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Abstract: With the rapid development of information technology, the transmission of information
has become convenient. In order to prevent the leakage of information, information security should
be valued. Therefore, the data hiding technique has become a popular solution. The reversible data
hiding technique (RDH) in particular uses symmetric encoding and decoding algorithms to embed
the data into the cover carrier. Not only can the secret data be transmitted without being detected
and retrieved completely, but the cover carrier also can be recovered without distortion. Moreover,
the encryption technique can protect the carrier and the hidden data. However, the encrypted carrier
is a form of ciphertext, which has a strong probability to attract the attention of potential attackers.
Thus, this paper uses the generative adversarial networks (GAN) to generate meaningful encrypted
images for RDH. A four-stage network architecture is designed for the experiment, including the
hiding network, the encryption/decryption network, the extractor, and the recovery network. In the
hiding network, the secret data are embedded into the cover image through residual learning. In the
encryption/decryption network, the cover image is encrypted into a meaningful image, called the
marked image, through GMEI-GAN, and then the marked image is restored to the decrypted image
via the same architecture. In the extractor, 100% of the secret data are extracted through the residual
learning framework, same as the hiding network. Lastly, in the recovery network, the cover image
is reconstructed with the decrypted image and the retrieved secret data through the convolutional
neural network. The experimental results show that using the PSNR/SSIM as the criteria, the stego
image reaches 45.09 dB/0.9936 and the marked image achieves 38.57 dB/0.9654. The proposed
method not only increases the embedding capacity but also maintains high image quality in the stego
images and marked images.

Keywords: reversible data hiding; symmetric encryption; generative adversarial networks; residual
learning; convolutional neural network

1. Introduction

With the booming development of information technology, people can easily transmit
and receive information on the Internet. Although the transmission of information over the
Internet has brought about a fast and convenient life for us, it has also given rise to concern
about information security. Therefore, the issue of information security has been under the
spotlight recently. The data hiding technique (DH) is the solution to the above problems.
DH [1] uses multimedia as a cover carrier to hide secret data directly in the cover carrier for
transmission to implement secure information transmission. The data hiding techniques
can be divided into irreversible (IRD) and reversible (RDH) [2]. Reversible data hiding
(RDH) techniques [3–9] not only ensure the secure transmission of information but also
restore the hidden secret data and use the multimedia as a cover carrier. The framework of
reversible data hiding is shown in Figure 1.
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In the traditional RDH methods, the most common hiding techniques fall within three
categories: lossless compression [3,4], difference expansion (DE) [5,6], and histogram shift-
ing [7,8]. The lossless compression technique obtains partial space through compressing
the image and uses partial space to embed the data. The performance of this method
depends on the lossless compression algorithm and the selection of images. Tian (2003) [5]
proposed the DE method, which calculates the difference between pixel values, expands
the difference value by two times, and then embeds the secret data into the difference
value. Thodi et al. (2004) [6] proposed the prediction error expansion (PEE) method, which
calculates the different values between pixel and predicted values and then embeds the
secret data into the different values. Ni et al. (2006) [7] proposed histogram shifting, using
a statistical method to generate a histogram of the pixel values. In the histogram, the place
with the highest number of the pixel values is called peak point, whereas the place with
the lowest number of the pixel values is called zero point. The shift direction is determined
by the relative positions of the peak point and zero point. After shifting, the secret data are
embedded in the pixel values.

In RDH, images are encrypted to enhance confidentiality [10–14]. There are two categories
of encryption: VRAE (Vacating Room After Encryption) [10,11] and RRBE (Reserving Room
Before Encryption) [12,13], as shown in Figure 2. Zhang et al. (2011) [10] proposed the
VRAE framework, which uses the partial spatial correlation of the original image to embed
data; however, the low spatial correlation of the original image leads to the limited embed-
ding capacity, and some algorithms are irreversible and inseparable. Ma et al. (2013) [13]
proposed the RRBE method, which reserves the room based on the pixel correlation of the
original image, encrypts the image, and then embeds the secret data into the reserving
room. RRBE uses the complete pixel correlation of the original image, which improves the
embedding capacity of VRAE and makes it achieve RDH easier. Zhang et al. [14] (2016)
proposed a framework, Reversible Image Transformation (RIT), different from the previous
two frameworks. One image is encrypted into another plaintext image by block pairing
and block transformation, and then the encrypted image is embedded with secret data
through algorithms. This method solves the problem that most of the encrypted images
are in the form of ciphertext and implements reversible data hiding techniques.

Reversible data hiding in encrypted images (RDH-EI) improves the confidentiality
of secret information and the security of transmission, which achieves an effect of double
protection. It can be used in the fields which consider security necessary, such as medi-
cal and military information transmission. However, the encrypted carrier is a form of
ciphertext, which has a strong probability to attract the attention of potential attackers. The
attacker’s method is mainly to use the symmetry of encoder and decoder to find pixels
with hidden data. Thus, to deal with the issue of symmetry of encoder and decoder in
RDH-EI, an asymmetric scheme is desired. In other words, the principle of the encoder
should be different from that of the decoder. Besides, as shown in Figure 2, we can find that
both marked images produced by VRAE and RRBE frameworks are meaningless, i.e., the
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images look like a noise image. This kind of image will inevitably make the attackers
realize that there may be information hidden in it.
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In recent years, with the rapid development of artificial intelligence (AI) and ma-
chine learning, computers can not only solve complex computational problems through
algorithms but also learn image features through a large amount of data. Since the con-
volutional neural network (CNN) is designed for feature extraction from image, a huge
number of works [15–20] utilize the CNN for dealing with the problem of image process-
ing. Besides, the generative adversarial network (GAN) [21] is designed for generating
meaningful data and inherently can produce encoder and decoder by different principles.
Therefore, the proposed method implements RDH based on CNN and to generate the
meaningful encrypted image using the GAN, which makes the secret data have double
protection. To summarize, the contributions of the proposed method are as follows:

(1) Hiding the secret message into the cover image by using residual block [22], so that
the secret information is distributed in the cover image and cannot be discovered.

(2) Using GMEI-GAN to encrypt the stego image into another meaningful image, so that
secret messages have double protection.

(3) In extractor, the network of last layer uses the Sigmoid activation function to extract
the secret message completely.

(4) In the recovery network, using fully extracted secret message and decrypted image as
input, the network does not use pooling and dropout, so that the marked image can
be recovered to the cover image.

2. Related Works

As mentioned earlier, most digital image steganography [23,24] utilizes conventional
image processing techniques so that the principle of the encoder is the same as that of the
decoder. For example, Sahu et al. [23] proposed a multi-directional pixel value differencing
and modulus function (MDPVDMF), in which the original image is partitioned into various
blocks having 2 × 2 pixels. Meanwhile, three directions of a 2 × 2 pixel block are exploited
to identify the optimal direction in terms of embedding capacity and imperceptibility. The
pixel value differencing strategy is used to identify the embedding capacity of each block.
Then, pixel readjustment strategy based on modulus function is applied to achieve better
imperceptibility. Such a pixel-wise strategy makes it hard to produce a meaningful stego
image. As a result, we focus on the deep-learning-based method which can produce a
meaningful stego image.
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2.1. Generative Reversible Data Hiding by Image to Image Translation via GANs

Zhang et al. [25] proposed a generative reversible data hiding technique (GRDH) based
on multiple GAN models, which differs from the previous RDH model. The cover image
in this paper was generated by noise vector through the deep convolutional generative
adversarial network (DCGAN) [26], in which the noise vector was mapped from secret
data. Therefore, the cover image would directly contain the secret data. Then, the cover
image was transformed into the marked image through CycleGAN [27]. During the
recovery, a new extractor was trained to extract the secret data, which means the data
hiding framework is reversible. The proposed GRDH was demonstrated to be feasible
through the experiment. Figure 3 shows the flowchart of GRDH, divided into three stages
for training in the following paragraphs.
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The first stage is the training of CycleGAN, which consists of two symmetric GAN
models. The two GAN models share two generators, and each GAN model contains a
discriminator, so there are two generators and discriminators in a CycleGAN model. In
this phase, CycleGAN is used to train a generator that generates marked images and a
restorer F that generates recovered images. As displayed in Figure 4, the cover images and
marked images are regarded as two different collections. Images in each collection must
be the same type, such as zebra and horse, and the transformation of the two images is
achieved by two generators.

The second stage is the training of DCGAN. The purpose is to train the generator
to generate the cover image from the noise vector, and the secret data will be mapped to
the noise vector in advance, so that the secret data will be hidden in the cover image in
this stage. DCGAN uses the convolutional neural network to design the generator and
the discriminator, and the powerful feature extraction ability of the convolutional neural
network enhances the learning ability of the GAN for images. Therefore, in this stage, the
generator and the discriminator are trained against each other, so that the cover image
generated by the noise is more like the real image in the dataset. Figure 5 shows the training
framework of DCGAN.
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The third stage is the training of the extractor, based on CNN, and a new extractor,
E, is trained. The goal is to extract the noise vector from the marked image before it is
considered to achieve reversible data hiding with integrity. The extractor architecture
is composed of four convolutional layers and one fully connected layer, and each layer
applies activation function Leaky ReLU and batch normalization (BN) [28]; the architecture
is illustrated in Figure 6.
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After training, the output is the same size as the noise vector, and the extractor training
loss function is defined as follows:

L(E) =
n

∑
i=1

(zi − E(G1(G2(zi))))
2 (1)

The extractor is trained to be close to the input noise using the loss function. Then,
the secret data are converted back to the secret data by the same mapping method, which
divides the secret data into several groups, and each group contains k bits. For instance,
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when k = 3, {001100010} is divided into {001}, {100}, {010}, then each group is mapped
to a given interval of noise vector r according to the following equation.

r = random
(

m
2k−1 − 1 + δ,

m + 1
2k−1 − 1− δ

)
(2)

where m denotes the decimal value of the mapping group, and δ indicates the interval
between delimitations, e.g., k = 3, and δ = 0.001, mapping every 3 secret bits into a noise
vector with values between [−1, 1]. By this method of transformation, each group of secret
data can be mapped to a certain interval of noise vector values, so there is a deviation
tolerance to ensure the correct rate of secret data retrieval.

Zhang et al. [25] trained different GAN models for image transformation in CycleGAN,
similar to image encryption and decryption in RDH. The secret data were mapped to the
noise vector to generate the image by DCGAN so that the secret data were embedded into
the image. Finally, the extractor was trained to extract the secret data and recover the cover
image. The authors used deep learning to implement reversible data hiding.

2.2. Hiding Images in Plain Sight: Deep Steganography

Baluja [29] proposed the image steganography based on CNN to hide the color image
as secret data and started the technique of hiding RGB image with an image. The author
implemented the steganography in three networks, respectively: the Prep Network, the
Hiding Network, and the Reveal Network, as shown in Figure 7. In each network, the image
is processed by different sizes of the kernel to obtain the feature map with different features.
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In the Prep Network, there are two important purposes. The first is that if the secret
image is smaller than the cover image, the Prep Network will gradually increase the size of
the secret image to the same size as the cover image and distribute the secret image over
the pixels of the entire cover image. The second purpose is to transform the color-based
pixels into more useful features, such as edges. In the Prep Network, 50 feature maps are
generated by using various sizes of kernels, 3 × 3, 4 × 4, and 5 × 5, and then 150 feature
maps are combined as the output of the secret image.

In the Hiding Network, 150 secret image feature maps and the cover image are
channel-wise, 153 feature maps are combined as input, and an image with a secret image
inside is generated by using various size of kernels, 3 × 3, 4 × 4, and 5 × 5. The generated
image is called a container image, which must be as close to the cover image as possible.
The container image with a secret image inside is generated through the Hiding Network.

In the Reveal Network, as a decoder, the network architecture is to generate a reveal
image using various sizes of kernels, 3 × 3, 4 × 4, 5 × 5, through this network. The
cover image will be removed from the container image, and the generated image is called
reveal image. The main purpose of this network is to make the reveal image similar to the
secret image.
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In these three networks, a loss function is designed to reduce the error with the
following equation:

L
(
c, c′, s, s′

)
=

∣∣∣∣c− c′||+β||s− s′
∣∣∣∣ (3)

where c is the cover image, s is the secret image, c′ is the container image, s′ is the reveal
image, and β is the hyper-parameter for reconstruction error. The author designed these
three networks with loss functions to take advantage of the deep network and used CNN
to hide the image into the image for the first time, creating the first image steganography
with the concept of image hiding image.

2.3. Reversible Image Steganography Scheme Based on a U-Net Structure

Duan et al. [30] proposed image steganography based on the U-Net structure derived
from deep steganography [29], which implements image steganography through CNN
instead of the traditional way of modifying LSB. The proposed network [30] is divided into
two parts, which are hiding network (encoder) and extraction network (decoder), and its
network architecture is shown in Figure 8.
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In the hiding network, the U-Net architecture is used to encode the secret image
as the cover image, and then the cover image and the secret image are combined into a
six-channel tensor as the input for the hiding network, and the network architecture is
shown in Figure 9.
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The hiding network is divided into a compression phase and an extension phase.
The compression phase is a typical CNN, which aims to compress the secret image so
that it is distributed over all available bits on the cover image. In the compression phase,
seven convolutional operations are performed with a kernel size of 4 × 4, and Leaky-ReLU
activation and BN are used after each convolution to speed up the network training. Finally,
a feature map with a size of 2 × 2 and a number of 512 feature channels is received. In
the expansion phase, the deconvolutional layer is employed to upscale the feature map,
and the feature map from the compression phase is cascaded with the feature map from
the deconvolution layer, aiming to learn the feature maps of different layers. After seven
times of deconvolutional operations are processed with a kernel size of 4 × 4, and ReLU
activation and BN are used after each deconvolution, the final output, a stego image,
containing secret data, is generated.
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In the extraction network, the architecture is shown in Figure 10. The authors adopted
CNN with the purpose of recovering the secret image from the stego image. To make the
secret image recover the data accurately from the hiding network, the authors designed
six convolutional layers and each kernel size as 3 × 3. Each convolutional layer is followed
by ReLU activation function and BN without using the pooling layer and dropout. In the
last layer, the reconstructed secret image is the output using activation function sigmoid.
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In order to minimize the loss of container images, cover images, secret images, and
recovered images, the mean squared error (MSE) was used as the loss function below:

L(θ) =
1
n

n

∑
i=1

∣∣∣∣∣∣Fj(Y; θ)− Xj

∣∣∣∣∣∣2 , (4)

where θ = {wi, bi} is the parameter for continuous adjustment of the back propagation, Fj(Y; θ)
is the generated image, Xj is the real image, and n is the number of training samples. The
network training is performed by Equation (5).

L
(
c, c′, s, s′

)
=

∣∣∣∣c− c′||+α||s− s′
∣∣∣∣ , (5)

where c and s are the cover and secret images, respectively; c′ is the container image; s′

is the recovered image; and α is the weight hyper-parameters. ||c− c′|| and ||s− s′|| are
the losses of the hiding network and the extraction network, respectively. The authors
based on the U-net network architecture proposed the method of image steganography
and deduced the loss function enabling the method to have obvious advantages in visual
effect and steganography ability.

Based on the above important related works, we can observe that existing works
focus on either embedding a secret image into a cover image or hiding an encrypted secret
message in a cover image. Therefore, we can realize that existing works only address
the problem of reversible data hiding in cover images instead of encrypted images. As a
result, the secret is at risk of being leaked while the extractor is intercepted by attackers.
Accordingly, our proposal highlights the applications of CNN, residual networks, and
GAN for secret data hiding, image encryption and decryption, secret data extraction, and
image recovery. We hope to achieve the goal of reversible data hiding by hiding a large
amount of secret data, generating the encrypted image with good image quality, extracting
the secret data, and recovering the image completely.

3. Proposed Method

The purpose of the proposed method is to generate meaningful encrypted images
and implement reversible data hiding techniques. Therefore, this study proposes an RDH
scheme based on deep learning. The scheme consists of four networks, namely, the hiding
network, the encryption/decryption network, the extractor, and the recovery network. The
hiding network is responsible for hiding the secret message into the cover image to generate
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the stego image. The encryption/decryption network is responsible for transforming the
cover image into the marked image (encryption) and from the marked image back to the
cover image (decryption). The extractor is responsible for extracting the secret message
from the marked image, and the recovery network is responsible for recovering the cover
image from the decrypted image and the extracted secret message. The flowchart of the
proposed method is shown in Figure 11. In this section, the structure and the method for
each network are introduced in Sections 3.1–3.4, respectively.
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3.1. Hiding Network

In the hiding network, the input is the secret message and the cover image, and the
secret message needs to be preprocessed. The amount of secret message in this paper
is based on the length and width of the cover image (e.g., if the size of the cover image
is 512× 512, then the amount of secret message hiding is n× 512× 512, where n is the
number of channels) and then the secret message is transformed from vector to matrix and
combined with the cover image in a channel-wise way. The size of (n + 1)× 512× 512
is used as the input for the network. The purpose of the hiding network is to hide secret
message in the cover image, to find a suitable location in the cover image for hiding, and to
minimize the difference between the generated cover image and the marked image. The
hiding network architecture is shown in Figure 12, and the number of layers of the network
structure is shown in Table 1.

The network architecture can be divided into two parts, encoder and decoder. In the
encoder, the concept of residual learning is mainly used to learn more complex features.
Since a single-layer residual block cannot enhance the learning effect, the residual block
usually needs to be designed with more than two layers of convolution layers. Therefore,
this study designed one residual block for every two convolutional layers and each residual
block for skip connection, so that the output of each residual block contained the output
of the previous residual block. It is worth noting that because the output feature maps
of residual blocks had different sizes, a convolution layer was added before each skip
connection to make the feature maps have the same size, and the residual block calculation
is shown in Figure 13.
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Table 1. Hiding network structure.

Layers Filter Size/Stride, Padding Output Size Activation
Function

Conv1 3 × 3/2,1 32 × 256 × 256 Relu
Conv2_1 3 × 3/1,1 32 × 256 × 256 Relu
Conv2_2 3 × 3/1,1 32 × 256 × 256 Relu
Conv3_1 3 × 3/2,1 64 × 128 × 128 Relu
Conv3_2 3 × 3/1,1 64 × 128 × 128 Relu
Conv3_3 1 × 1/2,0 64 × 128 × 128 -
Conv4_1 3 × 3/2,1 128 × 64 × 64 Relu
Conv4_2 3 × 3/1,1 128 × 64 × 64 Relu
Conv4_3 1 × 1/2,0 128 × 64 × 64 -
Conv5_1 3 × 3/2,1 256 × 32 × 32 Relu
Conv5_2 3 × 3/1,1 256 × 32 × 32 Relu
Conv5_3 1 × 1/2,0 256 × 32 × 32 -
Deconv1 4 × 4/2,1 128 × 64 × 64 Relu
Deconv2 4 × 4/2,1 64 × 128 × 128 Relu
Deconv3 4 × 4/2,1 32 × 256 × 256 Relu
Deconv4 4 × 4/2,1 1 × 512 × 512 Relu
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In the encoder, there is one convolutional layer with a kernel size of 3× 3, three convo-
lutional layers with a kernel size of 1× 1, four residual blocks, and two convolutional layers
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with a kernel size of 3× 3 in each residual block. The purpose of the first convolutional
layer is to extract the features from the input to obtain the features that combine the secret
message and the cover image. The purpose of the 1× 1 convolutional layers is to allow the
residual blocks to output the same feature maps to skip connections. The purpose of the
residual blocks is to obtain the features and the original input.

These feature maps are used as input into the residual block. BN and activation
function ReLU are added after each convolutional layer in the residual block. BN rescales
the data distribution in the batch after each convolution according to the set batch size,
so that the output of each layer is normalized to a distribution with mean = 0 and
variance = 1, which can increase the generalization ability and accelerate the training
speed to make the model have a better learning rate. The ReLU function outputs 0 for
input values smaller than zero and outputs the input values for input values larger than
zero. By enhancing the nonlinear simulation capability of the model through activation
functions, it can better integrate the secret message with the details of the cover image.

In the decoder, there are four deconvolutional layers. BN and ReLU function are added
after each deconvolution layer because the image size is reduced by the convolutional
operation in the encoder. Therefore, in the decoder, deconvolution is used for up-sampling
so as to restore the image to the original image size, and finally the stego image is output.
The process of deconvolution is shown in Figure 14, where the input feature map is
scaled up according to the stride size, then the padding is complemented, and finally the
convolution is performed to output the feature map of the deconvolutional layer.

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 14. Deconvolutional operation. 

During the training process, the secret message and the cover image are combined as 
input. After the encoder training, the compressed feature map is obtained. For the decoder 
training, the compressed feature map is used as the input, and the output image is the 
same size as the cover image, called stego image. 

In order to minimize the difference between the stego image and the cover image, 
the loss function, Mean Absolute Error (MAE), is used, which can better reflect the real 
situation of the predicted value and the error. Its formula is expressed in Equation (6). 

MAE = 1𝑀 × 𝑁 𝐶 , − 𝑆 ,   (6)

where 𝐶 is a cover image and 𝑆 is a stego image;  𝑀 is the weight of image and N is the 
length of image. 

3.2. Encryption and Decryption Networks 
After hiding network, the stego image is obtained. In order to prevent the stego im-

age from being easily detected in the process of data transmission, GMEI-GAN (generate 
meaningful encrypted images by GAN) is proposed in the encryption network, so that the 
stego image can generate a meaningful image, called marked image. Moreover, in the de-
cryption network, the marked image can be restored by DecryptGAN. The architecture is 
displayed in Figure 15. These two GANs have the same architecture. The structure of 
GMEI-GAN is presented in Tables 2 and 3. 
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During the training process, the secret message and the cover image are combined as
input. After the encoder training, the compressed feature map is obtained. For the decoder
training, the compressed feature map is used as the input, and the output image is the
same size as the cover image, called stego image.

In order to minimize the difference between the stego image and the cover image,
the loss function, Mean Absolute Error (MAE), is used, which can better reflect the real
situation of the predicted value and the error. Its formula is expressed in Equation (6).

MAE =
1

M× N

M

∑
i

N

∑
j

∣∣∣∣Ci,j − Si,j
∣∣∣∣ (6)

where C is a cover image and S is a stego image; M is the weight of image and N is the
length of image.
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3.2. Encryption and Decryption Networks

After hiding network, the stego image is obtained. In order to prevent the stego
image from being easily detected in the process of data transmission, GMEI-GAN (generate
meaningful encrypted images by GAN) is proposed in the encryption network, so that
the stego image can generate a meaningful image, called marked image. Moreover, in the
decryption network, the marked image can be restored by DecryptGAN. The architecture
is displayed in Figure 15. These two GANs have the same architecture. The structure of
GMEI-GAN is presented in Tables 2 and 3.
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Table 2. GMEI-GAN-Generator structure.

Layers Filter Size/Stride, Padding Output Size Activation Function

G1 4 × 4/2,1 16 × 256 × 256 Leaky ReLU
G2 4 × 4/2,1 32 × 128 × 128 Leaky ReLU
M3 4 × 4/2,0 32 × 64 × 64 -
G4 4 × 4/2,1 64 × 32 × 32 Leaky ReLU
G5 4 × 4/2,1 128 × 16 × 16 Leaky ReLU
G6 4 × 4/2,1 256 × 8 × 8 Leaky ReLU
G7 4 × 4/2,1 512 × 4 × 4 Leaky ReLU

Fully
Connected - 128 -

D1 4 × 4/1,0 512 × 4 × 4 Leaky ReLU
D2 4 × 4/2,1 256 × 8 × 8 Leaky ReLU
D3 4 × 4/2,1 128 × 16 × 16 Leaky ReLU
D4 4 × 4/2,1 64 × 32 × 32 Leaky ReLU
D5 4 × 4/2,1 32 × 64 × 64 Leaky ReLU
D6 4 × 4/2,1 16 × 128 × 128 Leaky ReLU
D7 4 × 4/2,1 8 × 256 × 256 Leaky ReLU
D8 4 × 4/2,1 1 × 512 × 512 Leaky ReLU

Table 3. GMEI-GAN-Discriminator structure.

Layers Filter Size/Stride, Padding Output Size Activation Function

ConvD1 4 × 4/2,1 16 × 256 × 256 Leaky ReLU
ConvD2 4 × 4/2,1 32 × 128 × 128 Leaky ReLU
ConvD3 4 × 4/2,1 64 × 64 × 64 Leaky ReLU
ConvD4 4 × 4/2,1 128 × 32 × 32 Leaky ReLU
ConvD5 4 × 4/2,1 256 × 16 × 16 Leaky ReLU
ConvD6 4 × 4/2,1 512 × 8 × 8 Leaky ReLU
ConvD7 4 × 4/2,1 512 × 4 × 4 Leaky ReLU
ConvD8 4 × 4/1,0 1 × 1 × 1 Sigmoid
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In GMEI-GAN, the generator built is based on the encoder and decoder, using six
convolutional layers, eight deconvolutional layers, one max pooling layer, and one fully
connected layer. In the encoder, the feature maps are extracted through the convolutional
layer, and the dimensions are compressed to reduce the model computation. The final
output of the encoder is 4× 4× 512, which is compressed into a 1× 128 latent vector by
the fully connected layer. In the decoder, the latent vector is used as the input, and the
feature vector of the low-dimensional space is converted to the high-dimensional space
by deconvolution. The image returns to its initial size, and the output image is called the
marked image.

The discriminator uses eight convolutional layers and adds BN and activation function
LeakyReLU after each convolutional layer. The difference from ReLU is that LeakyReLU
gives a non-zero gradient to negative values. Therefore, the gradient to negative values
can be calculated and increases the nonlinear capability.

The sigmoid function is used in the last level of the activation function. Since the
sigmoid outputs a value between 0 and 1, it can be used as a discriminator to evaluate
whether the image is real (close to 1) or fake (close to 0). The calculation of the discriminator
uses the sigmoid function as last layer is shown in Figure 16.
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In the training process, the stego image is the input of the generator, the encrypted
image is considered as the training target of the generator, and the output is the marked
image. MAE is used as the loss function for the purpose of minimizing the difference
between the marked image and the encrypted image.

In addition, the aim of the generator is that the generated image can deceive the
discriminator to be considered a real image. As for the discriminator, it aims to discriminate
the real image from the generated image. The weights for the generator and discriminator
models can be adjusted. During the training process, the generator and the discriminator
back-propagate the loss function to implement weight updates repeatedly. The loss function
of GAN is defined as:

min
G

max
D

V(G, D) = Ex∼Pdata(x) log(D(x)) + Ez∼pz(z) log(1− D(G(z))) (7)

where G is the generator and D is the discriminator. When the real image is the input of the
discriminator, the discriminator needs to maximize the value of the item and determine
its closeness to 1. When the image is trained by the generator and the generated image
is a fake image, it is the item that the discriminator wants to minimize and determine its
closeness to 0. In addition, the generator wants to deceive the discriminator to make its
output value as close to 1 as possible. Therefore, the best way is to find a balanced state by
updating the parameters of the discriminator and the generator through the loss function.

Although the architecture of DecryptGAN is the same as GMEI-GAN, its input is the
marked image and its output is the decrypted image, which is different from GMEI-GAN.
In an ideal state, the decrypted image is the same as the cover image. However, in reality,
the decrypted image contains a secret message which has not been extracted yet. If the
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receiver does not know the extraction key, then the secret message cannot be taken out. As
a result, the marked image can only be decrypted. In this way, the purpose of protecting
the secret message is achieved.

Through GMEI-GAN and DecryptGAN, the images are transformed. The image
transformation adopts the encryption and decryption techniques in the RDH, so that the
secret message and the cover image have better protection, and the encrypted image is a
meaningful image instead of a ciphertext.

3.3. Extractor

To extract the secret message from the marked image, the extractor is having specific
architecture, as shown in Figure 17. The network structure is illustrated in Table 4. The
extractor consists of an encoder, a decoder, one convolution layer with a kernel size of
3× 3, three convolutional layers with a kernel size of 1× 1, four residual blocks, and two
convolutional layers with a kernel size of 3× 3 in each residual block. ReLU and BN are
added after each convolutional layer. The purpose of the encoder is to obtain the features
of the secret message and compress them into a vector as the output of the encoder. As for
the decoder, it is composed of five deconvolutional layers, and ReLU and BN are added
after each convolutional layer to increase the non-linear emulation capability.
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Table 4. Extractor structure.

Layers Filter Size/Stride, Padding Output Size Activation Function

Conv1 3 × 3/2,1 32 × 256 × 256 ReLU
Conv2_1 3 × 3/1,1 32 × 256 × 256 ReLU
Conv2_2 3 × 3/1,1 32 × 256 × 256 ReLU
Conv3_1 3 × 3/2,1 64 × 128 × 128 ReLU
Conv3_2 3 × 3/1,1 64 × 128 × 128 ReLU
Conv3_3 1 × 1/2,0 64 × 128 × 128 -
Conv4_1 3 × 3/2,1 128 × 64 × 64 ReLU
Conv4_2 3 × 3/1,1 128 × 64 × 64 ReLU
Conv4_3 1 × 1/2,0 128 × 64 × 64 -
Conv5_1 3 × 3/2,1 256 × 32 × 32 ReLU
Conv5_2 3 × 3/1,1 256 × 32 × 32 ReLU
Conv5_3 1 × 1/2,0 256 × 32 × 32 -
DeConv1 4 × 4/2,1 128 × 64 × 64 ReLU
DeConv2 4 × 4/2,1 64 × 128 × 128 ReLU
DeConv3 4 × 4/2,1 32 × 256 × 256 ReLU
DeConv4 4 × 4/2,1 16 × 512 × 512 ReLU
DeConv5 3 × 3/1,1 1 × 512 × 512 Sigmoid
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Here, the secret message can be any kinds of digital data including text, image, or
voice. Before we embed the secret message into the cover image, we transform the message
as a binary code, i.e., the secret message consists of 0 and 1. Since the secret message
consists of all 0 or 1, the output value of sigmoid is between 0 and 1. Sigmoid is used for
the last layer of the activation function, and a threshold value less than 0.5 is set as 0 and
greater than 0.5 as 1, as shown in Figure 18. In the training process, the decrypted image
is used as the input into the extractor. A vector of the same size as the secret message is
obtained from the extractor training. MAE is used as the loss function. The extractor can
extract the secret message completely through the proposed network and loss function.
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3.4. Recovery Network

In the recovery network, the recovered image is restored by extracting secret message
and decrypted image. Its architecture is shown in Figure 19, and its structure is listed in
Table 5.
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Table 5. Recovery network structure.

Layers Filter Size/Stride, Padding Output Size Activation Function

Conv1 3 × 3/1,1 32 × 512 × 512 ReLU
Conv2 3 × 3/1,1 64 × 512 × 512 ReLU
Conv3 3 × 3/1,1 128 × 512 × 512 ReLU
Conv4 3 × 3/1,1 256 × 512 × 512 ReLU
Conv5 3 × 3/1,1 128 × 512 × 512 ReLU
Conv6 3 × 3/1,1 64 × 512 × 512 ReLU
Conv7 3 × 3/1,1 32 × 512 × 512 ReLU
Conv8 3 × 3/1,1 1 × 512 × 512 Sigmoid

To prevent the image from being compressed and distorted, there are no pooling
layers and dropout operations in the recovery network. In the recovery network, there are
eight convolutional layers with a kernel size of 3× 3, the padding is set to 1 for each layer,
and the stride is set to 1. Furthermore, the feature map obtained from each convolution is
the same size as the original image. ReLU and BN are added after each convolutional layer
to increase the non-linear emulation capability, and the sigmoid function is added in the
last layer. In the recovery network, MAE is used as a loss function to minimize the loss
between recovered image and cover image.
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4. Experimental Results

This section presents the experimental results. For training the hiding network, we
produce all possible secret messages as the training message as training for the secret
message set. Please note that the secret message can be any kinds of digital data including
text, image, or voice. Before we embed the secret message into the cover image, we
transform the message into a binary code, i.e., the secret message consists of 0 and 1.
Since the size of secret message is the same as that of cover image, the number of all
possible secret messages is 2k, where k indicates the size of cover image. The training set is
12,000 normalized images from the VOC2012 dataset [31].

The training details of the encryption/decryption networks are listed as follows: batch
size equals to 2, learning rate equals to 0.001, and the optimizer is “Adam.” The training set
is 12,000 normalized images from VOC2012 dataset with size 256× 256 in grayscale and
trained with the noised images with random noises. Here, the benchmark dataset VOC2012
is utilized for evaluation of image authentication and recovery. Although the images in
the VOC2012 dataset are color images, our proposal can be performed on both color and
grayscale images. Since processing color pictures is much harder than processing grayscale
images, we transform VOC2012 images into grayscale for convenience. As a result, we can
use an insufficient number of images with 0.1 noised ratio for training our model.

In this study, the common evaluation metrics Peak Signal-to-Noise Ratio (PSNR) [32]
and structural similarity (SSIM) [33] were used to measure the difference between the stego
images and the original images as well as the image quality of the marked images. BPP is
adopted as a standard for embedding capacity. BCR is used as a criterion for extracting
secret message integrity.

PSNR evaluates image quality by calculating the error between corresponding pixels
in dB. A greater PSNR value represents lower image distortion, which can be calculated by
Equation (8).

PSNR = 10 log
(

MAX2

MSE

)
MSE = 1

M×N

M
∑

i=0

N
∑

j=0

(
yi,j − ŷi,j

)2,
(8)

where MAX is the maximum value of the image pixel. Since it is an 8-bit grayscale image,
MAX = 255. y and ŷ represent the pixel values of two images. M and N represent the
length and width of the images.

SSIM measures image similarity through brightness, contrast, and structure. The
SSIM value ranges from 0 to 1, whose closeness to 1 means less distortion, which can be
calculated by Equation (9).

L(X, Y) = 2uXuY+C1
u2

X+u2
Y+C1

C(X, Y) = 2σXσY+C2
σ2

X+σ2
Y+C2

S(X, Y) = σXY+C3
σXσY+C3

SSIM(X, Y) = L(X, Y)×C(X, Y)× S(X, Y),

(9)

where x and y are the two images to be compared, uX and uY are the mean of x and y, σX and σY
are the standard deviations of x and y, σXY is the covariance of x and y, and C1, C2, and C3

are constants which are to keep the denominator from being zero. Usually, C1 = (K1×L)2,
C2 = (K2×L)2, and C3 = C2/2 generally set K1 = 0.01, K2 = 0.03, and L = 255. The structural
similarity metric defines structural information from the corner of image composition as a
combination of three different independent factors, including luminance, contrast, and structure.
The mean value is used as an estimate of luminance, the standard deviation as an estimate of
contrast, and the covariance as a measure of structural similarity.
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BPP is an evaluation of embedding capacity, as shown in Equation (10).

BPP =
number o f secret message bits

image size
(10)

BCR is an evaluation of secret message integrity, as defined in Equation (11), where
C is the number of correct secret message bits, and T is the number of secret messages.
BCR = 100% means that the secret message is extracted completely and correctly.

BCR =
C
T
× 100% (11)

This section shows the experimental results of the proposed method which used six
grayscale images, including Airplane (F-16), Boat, Baboon, Barbara, Lena, and Peppers, as
exhibited in Figure 20.
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In Section 4.1, the results of the four-network training experiment are presented, in-
cluding stego images, marked images, decrypted images, and the comparison of PSNR and
SSIM. In Section 4.2, the results of this paper are compared with the above related works.

4.1. Experimental Results of the Proposed Method

We set the initial learning rate as 0.001, the optimizer as Adam, and the number of
epochs as 10,000 in these four networks.

4.1.1. Stego Image Quality and Embedding Capacity in Hiding Network

In the hiding network, the length of the secret message is set as n× 512× 512, where
n is the number of embedded BPP and 512× 512 is the image size. Figure 21 shows the
cover images, the stego images, and their histograms. It can be found that it is hard to find
the difference between the cover image and the stego image through eyes. According to
the histograms, the overall trend of the high- and low-frequency information of the image
remains almost unchanged, and there is no big pixel error.
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Table 6 shows that the embedding capacity of the proposed method can reach 3 BPP,
and the image quality is above 40 dB. Generally speaking, the higher the embedding
capacity is, the worse the image quality is. Nevertheless, the experimental results prove
that in some images, their high embedding capacity does not necessarily affect their image
quality directly. In addition, SSIM has the best performance in 1 BPP. It is noted that the
image quality is higher in smooth images (e.g., airplane) and is lower in images with more
complex textures (e.g., baboon).
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Table 6. PSNR (dB)/SSIM and embedding capacity (BPP) of the proposed scheme.

Image 1 BPP 2 BPP 3 BPP

Airplane 46.42/0.9952 45.82/0.9906 44.47/0.9889
Baboon 44.02/0.9929 44.25/0.9909 41.73/0.9836
Barbara 46.36/0.9951 45.21/0.9915 45.57/0.9920

Lena 46.78/0.9920 44.26/0.9841 44.48/0.9838
boat 45.85/0.9931 44.14/0.9883 44.94/0.9835

peppers 47.78/0.9937 46.78/0.9939 46.13/0.9880

Average 46.20/0.9936 44.80/0.9892 44.55/0.9865

4.1.2. Marked and Decrypted Image Quality in Encryption and Decryption Network

In the GMEI-GAN model, the input is the stego image, and the output is the marked
image. In contrast, in the DecryptGAN model, the input is the marked image, and the
output is the decrypted image. Figure 22 shows the stego image, marked image, and
decrypted image. In Figure 22, (a) PSNR/SSIM of the marked image is 38.57/0.9654,
and that of the decrypted image is 35.24/0.9625; (b) PSNR/SSIM of the marked image
is 34.19/0.8730, and that of the decrypted image is 30.90/0.7750; (c) PSNR/SSIM of the
marked image is 36.63/0.9202, and that of the decrypted image is 36.71/0.9187. Different
from the traditional encrypted image, the encrypted image of this study is meaningful,
which has the PSNR performance of 34 dB and above, while the decrypted image also has
the image quality of 30 dB.
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image as cover image and the Airplane image as a marked image. (b) shows the results that uses 
the Baboon image as cover image and the Boat image as a marked image. (c) shows the results that 
uses the Peppers image as cover image and the Lena image as a marked image. 

  

Figure 22. Results of GMEI-GAN and DecryptGAN. (a) shows the results that uses the Barbara
image as cover image and the Airplane image as a marked image. (b) shows the results that uses the
Baboon image as cover image and the Boat image as a marked image. (c) shows the results that uses
the Peppers image as cover image and the Lena image as a marked image.
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4.2. Performance Comparison of Experimental Results between the Proposed Method and Other
Related Works

In this section, the proposed method is compared with the previously mentioned
schemes. The comparison of stego image quality is shown in Table 7. Table 8 displays
the comparison for the integrity of extracting the secret message. Six images were used to
compare the related works with the proposed method separately.

Table 7. Comparison of PSNR (dB)/SSIM between the proposed method and the methods of
Sahu et al. [23], Baluja [29], and Duan et al. [30] for capacity 1 BPP (image size).

Image Sahu et al. [23] Baluja [29] Duan et al. [30] Proposed
Method

Airplane 40.05/0.9225 45.45/0.9974 38.95/0.9665 46.86/0.9970
Baboon 38.12/0.9835 52.62/0.9997 39.45/0.9815 45.57/0.9957
Peppers 39.94/0.9775 55.27/0.9992 41.28/0.9760 46.30/0.9925

Boat 39.56/0.9815 50.45/0.9986 40.33/0.9749 46.62/0.9942
Lena 40.57/0.9443 51.47/0.9981 39.52/0.9663 47.64/0.9963

Barbara 38.54/0.9415 45.34/0.9974 37.46/0.9513 47.20/0.9967

Average 39.46/0.9585 50.1/0.9984 39.50/0.9694 46.70/0.9954

Table 8. Comparison of the integrity of extracting secret message (BCR) between the proposed
method and the methods of Sahu et al. [23], Baluja [29], and Duan et al. [30].

Image Sahu et al. [23] Baluja [29] Duan et al. [30] Proposed
Method

Airplane 30.71% 3.57% 27.49% 100%
Baboon 29.47% 1.93% 26.06% 100%
Peppers 32.06% 2.01% 27.95% 100%

Boat 30.69% 2.83% 25.93% 100%
Lena 32.22% 2.74% 30.46% 100%

Barbara 31.78% 1.92% 29.43% 100%

Average 31.16% 2.5% 27.88% 100%

According to Table 7, the average PSNR/SSIM values of the stego images presented in the
proposed method and the previous schemes of Sahu et al. [23], Baluja [29], and Duan et al. [30]
are 46.7 dB/0.9954, 39.46 dB/0.9585, 50.1 dB/0.9984, and 39.50 dB/0.9694, respectively.

We can observe that Sahu et al.’s work [23] has the best image quality performance of
the stego image, but its secret message extraction accuracy is only 31.16% in Table 8, which
is useless in real-world application; Baluja’s work [29] has the second best image quality
of the stego image, but the secret message extraction accuracy is only 2.55% in Table 8,
which is almost irretrievable; the stego image quality of Duan et al. [30] is not satisfactory,
while the secret message extraction accuracy is 27.88%. Compared to the above schemes of
Baluja [29] and Duan et al. [30], the stego image quality of the proposed method maintains
above 45 dB, and the secret message extraction accuracy is 100%.

For the encryption techniques, this study compared the traditional RDH-EI [14] and
Sahu et al.’s work [23] with the proposed method. The comparison for PSNR/SSIM of the
marked images is shown in Table 9, and the marked images are shown in Figure 23.

Table 9 indicates that the average PSNR/SSIM values of the marked images in the
previous scheme of Zhang et al. [14] and the proposed method are 30.85 dB/0.5678 and
35.42 dB/0.8988, respectively. There is a significant difference between the two methods
in PSNR/SSIM. Moreover, in Figure 23, the results show that Zhang et al. [14] have some
blurred blocks in the images while the images of the proposed method are closer to the
target images. Though Zhang et al. [14] distributed the blocks into the original image and
the target image, performed block exchange by algorithm calculation, and transformed
the blocks in the original image into the blocks in the target image, the SSIM of the output
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encrypted image was still less similar. In contrast, the proposed method adopted GMEI-
GAN to help the original image learn the target image automatically through the weight
update, so the SSIM/PSNR of the output encrypted image was higher.

Table 9. Comparison of the PSNR/SSIM between the methods of Zhang [14], Sahu et al. [23], and
the proposed method.

Marked Image Zhang et al. [14] Sahu et al. [23] Proposed Method

Airplane 31.74/0.6564 40.05/0.9225 38.46/0.9641
Baboon 29.09/0.4191 38.12/0.9835 30.99/0.7853
Peppers 31.52/0.6106 39.94/0.9775 36.58/0.9152

Boat 30.78/0.5617 39.56/0.9815 34.58/0.8830
Lena 31.58/0.6073 40.57/0.9443 36.97/0.9275

Barbara 30.42/0.5520 38.54/0.9415 34.96/0.9181

Average 30.85/0.5678 39.46/0.9585 35.42/0.8988
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5. Conclusions

The proposed method based on deep neural networks has had an excellent perfor-
mance in the aspects of embedding rate, stego image quality, encrypted image quality, and
secret message extraction rate compared to other related works. Because the traditional
encrypted images are usually exhibited in the ciphertext form, GMEI-GAN was employed
to encrypt the encrypted images into meaningful images. In addition, RDH requires zero
distortion, so the sigmoid function was used to extract the output value between 0 and
1. The experiment has proved that the extracted secret message has zero error with the
original secret message. In the recovery network, the completely extracted secret message
was adopted as input to enhance the cover image recovery capability. Thus, the recovered
image could be recovered with zero distortion after several iterations of training. Therefore,
the proposed method not only implemented the RDH but also had great image quality in
the encrypted images. Through the design of four networks, the sender could embed and
transmit the secret message securely, and the receiver could extract the secret message and
recover the image completely as well.

According to the experimental results, there is still improvement in the image quality
of both the marked image generated by GMEI-GAN and the decrypted image decrypted
by DecryptGAN. Since we are studying the effectiveness of GAN for encryption techniques
in reversible data hiding techniques, the model architecture of the proposed method is
relatively simple. In the recovery network, this paper uses the classical convolutional
neural network without any pooling or dropout operation, which makes the network
training time longer. Therefore, in future works, we can try to add new techniques to
GAN, such as SA-GAN, which introduces self-attention to enhance the ability of GAN
image generation and increase image quality. For the recovery network, a different network
architecture is used to reduce the training time of the network.
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