were found to be related
to the risk of CVD. Nakayama et al. revealed that increased activity during the first hour of
sleep in patients with cardiovascular risk factors increased HRV [28]. Eguchi et al. showed
that HRV during sleep was closely associated with an increased risk of CVD in people
with type 2 diabetes [29]. Ulmer et al. demonstrated that the high-frequency component
of HRV in sleep, which reflects the regulatory effect of parasympathetic nerves on the
cardiovascular system, is an independent predictor of CVD [30]. Zhang et al. demonstrated
that sleep heart rate variability assists the automatic prediction of long-term cardiovascular
outcomes [31]. However, most of these studies only measured HRV based on time and
frequency domain analyses, which may not be sufficient to determine the characteristics of
the complex dynamics of the chaotic and nonlinear cardiovascular system [32].

Therefore, based on a nonlinear analysis method (i.e., time irreversibility analysis),
this study evaluated the differences in HRV time irreversibility during sleep in participants
who were healthy at baseline but suffered from cardiovascular events in the subsequent
year (i.e., the CVD group) and in those who experienced no cardiovascular events during
the 15-year follow-up period (i.e., the non-CVD group).We aimed to explore whether the
change in HRV time irreversibility during sleep had predictive value for the occurrence of
cardiovascular events and could thus contribute to the improvement and development of
cardiovascular risk assessment systems.

2. Materials and Methods
2.1. Participants

The research data for this study were downloaded from a public database (the Sleep
Heart Health Study) [33]. All participants underwent baseline polysomnography (PSG)
for sleep monitoring between 1995 and 1998. After the baseline PSG monitoring, all the
participants were followed up for 15 years, and information about cardiovascular events
including coronary heart disease, angina, myocardial infarction, heart failure, and stroke
was recorded.

Among the multiple signals recorded in PSG monitoring, there is one ECG channel
with a sampling rate of 125 Hz. The R-wave peak of the ECG was identified using the
Pan–Tompkins method [34], and the original RR intervals were then calculated. Moreover,
to obtain the final HRV series for further analysis, artifacts in the original RR intervals were



Symmetry 2021, 13, 2424 3 of 11

detected according to the following criteria: (1) less than 300 ms or 0.8 times the median
RR intervals, or (2) larger than 1700 ms or 1.2 times the median RR intervals.

In this study, participants who experienced emergence of cardiovascular events during
the following year after baseline PSG monitoring were selected as the CVD group. Each
subject was required to have no baseline CVD history and a HRV series longer than
10,000 points after sleep onset, with a proportion of artifacts less than 10%. In this way,
42 participants were selected for the CVD group. They comprised 24 males and 18 females,
aged 70 ± 9 years (mean ± standard deviation, SD), with a body mass index (BMI) of
29.28 ± 4.69 (mean ± SD) kg/m2. The occurrence time of the first cardiovascular event
among these participants was 221 ± 114 days (mean ± SD) after baseline PSG recording.
Moreover, 42 aged-matched healthy controls with neither CVD history at baseline nor
experience of any cardiovascular events during the 15-year follow-up period were included
as the non-CVD group. There were 17 males and 25 females in the non-CVD group, with
BMI values of 29.01 ± 4.50 kg/m2 (mean ± SD). In line with the CVD group, for each
participant in the non-CVD group, the HRV series during sleep was required to be longer
than 10,000 points, with a proportion of artifacts less than 10%.

2.2. Multi-Scale Time Irreversibility Analysis

For each participant, an HRV segment of 10,000 data points (after artifact removal) during
sleep was used for time irreversibility analysis. Given an HRV time series {xi|i = 1, 2, . . . , N}
with N data points, a coarse-grained series

{
yτ

j

∣∣∣j = 1, 2, . . . ,
⌊

N
τ

⌋}
was firstly applied

according to Formula (1) [35].

yτ
j =

1
τ ∑jτ

i=(j−1)τ+1 xi , 1 ≤ j ≤
⌊

N
τ

⌋
(1)

Here, the integer τ represents the scale factor for coarse graining, and
⌊

N
τ

⌋
means

to round down the ratio of N and τ. When τ equals 1, the coarse-grained time series is
actually the original time series {xi}.

For each coarse-grained series
{

yτ
j

}
, differences in every two successive values were

then calculated and denoted as {∆RRτ
k | 1 ≤ k ≤

⌊
N
τ

⌋
− 1} [36], as shown in Formula (2).

∆RRτ
k = yτ

k+1 − yτ
k , 1 ≤ k ≤

⌊
N
τ

⌋
− 1 (2)

In { ∆RRτ
k
}

, the components greater than 0 were denoted as { ∆RR+}, while the
components less than 0 were denoted as { ∆RR−}. According to Hou et al. [36], two
measurements regarding the time irreversibility of

{
yτ

j

}
could then be calculated according

to Formulas (3) and (4).

P(τ) =
N(∆RR−)

N(∆RR−) + N(∆RR+)
× 100% (3)

G(τ) =
∑

N(∆RR+)
i=1 ∆RR+(i)2

∑
N(∆RR+)
i=1 ∆RR+(i)2 + ∑

N(∆RR−)
i=1 ∆RR−(i)2

× 100% (4)

In Formulas (3) and (4), N
(
∆RR+

)
and N

(
∆RR−

)
represent the numbers of compo-

nents in
{

∆RR+
}

and
{

∆RR−
}

, respectively. The time irreversibility of the HRV series
could thus be quantified by calculating the Euclidean distance of (P(τ), G(τ)) to the
symmetric center (50%, 50%), as shown in Formula (5) [36]:

Dτ =

√
(P(τ)− 50%)2 + (G(τ)− 50%)2 (5)
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In this way, we could obtain Dτ when different scale factors were considered, such
as τ ranging from 1 to 10 in steps of 1.

In this way, Dτ broke through the limitation that the measurement of time irreversibil-
ity is limited to a two-dimensional state space and reflects the average condition of the
asymmetry of the multi-dimensional vector with respect to the main diagonal on multiple
projection planes [37]. A larger value of Dτ corresponded to more asymmetric values when
reading the HRV series from both forward and backward directions. Thus, the metric Dτ

was proposed and demonstrated as a measurement of time irreversibility of the HRV
series [36].

In this study, for each participant, Dτ (τ ranging from 1 to 10 in steps of 1) was
calculated on the corresponding HRV segment of data points. The corresponding values
of Dτ were denoted as D1, D2, . . . , and D10. Moreover, the average of these D-values was
also computed and denoted as Dmean.

2.3. Conventional HRV Analysis

In this study, we also performed conventional HRV analysis on each HRV segment
with 10,000 data points to explore whether the proposed multi-scale time irreversibility
analysis outperformed the conventional approach.

Here, we used four well-established HRV indices derived from time domain, frequency
domain, and nonlinear complexity analyses, i.e., the standard deviation of all RR intervals
(SDNN), the power in the high-frequency (0.15–0.4 Hz) range (HF), the power in the
low-frequency (0.04–0.15 Hz) range in normalized units (LFnorm) [38], and the multi-
scale sample entropy (MSE) [35]. HF and LFnorm were calculated on each 5 min HRV
segment [38] and then averaged for the whole point segment. Similar to the proposed multi-
scale time irreversibility analysis, the calculation of MSE was conducted on 10 time scales
of each point segment. For each scale, SE was computed with an embedding dimension
of 2 and a tolerance of 2 * SD (the SD of the point segment) [35]. Then, the average of these
SE values was computed and denoted by SEmean.

2.4. Classification of CVD and Non-CVD Participants by Random Forest (RF) Algorithm

To further investigate the capability of the time irreversibility of sleep HRV for CVD
prediction, we used machine learning technology to classify CVD and non-CVD partici-
pants based on their D-values over 10 scales. The RF algorithm was chosen as it is widely
used in classification tasks [39]. RF is a machine learning method based on the decision
tree (DT) and bagging ensemble learning algorithm proposed by Leo Breiman and Adele
Cutler in 2001 [40].

2.4.1. The Basic Principle of DT

DT is a process of classifying samples in a training set based on a series of decision
rules, including classification DT and regression DT. The core idea behind the construction
of a classification DT is to recursively divide the training samples into different subsets
from the DT’s root according to the value of a certain feature, until all sample categories in
the subset at a node are the same or the features of the samples have been exhausted. For
example, Figure 1 shows the decision-making process used to screen participants for the
CVD group in this study. Four features were considered, i.e., whether there was a baseline
CVD history or not, whether the individual suffered from cardiovascular events during the
following year or not, whether the HRV series was longer than 10,000 points or not, and
whether the proportion of artifacts was less than 10% or not.

2.4.2. Bagging Ensemble Learning Algorithm

Bagging is a parallel ensemble learning method proposed by Breiman et al. in 1996 [41].
Its basic principle is shown in Figure 2. With the help of the bagging algorithm, a stronger
learner can be established by the combination of a series of weaker learners. Each weaker
learner is trained independently using a subset of all the available samples based on
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bootstrap sampling. For classification tasks, a simple voting strategy is usually used to
obtain the stronger learner in the combination stage [42].

Figure 1. An example of a decision-making process based on a decision tree. The decision “included” or “excluded” was
made according to whether the conditions (in the rectangles) were met.

Figure 2. Schematic diagram of the bagging ensemble learning algorithm. Bagging extracts m samples from the original
sample set but ensures different content each time by bootstrapping and carries out T rounds of extraction to obtain
T independent training sets.
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2.4.3. RF Algorithm

RF is a variant of the bagging ensemble learning algorithm that adopts DTs as the
weak learners and introduces random feature selection into the training process of DTs.
Compared with a single DT, RF usually shows better generalization ability. The pseudo-
code of RF is shown in Algorithm 1.

Algorithm 1: Random forest

Input: original sample set D; number of decision tree T
Output: strong learner G

1 For t = 1, 2, . . . , T
2 request size-N’ data Dt by bootstrapping with D;
3 obtain tree gt with random feature selection;
4 return G = Uniform({gt });

As a bagging ensemble learning algorithm, the RF algorithm generates T training sets
by bootstrapping and then constructs a DT for each training set. Moreover, for each DT, a
subset of features should also be randomly selected from all the features. That is, each DT
in RF is trained with both independent samples and features.

In this study, the RF model was used to assign each participant to the CVD group or
the non-CVD group. For each subject, there were ten features, i.e., the D-values on 10 scales
(D1, D2, . . . , and D10), which were combined to form a feature vector for the participant
and then fed into the RF classifiers. To achieve better generalization, five-fold cross-
validation was used in the model selection and training processes. Furthermore, two
hyperparameters of the RF algorithm, i.e., the number of DTs (denoted as n_estimators)
and the maximum depth of the tree (denoted as max_depth), were adjusted by grid search
in Python 3.6 with the help of the sklearn library [40].

2.5. Statistical Analysis

To investigate the difference in the time irreversibility of sleep HRV between the CVD
and non-CVD groups, we compared the D-values obtained on different scales for both
groups. If the D-values followed a normal distribution, a t-test was used; otherwise, the
Wilcoxon rank test was used. Moreover, logistic regression analysis was used to explore
whether the D-value was an independent predictor of cardiovascular events after adjusting
for the effects of gender and BMI, as studies have shown that women have a lower risk of
CVD than men [43], and that obesity is a risk factor for CVD [44]. A value of p < 0.05 was
considered to indicate a significant difference.

For comparison of the proposed multi-scale time irreversibility analysis with con-
ventional HRV analysis, the variance inflation factor (VIF) was first used to check the
multicollinearity of the HRV indices, and the area under the receiver operating characteris-
tic (ROC) curve (AUC) was used as the measurement of the ability to discriminate between
the CVD and non-CVD groups.

All the statistical analyses were performed using the SAS9.4 software (SAS Institute
Inc., Cary, NC, USA).

3. Results

For each subject, time irreversibility analysis and conventional analysis were applied
to its HRV time series with data points, which was obtained after the participant fell asleep
in the night and preprocessed with artifact removal. D1, D2, . . . , and D10 were calculated
and compared between the CVD and non-CVD groups. As shown in Table 1 and Figure 3,
compared with the non-CVD group, all the D-values significantly decreased in the CVD
group (p < 0.05), indicating a weakening of time irreversibility with a higher risk of CVD.
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Table 1. Comparison of D-value between non-CVD group and CVD group on 1–10 scale.

Variable Non-CVD Group CVD Group p

D1, M [Q1, Q3] 9.52 [7.92, 11.65] 6.53 [2.6, 8.83] <0.001
D2, M [Q1, Q3] 7.13 [4.99, 8.59] 3.46 [1.92, 6.12] <0.001
D3, Mean ± SD 7.43 ± 3.08 4.15 ± 2.54 <0.001
D4, Mean ± SD 7.6 ± 3.32 4.12 ± 2.83 <0.001
D5, M [Q1, Q3] 7.1 [5.75, 9.07] 3.17 [2.13, 5.8] <0.001
D6, Mean ± SD 7.02 ± 3.47 4.07 ± 2.73 <0.001
D7, Mean ± SD 6.61 ± 3.25 4.21 ± 2.47 <0.001
D8, Mean ± SD 6.29 ± 3.09 3.99 ± 2.53 <0.001
D9, M [Q1, Q3] 5.93 [3.65, 8.01] 3.01 [1.84, 4.87] <0.001
D10, M [Q1, Q3] 5.84 [3.72, 7.22] 3.2 [2.32, 5.78] 0.002

Figure 3. Comparison of D-values (mean ± standard error) between non-CVD group and CVD
group on 1–10 scale. * Significant difference in D-value between non-CVD group and CVD group
(paired t-test, p < 0.05) on the corresponding scale.

Moreover, logistic regression models were used to test whether the differences in
D-values between the two groups were associated with gender or BMI. As shown in
Table 2, a significant reduction in the D-value remained an independent predictor of
cardiovascular events after correction for gender and BMI (p < 0.05).

Table 2. Predictive value of time irreversibility to cardiovascular events by logistic regression analysis.

Variable β SE OR (95% CI) p

D1 −0.297 0.079 0.743 (0.636–0.868) <0.001
D2 −0.316 0.090 0.729 (0.611–0.870) <0.001
D3 −0.451 0.111 0.637 (0.513–0.791) <0.001
D4 −0.379 0.096 0.685 (0.567–0.826) <0.001
D5 −0.365 0.093 0.694 (0.578–0.833) <0.001
D6 −0.320 0.091 0.726 (0.607–0.868) <0.001
D7 −0.291 0.093 0.747 (0.623–0.896) 0.002
D8 −0.285 0.091 0.752 (0.629–0.899) 0.002
D9 −0.316 0.100 0.729 (0.600–0.886) 0.002

D10 −0.282 0.101 0.754 (0.619–0.919) 0.005

Furthermore, we used the RF algorithm to classify CVD and non-CVD subjects auto-
matically using a feature space constructed based on the values of D1, D2, . . . , and D10.
The results of the grid search and five-fold cross-validation show that the highest perfor-
mance (i.e., accuracy of 80.8%, specificity of 81.3%, sensitivity of 80.0%, negative prediction
rate of 72.7%, and positive prediction rate of 86.7%) was achieved when max_depth was
set to 2 and n_estimators was set to 20.
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Finally, we compared the ability of the various HRV indices, i.e., Dmean, SDNN, HF,
LFnorm, and SEmean, to discriminate between CVD and non-CVD participants (Figure 4).
The multicollinearity test showed no collinearity among these indices (VIF less than 10), and
the highest AUC (0.7948) was achieved by Dmean. These results suggest that the proposed
method could supplement conventional HRV analysis and might be more sensitive to the
pathological dynamics of CVD than conventional HRV indices. Moreover, we calculated
the AUC for D1 to separate CVD and non-CVD participants. The result (0.744) was also
lower than that achieved with Dmean.

Figure 4. ROC curves of the HRV indices used to discriminate between CVD and non-CVD partici-
pants. The AUC of the ROC curves of these HRV indices reflects their sensitivity in capturing the
pathological dynamics of CVD.

4. Conclusions and Discussion

In this study, we investigated the role of the time irreversibility of sleep HRV in
the prediction of CVD events. Forty-two participants who were healthy at baseline but
suffered from cardiovascular events in the subsequent year were included as potential
CVD patients. Compared with those participants who were healthy at baseline and had
no cardiovascular events in the following 15 years, the results show the following: (1) the
time irreversibility of the cardiovascular system during sleep was significantly reduced
in people at risk of CVD, regardless of the scale used; (2) the significant decrease in time
irreversibility remained after adjusting for gender and BMI; (3) the machine learning
model based on the RF algorithm showed an accuracy of 80.8% in predicting whether
the participant would have CVD events within 1 year by using features derived from
the proposed time irreversibility analysis, i.e., D1, D2, . . . , and D10; (4) Dmean, i.e., the
averaged time irreversibility on all 10 scales, outperformed several conventional HRV
indices as well as D1 in distinguishing potential CVD patients. These findings suggest
that the proposed method might be a more sensitive means of capturing alterations in
cardiovascular dynamics in CVD patients than conventional HRV analysis. Moreover, the
measurements of time irreversibility used here (i.e., D1, D2, . . . , and D10) were potential
predictors of cardiovascular events.

The human body is a complex physiological system. In order to maintain the sta-
bility of the body’s internal environment, the ANS regulates the heart through various
cardiovascular reflexes [45]. These reflexes often act on the heart’s dynamics system with
different time delays, leading to complex fluctuations in the heart rate on multiple time
scales. This is the main reason why multi-scale analysis has been widely used in the study
of physiological signals [35]. In this work, we calculated the D-values of 1–10 scales to
explore the predictive value of time irreversibility analysis for cardiovascular events. Our
results show that the AUC of Dmean was higher than that of D1, indicating that multi-scale
analysis was more informative than only focusing on the original time scale in cardiac
dynamics research.
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Since the 1990s, nonlinear concepts and research methods have been widely used in
the analysis of HRV time series. Time irreversibility analysis, a nonlinear method, has also
been used successfully [13,14,46,47]. Previous studies have shown that time irreversibility
was reduced among CVD patients, especially in those suffering with heart failure [14]. Our
work extends the results of previous studies to demonstrate that the decrease in the time
irreversibility of sleep HRV may be a potential biomarker for CVD at a very early stage.
Furthermore, our results indicate that time irreversibility analysis might be associated
with some aspect of the underlying mechanism of the cardiovascular system that can be
captured by nonlinear complexity analysis as well as conventional time and frequency
domain analyses.

Owing to the limited sample size, we only used the RF algorithm to construct a
machine learning model to distinguish CVD and non-CVD participants. The model’s
classification was solely based on the D-values. Although the model was simple, it achieved
an accuracy of 80.8% and a positive prediction rate of 86.7%, indicating its promise for
applications in the early prediction of cardiovascular events to enable timely intervention.
For example, it would be informative for clinical staff to include the proposed biomarker
in cardiovascular risk assessment systems. Moreover, people engaged in the construction
of CVD prediction models could use this biomarker as one characteristic input of their
model. In addition, with the development of wearable devices, e.g., smart watches, HRV
data obtained during sleep are becoming increasingly accessible. These wearable devices
could use this biomarker to monitor the user’s cardiovascular health.

In conclusion, in this study, we demonstrated the predictive value of the multi-scale
time irreversibility of sleep HRV for CVD events. However, there were still some limitations.
Considering the influence of sample quantity on the accuracy of models, it would be
necessary to confirm the results of this study in a wider range of subjects. Moreover,
adverse events such as snoring and sleep apnea could interfere with ECG, but information
about such events was not available in the database. Therefore, future efforts could
also focus on exploring the effects of these adverse events on the time irreversibility of
sleep HRV.
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