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Abstract: We have witnessed the impact of ML in disease diagnosis, image recognition and classifi-
cation, and many more related fields. Healthcare is a sensitive field related to people’s lives in which
decisions need to be carefully taken based on solid evidence. However, most ML models are complex,
i.e., black-box, meaning they do not provide insights into how the problems are solved or why such
decisions are proposed. This lack of interpretability is the main reason why some ML models are
not widely used yet in real environments such as healthcare. Therefore, it would be beneficial if
ML models could provide explanations allowing physicians to make data-driven decisions that
lead to higher quality service. Recently, several efforts have been made in proposing interpretable
machine learning models to become more convenient and applicable in real environments. This
paper aims to provide a comprehensive survey and symmetry phenomena of IML models and their
applications in healthcare. The fundamental characteristics, theoretical underpinnings needed to
develop IML, and taxonomy for IML are presented. Several examples of how they are applied in
healthcare are investigated to encourage and facilitate the use of IML models in healthcare. Fur-
thermore, current limitations, challenges, and future directions that might impact applying ML in
healthcare are addressed.

Keywords: interpretability; machine learning; healthcare; taxonomy; applications; challenges

1. Introduction

Recently, machine Learning (ML) has been highly used in many areas, such as speech
recognition [1] and image processing [2]. The revolution in industrial technology using ML
proves the great success of ML and its applications in analyzing complex patterns, which
are presented in a variety of applications in a wide range of sectors, including healthcare [3].
However, the best performance models belong to very complex or ensemble models that
are very difficult to explain (black-box) [4]. Figure 1 shows the trade-off between accuracy
and interpretability of machine learning algorithms.

In healthcare, medical practitioners embrace evidence-based practice as the guiding
principle, which combines the most up-to-date research with clinical knowledge and patient
conditions [5]. Moreover, implementing a non-interpretable machine learning model in
medicine raises legal and ethical issues [6]. In real-world practice, explanations to why
decisions have been made are required, such as by General Data Protection Regulation
(GDPR) in the European Union. Thus, relying on diagnosis or treatment decision-making
to black-box ML models violates the evidence-based medicine principle [4] because there is
no explanation in terms of reasoning or justification for particular decisions in individual
situations. Therefore, machine learning interpretability is an important feature needed
for adopting such methods in critical scenarios that arise in fields such as medical health
or finance [7]. Priority should be given in providing machine learning solutions that
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are interpretable over complex non-interpretable machine learning models with high
accuracy [8].

Figure 1. The trade-off between accuracy and interpretability.

In recent years, interpretable machine learning (IML) has emerged as an active research
area. The efforts aim at creating transparent and explainable ML models by developing
methods that transform the ML black-box into a white box [9] in order to minimize the
trade-off gap between model accuracy and interpretability. Figure 2 shows that the research
efforts started sometime in 2012 and received growing attention since then, as evidenced
by the number of articles published in Web of Science (WoS) [10].

Even though interpretability in machine learning is a relatively new field, there are
many review papers in IML interpretability [11–13,28] and its application [14–16]. This
paper is different from state-of-the-art reviews as it provides an in-depth review of IML
methods and their applications in healthcare. This paper aims to provide a comprehensive
survey and symmetry phenomena of IML models and their applications in healthcare. We
believe that interpretable machine learning models could have good prospects in enabling
healthcare professionals to make rational and data-driven decisions that will ultimately
lead to a better quality of services. The paper’s contributions can be summarized in the
following points.

• An overview on the field of interpretable machine learning, its proprieties, and out-
comes, providing the reader the knowledge needed to understand the field.

• The taxonomy of IML is proposed to provide a structured overview that can serve as
reference material to stimulate future research.

• Details of the existing IML models and methods applied in healthcare are provided.
• The main challenges that impact application of IML models in healthcare and sensitive

domains are identified.
• The key points of IML and its application in healthcare, the field’s future direction,

and potential trends are discussed.

The rest of the paper is organized as follows. In Section 2, the taxonomy of IML
is presented. In Section 3, an overview of IML definitions, proprieties, and outcomes is
described. Existing works in IML methods and tools are reviewed in Section 4. Applications
of IML in healthcare and related fields are presented in Section 5. In Section 6, the challenges
and requirements that might impact applying IML in healthcare are presented. Section 7
provides a discussion and recommendations for future approaches of IML in healthcare.
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Section 8 concludes our work. Finally, a list of abbreviations is provided at the end of
this paper.

Figure 2. The number of articles related to IML per year in Web of Science.

2. Taxonomy of IML

A Taxonomy of IML will provide overview and main concepts that are useful for re-
searchers and professionals. We propose a taxonomy for IML based on a survey conducted
from several related papers [3,7,10–12,17–19]. Several methods and strategies have been
proposed for developing machine learning interpretable models as shown by the taxonomy
in Figure 3. First, the ML model chosen is classified into a type of complexity-related.
Based on the type of complexity-related, the ML model is further classified into a type of
model-related. Finally, the outcome is classified into a type of scope-related. The following
sections provide some details about complexity-related, model-related, and scope-related.

Figure 3. The taxonomy of machine learning interpretability.
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2.1. Complexity-Related

Model interpretability is mainly related to the complexity of ML that is used to
build the model. Generally speaking, models with more complex ML algorithms are
more challenging to interpret and explain. In contrast, models with more straightforward
ML algorithms are easiest to interpret and explain [20]. Therefore, ML models can be
categorized into two criteria: intrinsic or post hoc.

Intrinsic interpretability model uses transparent ML model, such as sparse linear
models or short decision trees. Interpretability is achieved by limiting the ML model
complexity [21] in such a way that the output is understandable by humans. Unfortunately,
in most cases, the best performance of ML models belongs to very complex ML algorithms.
In other words, model accuracy requires more complex ML algorithms, and simple ML
algorithms might not make the most accurate prediction. Therefore, intrinsic models are
suitable when interpretability is more important than accuracy.

In contrast, post hoc interpretability model is used to explain complex/black-box ML
models. After the ML models have been trained, the interpretation method is applied to
extract information from the trained ML model without precisely depending on how they
work [22].

2.2. Model-Related

Model-related interpretability model uses any ML algorithms (model-agnostic) or
only a specific type or class of algorithm (model-specific). Model-specific is limited to
a particular model or class in such a way that the output explanations are derived by
examining the internal model parameters, such as interpreting the regression weights in a
linear model [9].

Model-agnostic interpretability models are not restricted to a specific ML model. In
these models, explanations are generated from comparing input and output features at the
same time. This approach does not necessarily access the internal model structure such as
the model weights or structural information [7]. Usually, a surrogate or a basic proxy model
is used to achieve model-agnostic interpretability. The surrogate model is a transparent
ML model that can learn to approximate or mimic a complex black-box model using the
black-box’s outputs [21]. Surrogate models are commonly used in engineering. The idea
is to create a simulation model that is cheap, fast, and simple to mimic the behaviours
of the expensive, time-consuming, or complex model that is difficult to measure [23].
Model-agnostic methods separate the ML model from the interpretation method, giving
the developer the flexibility to switch between models with low cost.

For a better understanding of the model-related taxonomy, Table 1 provides a summary
of the pros and cons of each category.

Table 1. The pros and cons of model-related taxonomy.

Model Type Pros Cons

Model-specific
Most method explanations
are intuitive.
Very fast.
Highly translucent.
Interpretations are more accurate.

Limited to a specific model.
High switching cost.
Feature selection is required
to reduce dimensionality and enhance
the explanation.

Model-agnostic
Easy to switch to another model.
Low switching cost.
No restrictions on the ML model.
Not limited to a specific model.

Cannot access model internals.
Interpretations are less accurate.

2.3. Scope-Related

The scope of the IML explanations depends on whether the IML model applies to
a specific sample to understand the prediction of the applied ML in this sample or ap-
plies to the entire model samples in attempts to explain the whole model behaviours.
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Therefore, methods that describe a single prediction are considered as local interpreta-
tion, and methods that describe the whole action of the model are considered as global
interpretation [7].

Local interpretation refers to an individual explanation that justifies why the model
generated a specific prediction for a specific sample. This interpretability aims to explain
the relationship between a particular input data and the generated prediction. It is possible
to obtain a local understanding of the models by constructing justified model structures.
This can also be done by presenting identical examples of instances to the target instance [9].
For example, by highlighting a patient’s unique features identical to those of a smaller
group of patients, they are distinct from other patients.

Global interpretation, however, provides transparency about how the model works at
an abstract level. This kind of interpretability aims to figure out how the model generates
decisions based on a comprehensive view of its features and learned individual components
such as weights, structures, and other parameters. A trained model, algorithm, and data
information are required to understand the model’s global performance of the model [22].

2.4. Summary on Interpretable Machine Learning Taxonomy

Based on complexity, complexity-related ML models could be intrinsic or post hoc.
Intrinsic models interpret ML models by restricting the ML complexity, i.e., the maximum
depth of the Decision Trees algorithm must be at least 5 to be understandable. Applying
such roles to interpret a specific model makes intrinsic models by default considered
model-specific. Model-specific techniques, in general, are techniques that only apply to
the interpretation of a particular ML model. The model-specific explanation output can be
generated to explain a specific prediction for a specific sample (local interpretation) or to
comprehend the model’s decisions from a holistic perspective (global interpretation).

Post hoc models, on the other hand, are related to interpretation methods used after the
ML model has been trained. Post hoc interpretation methods can be either model-specific
or model-agnostic according to the domain of the applied interpretable method, whether it
is for a specific ML model (model-specific) or applied to all ML models (model-agnostic).

In the next section, we will give an overview of interpretation in IML, its properties,
and outcomes.

3. Interpretability in Machine Learning
3.1. Overview

The term interpret explains the meaning of something in an understandable way.
Instead of general interpretability, we concentrate on using interpretations as part of the
broader data science life cycle in ML. The terms interpretability and explainability are
being used interchangeably in literature [24,25], but there are some papers that make
distinctions [26,27]. Rudin and Ertekin [27] argue that the term explainable ML is used
to explain black-box models whereas interpretable ML is used for models that are not
black-box. Gaur et al. [26] argue that explainability answers the question of why a cer-
tain prediction has been made whereas interpretability answers the question of how the
model predicts a certain prediction. Our paper follows the first approach, where the terms
interpretability and explainability are used interchangeably. However, the formal defini-
tion of interpretability remains elusive in machine learning as there is no mathematical
definition [28].

A popular definition of interpretability frequently used by researchers [29,30] is “in-
terpretability in machine learning is a degree to which a human can understand the cause
of a decision from an ML model”. It can also be defined as “the ability to explain the
model outcome in understandable ways to a human” [31]. The authors of [32] defined
interpretability as “the use of machine learning models to extract specific data-contained
information of domain relationships”. If it gives insight into a selected domain issue
for a specific audience; they see information as necessary. Gilpin et al. [12] describe the
primary purpose of interpretability as being to effectively explain the model structure to
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users. Depending on the context and audience, explanations may be generated in formats
such as mathematical equations, visualizations, or natural language [33]. The primary
goal of interpretability is to explain the model outcomes in a way that is easy for users to
understand. IML consists of several main components: (1) the machine learning model, (2)
the interpretation methods, and (3) the outcomes. The interpretation methods exhibit some
properties as described in the following subsections.

3.2. Properties of Interpretation Methods

This section presents the properties needed to judge how good the interpretation
method is. Based on the conducted review, we identified the essential proprieties as
explained below.

3.2.1. Fidelity

Yang et al. [34] define explanation fidelity in IML as “the degree of faithfulness
with respect to the target system to measure the connection of explanations in practical
situations”. Fidelity, without a doubt, is a crucial property that an interpretable method
needs to have. The methods cannot provide a trusted explanation if it is not faithful to
the original model. The IML explanations must be based on the mapping between ML
model inputs and outputs to avoid inaccurate explanations [35]. Without sufficient fidelity,
explanations will be restricted only to generate limited insights into the system, which
reduces the IML’s functionality. Therefore, to evaluate explanations in IML, we need fidelity
to ensure the relevance of the explanations.

3.2.2. Comprehensibility

Yang et al. [34] define the comprehensibility of explanations in IML as “the degree
of usefulness to human users, which serves as a measure of the subjective satisfaction
or intelligibility of the underlying explanation”. It reflects to what extent the extracted
representations are humanly understandable and how people understand and respond
to the generated explanations [18]. Therefore, good explanations are most likely to be
easy to understand and allow human users to respond quickly. Although it is difficult
to define and measure because it depends on the audience, it is crucial to get it right [7].
Comprehensibility is divided into two sub-properties [35]: (1) high clarity: refers to how
clear the explanation is as a result of the process, and (2) high parsimony: refers to the
intricacy of the resultant explanation.

3.2.3. Generalizability

Yang et al. [34] define the generalizability of explanations in IML as “an index of
generalization performance in terms of the knowledge and guidance provided by the
related explanation”. It is used to express how generalizable a given explanation is. Users
can assess how accurate the generated explanations are for specific tasks by measuring the
generalizability of explanations [36]. Human users primarily utilize explanations from IML
methods in real-world applications to gain insight into the target system, which naturally
raises the requirements for explanation generalizability. If a group of explanations is not
well-generalized, it cannot be considered high-quality as the information and guidance it
provides will be restricted.

3.2.4. Robustness

The robustness of explanations primarily measures the explanations’ similarity be-
tween similar instances. For a given model, it compares explanations between similar
instances. The term “high robustness” refers to the fact that minor changes in an instance’s
features do not considerably affect the explanation (unless the minor changes also signifi-
cantly affect the prediction) [37]. A lack of robustness may be the result of the explanation
method’s high variance. In other words, small changes in the feature values of the instance
being explained significantly impact the explanation method. Non-deterministic compo-
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nents of the explanation approach might also result from a lack of robustness, e.g., a step
of data sampling as used by the local surrogate method [5]. As a result, the two most
essential factors to obtaining explanations with high robustness are generally an ML model
that provides stable predictions and an interpretation method that generates a reliable
explanation [38].

3.2.5. Certainty

Certainty assesses the degree to which the IML explanations confidently reflect the
target ML. Many machine learning models only provide predictions with no evidence of
the model’s certainty that the prediction is correct. In [39,40], the authors focus on the
model explanations certainty and provide insights into how convinced users could be with
the generated explanations given to a particular outcome. In essence, the evaluations of
certainty and comprehensibility can complement one another. As a result, an explanation
that incorporates the model’s certainty is quite beneficial.

To the best of our knowledge, there are no methods available to correctly measure
these proprieties. The main reason is that some of them are related to real-world objectives,
which are difficult to encode as mathematical functions [41]. The properties also affect
the quality of the interpretation outcomes. In the following section, the outcomes of IML
methods will be discussed.

3.3. Outcomes of IML

The main goal of using an interpretable ML model is to explain the outcome of the ML
model to users in an understandable way. Based on the interpretable method used [7,28],
the interpretation outcome can be roughly distinguished into one of the following stages:

• Feature summary: Explaining ML model outcome by providing a summary (statistic
or visualization) for each feature extracted from ML model.

– Feature summary statistics: ML model outcomes describing statistic summary for
each feature. The statistic summary contains a single number for each feature,
such as feature importance, or a single number for each couple of features, such as
pairwise feature interaction strengths.

– Feature summary visualization: Visualizing the feature summary is one of the
most popular methods. It provides a visualization in form of graphs representing
the impact of the feature to the ML model prediction.

• Model internals: The model outcomes are presented in model intrinsic form such as
the learned tree structure of decision trees and the weights of linear models.

• Data point: Data point results explain a sample’s prediction by locating a comparable
sample and modifying some of the attributes for which the expected outcome changes
in a meaningful way, i.e., counterfactual explanations. Interpretation techniques that
generate new data points must be validated by interpreting the data points themselves.
This is great for images and text, but not so much for tabular data with a lot of features.

• Surrogate intrinsically interpretable model: Surrogate models are another way to
interpret the ML model by approximating them with the intrinsically interpretable
model and then providing the internal model parameters or feature summary.

In the next section, we focus on details about the interpretation methods in IML.

4. Interpretation Methods of IML

After ML models have been developed, the prediction provided by the models need
to be interpreted. We have categorized the methods to interpret the prediction based on
four aspects: (1) feature based, (2) perturbation based, (3) rule based, and (4) image based,
as discussed below.
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4.1. Feature Based

• Feature importance

The term “feature importance” refers to a set of strategies for giving scores to the input
features in a particular model, indicating the relative significant impact of each feature on
a prediction [15]. Given a weight score to each feature based on its impact on the model
leads to better understanding of the model and the data. Moreover, feature important is
beneficial for feature selection and reduce model dimensionality. Many ML models can
generate feature importance explanations such as linear models and tree based models.
In linear models, the importance of features can be measured using the absolute value of
t-statistic [7], Formula (1).

tβ̂ j
=

β̂ j

SE
(

β̂ j
) (1)

The importance of tree-based can be generated by measuring the variance of each
node compared to the parent node using the Formula (2).

f̂ (x) = ȳ +
D

∑
d=1

split. contrib(d, x) = ȳ +
p

∑
j=1

feat.contrib (j, x) (2)

Feature importance can provide features summary outcome to intrinsically interpret a
particular ML model (model-specific), and it can used as interpretation method for another
ML model (model-agnostic).

• Weight Plot

Weight Plot is a visualization tool that is used to visualize the feature weight in
regression models to provide feature visualization interpretation. To make the regression
model more meaningful, the weights should be multiplied by the value of the actual
feature. In addition, scaling the features can make the estimated weights more comparable.
However, the situation is different if there is a feature that measures. Before applying the
weight plots, it is essential to know the feature distribution because if the data has a very
low variance, all instances will have a matching contribution. An example of weight plot is
provided in Figure 4.

Figure 4. A sample outcome of Weight plot interpretation [7].

• PDP

The Partial Dependence Plot (PDP) [42] is a graphical representation that indicates the
marginal effect of input variables by visualizing the average partial correlation between
one or more features on an ML model prediction outcome. The PDP can estimate if the
relationship between the output and the feature is linear, monotonous, or more complex.
The mathematical formula of regression PDP is defined as
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f̂xS(xS) = ExC

[
f̂ (xS, xC)

]
=
∫

f̂ (xS, xC)dP(xC) (3)

where XS are the plotted features, XC are the other features used in ML model f̂ . PDP is an
intuitive method that provides global interpretations to the model by graphically repre-
senting the correlations between the features’ inputs and the model output. Figure 5 shows
the PDP explanation output of the impact of age and year on hormonal contraceptives on
cancer probability [7].

Figure 5. A sample outcome of PDP explanation [7].

• ICE

Individual Conditional Expectation (ICE) [43] Plots visualize the dependency of a
feature prediction for each instance independently. Figure 6 shows the ICE explanation
output of the impact of age on predicting cancer probability for each instance in the dataset.

Figure 6. A sample outcome of ICE explanation [7].

To demonstrate interactions and individual differences, ICE displays one line per
instance to show how the prediction of the instance varies when a feature changes. PDP
can obscure model complexity in the presence of significant interaction effects. Accordingly,
Giuseppe Casalicchio, et al. [43] developed ICE charts to enhance the Partial Dependency
Plot by plotting the functional relation between the feature for individual observations and
its prediction.

• ALE
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Apley and Zhu [44] proposed Accumulated Local Effects plot (ALE) as a novel ap-
proach for evaluating the interaction effects of predictors in black-box ML models, which
avoids the prior issues with PDP plots. ALE discusses how characteristics impact the aver-
age prediction of a machine learning model. It is a more efficient and unbiased alternative
to partial dependency diagrams (PDPs). ALE plots average the changes in the prediction
and accumulate them over the grid. The mathematical formula of ALE is defined as

f̂xS ,ALE(xS) =
∫ xS

z0,1

EXC |XS

[
f̂ S(Xs, Xc) | XS = zS

]
dzS −C (4)

Figure 7 shows the ALE explanation output of age impact on predicting adults with
chest pain.

Figure 7. A sample outcome of ALE explanation [45].

• Effect score

Miran et al. [46] created a model-agnostic technique—effect score—to evaluate the
influence of age and comorbidities on heart failure prediction. The ML model trained
logistic regression, random forest, XGBoost, and neural networks before employing the
proposed approach (the effect score integrated into XGBoost) to assess the impact of each
feature on the development of heart failure. The effect score method studies the correlation
between the input features and the output by calculating the effect of the change in the
feature values on the output. To compute the effect score, the following formulas are used.

esi,j = logit
(

f
(

xj
1, xj

i , . . . , xj
n

))
− logit

(
f
(

xj
1, xr

i , . . . , xj
n

))
(5)

where f is the probability of the optimistic class prediction, if xij = xi,k, then the average of
them can be calculated using the following formula.

ESi =
n

∑
j=1

∣∣esi,j
∣∣ (6)

The feature values are only replaced by other observed values of the same features to
ensure realistic possibilities. Effect score provides a feature summary output to all features
used to train the model and these feature can be visualized to provide more insight.

• GENESIM
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Vandewiele et al. [47] introduced the GENESIM method, which uses a genetic algo-
rithm to transform an ensemble of decision trees into a single decision tree with improved
predictive performance. GENESIM merges the decision trees by converting them into a
series of k-dimensional hyperplanes. Then, a sweep line is used to compute the intersection
of the different decision spaces. To find potential splitting planes to build a node, a heuristic
technique is employed. GENESIM can be further improved by reducing the computational
complexity of the algorithm.

• Out Of Bag

Out Of Bag (OOB) is a validation method used to interpret the functionality of the
random forest model and reduce the Variance results. The number of properly predicted
rows from the data not necessarily utilized to analyze the model is used to compute the
OOB score. The OOB score can be calculated using a subset of decision trees; however,
verifying the entire ensemble of decision trees is preferable.

4.2. Perturbation Based

• LIME

A Local Interpretable Model-agnostic Explanation (LIME) is presented in [48]. LIME
defines as “an algorithm that can explain the predictions of any classifier or regressor
reliably by approximating it locally with an interpretable model”. LIME is a surrogate
model that creates a new dataset of original data samples and the underlying model
predictions. Then, LIME trains an interpretable surrogate model weighted according to the
similarity of the sampled instances to the instance of interest. The LIME functionality can
be simplified into the following steps [49]:

• For a certain data point, LIME disturbs its characteristics repeatedly at random. For
tabular data, this means adding to each function a small amount of noise.

• Get predictions for each disturbing instance of results. This allows us to establish a
local image of the decision area at that point.

• The linear model’s coefficients are used as explanations to calculate an estimated
linear “explanation model” using predictions.

To generate explanations, LIME uses the following formula:

ξ(x) = argmin
g∈G

L( f , g, πx) + Ω(g) (7)

ξ(x) is the interpretable model explanation, L( f , g, πx) is the measurement of how un-
faithful g is in imitating f in the locality defined by πx, and Ω(g) is the measurement
of complexity. The LIME package provides various visualization outputs to explain the
prediction in an understandable way. Figure 8 shows the output of LIME explanation on a
specific prediction that is taken from applying KNN algorithms on the Boston Housing
dataset. The features in orange impact the prediction positively. However, the features in
blue impact the prediction negatively.

Figure 8. A sample outcome of LIME explanation [50].
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• SHAP

SHAP is another model-agnostic framework proposed in [51]. SHAP (Shapley Ad-
ditive exPlanation) is a procedure for evaluating model features’ influence using Shapley
values. In the theory of Shapley values, in order to fairly distribute the “payout”, SHAP
assumes that each feature value is a “player” in a game, and the prediction is the “payout”.
The technical definition of a “Shapley value” is the “average marginal contribution of a
feature value across all feasible coalitions”. In other words, Shapley values consider all
potential predictions for a given instance based on all conceivable input combinations to
ensure properties such as consistency and local accuracy [50]. To generate explanations,
SHAP uses the following formula:

g
(
z′
)
= φ0 +

M

∑
j=1

φjz′j (8)

g is the interpretation model, ź ∈ 0, 1M is the simplified features, M is the maximum
simplified size, and ∅j ∈ R is the feature contribution for a feature j. Figure 9 shows the
output of SHAP explanations. The figure shows the impact of each feature on a specific
sample. The features in red increase the possibility of the model to predict that sample are
one. However, the features in blue reduce the possibility of that sample being predicted
as one.

Figure 9. A sample outcome of SHAP explanations [50].

• Anchors

Anchors [52] clarify individual predictions in any black-box model by identifying a
rule of decision that adequately “anchors” the prediction. An anchor is a rule explanation
that sufficiently “Anchors” the prediction locally and any change in the feature values
on any instance have no impact. In conjunction with a graph search algorithm, Anchors
utilizes reinforcement learning strategies to reduce the number of model calls (and thus the
required runtime) to a minimum while still recovering from local optima. Anchors apply
a perturbation-based technique to generate local explanations for black-box predictions,
and the results are presented as intelligible IF-THEN rules called “anchors”. To generate
explanations, Anchors uses the following formula:

ED(z|A)

[
1 f (x)= f (z)

]
≥ τ, A(x) = 1 (9)

x is the prediction, A is a set anchor result, f denotes the classification model, Dx(z|A) is
the distribution of x, matching A. Figure 10 shows the explanation output of an individual
prediction from applying Anchors in the UCI adult dataset.

Figure 10. A sample outcome of Anchors explanations [52].
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4.3. Rule Based

• Scoring System

Ustun et al. [53] presented Supersparse Linear Integer Model (SLIM) as a scoring
system used to develop classification models for scientific predictions. SLIM minimizes
loss to promote a high degree of accuracy and sparsity and constrains coefficients to a
set of reasonable and intuitive values. However, SLIM is computationally challenging
when the sample size of the dataset is large and contains hundreds of features. To generate
explanations, SLIME uses the following formula.

min
λ

1
N

N

∑
i=1

1
[
yixT

i λ ≤ 0
]
+ C ‖ λ ‖0 +ε ‖ λ ‖1 (10)

N is the training example, x is the features, y is the labels, λ is the coefficient, C0 and
C1 are penalties.

• MUSE

Lakkaraju et al. [54] developed another model-agnostic framework called MUSE
(Model Understanding through Subspace Explanations) that assists in the understanding of
the underlying black-box model by examining particular features of interest to explain how
the model behaves in characterized subspaces. Explanations of the proposed framework
are generated by a novel function that concurrently optimizes for the original model fidelity,
uniqueness, and interpretability of the explanation. Users can also customize the model
explanations by choosing the features of interest.

• BETA

Lakkaraju et al. [19] proposed a model-agnostic interpretation framework named
BETA capable of producing global explanations of the behaviors of any given black-box
model. The model helps users investigate interactively how the black-box model operates
in multiple subspaces that concern the user. The model generates a limited number of
decision sets to describe the behavior of the provided black-box model in distinct, well-
defined feature space areas.

• Rough Set Theory

Rough sets theory is a classification algorithm that can discover structural relationships
from complex and noisy data for discrete-valued attributes [55]. It has been applied for
interpretable classification, data mining, knowledge discovery, and pattern recognition [56].
The rough set principal assumption is that each object x ∈ X, where S ⊆ U, is represented
by an information vector. The formula can be defined as follows:

ind (B) =
{
(x, y) | (x, y) ∈ U2, ∀b∈B(b(x) = b(y))

}
(11)

• Decision Trees

Decision trees (DTs) split the data multiple times according to a certain strategy based
on the decision trees type (ID3, C4.5, CART). The data will be split into a subset dataset
considering that each instance belongs to one subset. There are three types of subsets: a
root node (the top node), internal nodes, and leaf nodes. DTs can represent the extracted
knowledge in the form of it-then rules between the feature x and the outcome y using the
following formula:

ŷ = f̂ (x) =
M

∑
m=1

cm I{x ∈ Rm} (12)

For interpretation, DTs measure the variance or the Gini index of all the nodes and
measure how much it has reduced compared to the parent node, and sum their importance
by scaling them to 100 as a share of the overall model importance.
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4.4. Image Based

• Saliency map

Saliency map [57] is a grayscale image in which a pixel’s saliency determines its
brightness and reflects how important it is. The saliency map is sometimes known as a
heat map, where “hotness” refers to image areas that significantly influence the object’s
class. The goal of the saliency map is to locate regions that are salient or noticeable at
each position in the visual field and to use the spatial distribution of saliency to guide the
selection of salient places. A saliency map provides a visual presentation outcome where
the brightness refers to the significance of that pixel to the prediction.

• LRP

The layer-wise relevance propagation (LRP) interpretation method was proposed
by the authors of [58] to visualize the contributions of single pixel of an image x to the
prediction f (x) in the model f using a pixel-wise decomposition. LRP decomposes the
classification output f (x) into sums of features and pixel relevance scores and visualize
their contributions to the prediction. LRP is a model-specific method and mainly de-
signed for neural networks and Bag of Words models. Generally, the method assumes
that the classifier can be decomposed into several layers of computation. LRP uses the
backpropagation to go over the layers in reverse order. It calculates the relevant scores of
each neurons in each layers and classifies them into positive relevant scores and negative
relevant scores. Positive relevant scores indicates the pixels were relevant for the prediction
whereas negative relevant scores will vote against it.

The formula of LRP is defined as follows:

R(l)
i = ∑

j

zij

∑i′ zi′ j
R(l+1)

j with zij = x(l)i w(1,1+1)
ij (13)

• Grad-CAM

Grad-CAM extracts the gradients of a target in a classification network and feeds
them into the final convolutions layer to create a localization map that highlights the pixels
that have the most impact on the prediction. It only applies to CNN and its family of
algorithms, such as fully connected layers, structured outputs, and multimodal inputs [16].

The gradient of the score for class c, yc is computed with respect to the feature maps
Ak of a convolutional layer to produce a discriminative localization map with width u and
height v for each class c. The significance weights ak of the neurons for the target class are
computed using the returning global average pooled gradients.

αc
k =

global average pooling︷ ︸︸ ︷
1
Z ∑

i
∑

j

∂yc

∂Ak
ij︸︷︷︸

gradients via backprop

(14)

After calculating ak for the target class c, a weighted combination of activation maps
need to be calculated and follow it by ReLU.

Lc
Grad−CAM = ReLU

(
∑
k

αc
k Ak

)
︸ ︷︷ ︸

linear combination

(15)

• Patho-GAN

Niu et al. [59] presented Patho-GAN, a new interpretable approach to visualize patho-
logical descriptions by synthesizing fully controlled pathological images to support the
performance of medical tasks. Patho-GAN encodes pathological descriptors from active
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neurons for prediction and a GAN-based visualization approach for visualizing the patho-
logical descriptors into a pathological retinal picture from an unobserved binary vascular
segmentation. Patho-GAN decodes the network by producing only minor pathological
symptoms (microaneurysms) rather than significant pathological symptoms (exudates
or hemorrhages). As a result, Patho-GAN offers insight into how the o−O DR detector
interprets a retinal picture, allowing it to forecast severity while avoiding the detection of
significant lesions.

Table 2 summarizes existing IML interpretation methods, their categories, and out-
comes. In the next section, we reviewed existing works that applied IML in healthcare.

Table 2. Different IML methods, their category, and outcome presentation.

Category Approach Complexity-Related Model-Related Scope-Related OutcomeIntrinsic Post-Hoc Specific Agnostic Local Global

Feature Based

Weight plot
√ √ √

MI
Feature selection

√ √ √
FS

PDP
√ √ √

FS
ICE

√ √ √
FS

ALE
√ √ √

FS
GENESIM

√ √ √
FS

Effect score
√ √ √

FS
Out Of Bag

√ √ √
FS

Perturbation Based
LIME

√ √ √
SI

SHAP
√ √ √

FS
Anchors

√ √ √
SI

Rule Based

Scoring system
√ √ √

FS
Rough set

√ √ √
FS

BETA
√ √ √

FS
MUSE

√ √ √
FS

Decision Trees
√ √ √

FS

Image Based
Saliency map

√ √ √
FS

LRP
√ √ √

FS
Grad-CAM

√ √ √
FS

MI: Model internal; FS: Feature Summary; SI: Surrogate intrinsically interpretable.

5. Applications of IML in Healthcare

The development of interpretable machine learning models in healthcare has recently
become a trending research area to overcome the barriers in applying machine learning in
real-world applications. The main goal of applying such models in healthcare is to shed
light and provide insights to physicians about machine learning predictions.

5.1. Cardiovascular Diseases

In [60], an ensemble predictor is used to predict a risk score for heart failure patients.
To develop an ensemble model, a bootstrap together with logistic regression and linear dis-
criminant analysis is combined. The interpretation method Out-Of-Bag is used to interpret
and randomly select the explanatory variables. The proposed model is trained using the
EPHESUS dataset with AUC of 0.87 and 0.86 for ensemble score and OOB, respectively.

In [61], the authors trained a CNN algorithm to develop an EchoNet model that is
applied to identify local cardiac structures and anatomy, and other cardiovascular diseases,
from echocardiography images. Moreover, the model was trained to predict age, sex,
weight, and height from the dataset. For interpretation, a Saliency map was used to explain
the prediction by assigning a scalar importance score to each feature. Figure 11 shows the
saliency map explanation of predicting age and weight.

In [45], authors used electronic health record (EHR) to train an ML model to predict the
60-day risk of major adverse cardiac events in adults with chest pain. The proposed model
was trained using a group of ML algorithms such as random forest, XGBoost Bayesian
additive regression trees, generalized additive models, lasso, and SuperLearner Stacked
Ensembling (SLSE). SLSE obtained the best performance with an AUC of (0.148, 0.867).
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For interpretation, Accumulated Local Effect visualization (ALE) and variable importance
ranking were used. Vandewiele et al. [47] introduced the GENESIM method, which uses
a genetic algorithm to transform an ensemble of decision trees into a single decision tree
with improved predictive performance. The authors applied the proposed interpretable
algorithm on twelve datasets and compared the performance of GENESIM with other
tree-based algorithms. On the heart dataset, GENESIM obtained an accuracy of 0.79.

Figure 11. A sample outcome of saliency map [61].

Moreno-Sanchez [62] presented an interpretable model to predict a heart failure
survival using ensemble ML trees (Decision Trees, Random Forest, Extra Trees, Adaboost,
Gradient Boosting, and XGBoost). The model performance with XGBoost was the best,
with an accuracy of 0.83 over the other ensemble trees. In order to reduce dimensionality
and provide global interpretability, different methods such as XGBoost, Feature Importance,
and Eli5 were used for the model. For local interpretation of an individual instance, SHAP
calculates the contribution of each feature to the prediction using the game theory.

Athanasiou et al. [63] developed an explainable personalized risk prediction model
for CVD diseases in patients with Type 2 Diabetes Mellitus. The model calculated the
5-year CVD risk using XGBoost and the Tree SHAP technique, and it generated individual
explanations for the model’s decision using the Tree SHAP method. The Tree SHAP is a
branch of SHAP used to interpret tree-based models by reducing computational complexity.
A weighted averaging procedure was used to estimate the SHAP values, which indicate
the contribution of each risk feature to the final risk scores. The weighted averaging is
similar to that used to obtain the ensemble model results, considering the inherent linearity
of the Shapley values.

In [64], a 1D CNN was used to classify arrhythmias in 12-lead ECG recordings from
the CPSC2018 dataset. CNN is known as a black-box algorithm due to the multi-layer
nonlinear structure, making it difficult to explain to humans. Therefore, the authors used
residual blocks with shortcut connections to generate a tractable model. SHAP was then
used to improve clinical interpretability at both the local and global levels of interpretation.
For local explanation, SHAP applies the gradient explainer to generate a values matrix
svi,j ,k ∈ R9∗15,000∗12 for each input xj,k ∈ R15,000∗12 to represent each feature contribution
to the corresponding ECG input towards the diagnostic class. The xj,k contributes positively
towards the diagnostic class i if and only if svi,j ,k > 0. For global explanation, SHAP shows
the contribution of ECG leads towards each kind of cardiac arrhythmias over the entire
dataset by summarizing the local level interpretations. For a given lead k, the contribution
of ci,k to diagnose class i is defined as the sum of SHAP values ci,k = ∑D

n=1 ∑15,000
j=1 svsd,i,j,k.

An XGBoost ML algorithm is used in [65] to train on a heart disease dataset from the UCI
ML Repository. For interpretations, Anchors, LIME, and SHAP are applied to elucidate
how these methods provide a trustworthy explanation.
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Miran et al. [46] created a model-agnostic technique—effect score—to evaluate the
influence of age and comorbidities on heart failure prediction. The ML model trained
logistic regression, random forest, XGBoost, and neural networks before employing the
proposed approach (the effect score integrated into XGBoost) to assess the impact of each
feature on the development of heart failure. The effect score method studies the correlation
between the input features and the output by calculating the effect of the change in the
feature values on the output. In [66], authors trained Random Forest (RF), eXtreme Gradient
Boosting (XGBoost), Adaptive Boosting (Adaboost), and Support Vector Machine (SVM)
to predict ischemic stroke patients. The proposed model is trained onthe Nanjing First
Hospital dataset, and RF obtains the best performance with an AUC of (0.22, 0.90). Three
global interpretability methods were used for model interpretation, i.e., PDP, features
importance, and feature interaction. And for local interpretation, the Shapley value method
is used. In [67], authors proposed, OptiLIME, a framework developed to maximize the
stability of explanations that LIME suffers from by tuning the LIME parameters to nominate
the best adherence-stability trade-of. The authors trained the XGBoost ML algorithm on
the NHANES dataset to diagnose heart diseases and other diseases to evaluate the risk of
death over twenty years of follow-up and then automatically apply OptiLIME to find the
proper kernel width value.

5.2. Eye Diseases

Niu et al. [59] appy Patho-GAN interpretation method to synthesizing fully controlled
pathological images to support the performance of medical tasks. Patho-GAN encodes
pathological descriptors from active neurons for prediction and a GAN-based visualization
approach for visualizing the pathological descriptors into a pathological retinal picture from
an unobserved binary vascular segmentation. The proposed method has been validated
in several fundus image datasets such as IDRiD, Retinal-Lesions, and FGADR, providing
better performance compared to other state-of-art methods.

Oh et al. [68] selected five features from RNFL OCT and VF examinations to develop
an ML model to diagnose Glaucoma disease. The model was trained using a support
vector machine, C5.0 decision trees, and random forest, and XGboost. The XGboost model
had the best performance, with an accuracy of 0.95. For model interpretation, they used
gauge, radar, and SHAP methods to explain the predictions. The gauge and radar diagrams
indicate where the input values fall in the overall value distribution. The SHAP diagram is
used to depict the influence of individual values in decision-making.

5.3. Cancer

ALIME was proposed by the authors of [69] to enhance LIME robustness and local
fidelity. Robustness and fidelity are important properties of any model to be implemented
particularly in healthcare. The proposed model applied on three healthcare domain datasets
the performance compared with LIME. A simple CNN algorithm was used to train the
ML model on to predict the breast cancer disease. The model was trained on the Breast
Cancer dataset with an accuracy of 0.95. The model fidelity has been tested by computing
the mean R2 scores for all points in the test set.

Ustun et al. [53] applied Supersparse Linear Integer Model (SLIM) as a scoring system
to develop classification model to detect malignant breast tumors. SLIM minimizes loss
to promote a high degree of accuracy and sparsity and constrains coefficients to a set of
reasonable and intuitive values. The proposed scoring system was trained using the Biopsy
dataset with accuracy of 0.97.

The authors of [70] compared SHAP, LIME, and Anchors’ explanations on the elec-
tronic health records of the given lung-cancer mortality. The ML model train using XGBoost
with an accuracy of 0.78. The three methods observed M-Best as the most significant fea-
tures. However, Anchors did not identify any other features, whereas SHAP and LIME
distinguished different features.



Symmetry 2021, 13, 2439 18 of 28

5.4. Influenza and Infection Diseases

Hu et al. [71] used XGBoost, logistic regression (LR), and random forest (RF) to build a
prediction model to predict mortality in critically ill influenza patients. The proposed model
compared its performance to the importance of the features defined by clinical categories.
The XGBoost model outperformed other ML models with the area under the curve (AUC)
of 0.84. The author categorized the top 30 features by clinical domain to provide an
intuitive understanding of feature importance. Then, SHAP was used to visualize the
impact of the selected features on mortality. The authors of [72] trained decision tree (DT),
random forests, gradient boosted trees (GBoost), and neural networks (ANN) to identify
biomarkers indicative of infection severity prediction. The proposed models were trained
on the SARS-CoV-2 dataset, and GBoost obtained the best performance with an F1 score
of 0.80. For global interpretation, ICE, PDP, and ALE method are used to explain the ML
model prediction, and for local interpretation, LIME and SHAP are used.

5.5. COVID-19

Yan et al. [37] identified discriminative biomarkers for mortality in COVID-19 pa-
tients using an XGBoost interpretable machine learning algorithm. To develop a global
interpretable model, the features are reduced to the minimum concerning accuracy using
the Multi-tree XGBoost. Multi-tree XGBoost ranks the features according to their impor-
tance, and the model was trained with the most three and four important features. The
results showed that the model with three features has better performance than with four
features. Figure 12 shows a global explanation of how the model generates predictions
using the three features: lactic dehydrogenase (LDH), high-sensitivity C-reactive protein
(hs-CRP), and lymphocytes. For performance evaluation, the XGBoost algorithm shows
better performance compared to other popular algorithms such as random forest and
logistic regression.

Karim et al. [73] proposed a DeepCOVIDExplainer model for automatic detection
of COVID-19 using chest radiography (CXR) images. A deep neural ensemble model
combining n VGG-16/19, ResNet-18/34, and DenseNet-161/201 architectures was trained
using 15,959 CXR images of 15,854 patients to detect COVID-19. The proposed model
yields 0.95 precision, 0.94 recall, and 0.95 F1. For Interpretation, a gradient-guided class
activation maps (Grad-CAM), and layer-wise relevance propagation (LRP) are used to
provide visual explanation the the significant pixels in the CXR images.

Figure 12. A sample outcome of global interpretation from XGBoost [37].

5.6. Depression Diagnosis

In [19,54], authors trained a five-layer CNN algorithm to diagnose depression from
medical health record dataset. The dataset contains 33K of the patient health records and
the results are compared with the state-of-art methods. The results have been evaluated
by a group of users and compared with other methods such as IDS and BDL. MUSE [54]
and BETA [19] interpretation methods are proposed to assist the understanding of the
developed model by examining particular features of interest to explain how the model
behaves in characterized subspaces.
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5.7. Autism

In [74], an interpretable machine learning platform called R.ROSETTA is developed
based on the rough set theory. The proposed platform can build nonlinear IML models
and uses the rule-based method to generate interpretable predictions. The platform was
evaluated on autism case–control dataset with over 0.90 accuracy and AUC, and the
performance surpassed several ML algorithms. The conducted review shows that ensemble
trees such as XGBoost and Random forest are commonly applied in healthcare. Even though
ensemble models have better performance in many cases, they are difficult to explain by
their nature. The ensemble model consists of many decision trees, making it difficult for
experts to interpret the model. Therefore, we can see in the conducted papers rating score
or feature selection is used to reduce the model dimensionality, i.e., the work in [37] used
only three features to provide understandable explanations. However, such an approach
might limit the model performance and not fully benefit from the dataset. Another way
to enhance interpretability in an ensemble model is proposed in [47], which converts
the ensemble to a single model; however, such methods suffer from high computational
complexity. Another approach to maintain accuracy and provide an explanation to the
model is by using model-agnostic methods, i.e., the work in [64] used SHAP to interpreter
the CNN model, and the works in [62,71] used SHAP to provide local explanations to the
XGBoost model. Yet, such methods provide less accurate interpretations as they are limited
to the model input and output and cannot access the model internals.

A summary of the application mentioned above is provided in Table 3. In the next
section, we present some of the challenges in IML.

Table 3. Applications of IML in Healthcare.

Disease Reference ML Algorithm IML Method Performance

Cardiovascular

[47], 2016 Decision Trees GENESIM AC = 0.79

[60], 2018 Ensemble
Predictor Out-of-bag AUC = 0.87

[61], 2020 CNN Saliency map AUC = 0.89
[62], 2020 XGBoost SHAP AC = 0.83
[63], 2020 XGBoost Tree SHAP AUC = 0.71
[65], 2020 XGBoost Anchors,

LIME, SHAP
AC = 0.98

[67], 2020 XGBoost OptiLIME N/A
[45], 2021 SLSE ALE AUC = 0.87
[64], 2021 1D CNN SHAP AUC = 0.97
[46], 2021 LR, RF, XGBoost Effect score AUC = 0.91
[59], 2021 Patho-GAN Patho-GAN MSE = 0.01
[68], 2021 XGboost SHAP AC = 0.95
[66], 2021 RF PDP AUC = 0.90

Cancer

[53], 2013 SLIM Scoring System AC = 0.97
[69], 2019 CNN ALIME AC = 0.95
[70], 2021 XGBoos Anchors,

LIME, SHAP
AC = 0.78

Influenza and
Infection

[71], 2020 XGBoost SHAP AUC = 0.84
[72], 2021 DT, RF, ANN ICE, PDP,ALE F1 = 0.80

COVID-19 [37], 2020 XGBoost Feature
Importance AC = 0.90

[73], 2020 DNN Grad-CAM,LRP F1 = 0.95

Depression [54], 2017 CNN MUSE, BETA AC= 0.98

Autism [74], 2021 Rough set Rule-based AC = 0.90

6. Challenges of IML

There are still some challenges that need to be addressed in IML to increase its
applications in sensitive domains such as healthcare. In the following subsections, we
identify several challenges.
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6.1. Challenges in the Development of IML Model

• Causal Interpretation

Physicians often study causal relationships into the underlying data-generating sys-
tems that IML techniques generally cannot provide [75]. Identifying causes and effects,
predicting the effects of treatments, and answering counterfactual questions are examples
of common causal investigations [76]. For example, a researcher may want to classify risk
factors or evaluate average and individual treatment effects [77]. As a result, researchers
may tend to interpret the results of the IML model from a causal perspective. Nevertheless,
it is not always easy to interpret prediction models causally. Standard supervised ML mod-
els cannot provide a causality model; instead, they are developed to exploit associations. As
a result, a model may rely on the causes and effects of the target variables, as well as factors
that assist in reconstructing unobserved impacts on Y, such as causes of effects [78,79]. As
a result, even a reasonable interpretation of black-box machine learning performance may
fail to generalize different contexts other than the training dataset. Therefore, using this
model in the real world can be risky [80]. To overcome this challenge, more understand-
able or even causal models must be developed. To enable causal interpretations, a model
should ideally represent the actual causal structure of its underlying events. However,
explanations that encompass all causes of a particular prediction or behavior are extremely
difficult to explain. Partial dependency plots (PDP) and individual conditional expectation
plots (ICE) can be used to uncover causal relationships from IML models.

• Feature Dependence

When features are dependent, interpreting an ML model that is trained with small
training data with perturbation-based IML techniques can lead to misleading interpre-
tations [81]. Perturbations can generate unrealistic data that are used to train an ML
model and generate predictions, which are then aggregated to provide global interpre-
tations [82]. Original values can be replaced with values from an equidistant grid of the
feature, randomly or permuted values [43], or quantifies can be used to perturb feature
values. Molnar et al. [75] point out two significant problems. First, all three perturbation
methods produce implausible data points when the features are dependent, i.e., the new
data might lie outside the joint multivariate distribution data. Second, even if features are
independent, computing the values for the feature of interest using an equidistant grid
may lead to incorrect findings [81,83]. This problem is exacerbated when global interpreta-
tion methods apply the same weight and confidence to such points to considerably more
realistic samples with high model confidence.

6.2. Challenges of IML Interpretation Properties

• Uncertainty and Inference

There is inherent uncertainty in machine learning interpretation methods and ma-
chine learning itself due to the statistical nature of most of its algorithms [84] and the
problem extended to healthcare. Many machine learning models make predictions without
specifying how much confidence the model has inaccuracy. Plenty of IML techniques,
such as permutation feature importance or Shapley values, give explanations without
calculating the explanation uncertainty [28]. The ML models and interpretation methods
generate their predictions based on data and thus are subject to uncertainty. Different
IML methods require different uncertainty measurements, for example, there are many
works towards identifying uncertainty in feature impertinence [85–87], Shapley values [88],
and layer-wise relevance propagation [89]. Even though medicine is one of the oldest
sciences, understanding the underlying causal systems is still in infancy. The treatment of
the disease is usually unclear, and the mechanisms by which treatments provide benefit are
either unknown or poorly understood [90]. As a result, theoretical, associative, and opaque
decisions are common in medicine [4]. Curchoe [85] argues that all models are incorrect;
some of them, however, are beneficial.

• Robustness and Fidelity
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The lack of robustness and fidelity exists inherently in many post hoc methods. A
single prediction may obtain different explanations when the interpretations method repeat
the call for the same prediction. These issues arise due to the random sampling and data
perturbation that are used to generate explanations in many IML models such as LIME
and SHAP. The instability of explanation occurs because every time a perturbation-based
interpretation method calls, it will generate a random data points around the prediction.
The new generated data might not be same as the previous one that perturbation-based
interpretation method generate which leads to different explanations. Variants solutions
have been proposed to tackle the trade-off between fidelity and robustness, yet these issues
are still without an ultimate solution [69]. Robustness and fidelity can be evaluated by
repeating the perturbation-based method at the same conditions, and test whether the
results are equivalent.

6.3. Challenges of Interpretation Methods

• Feature-Based Methods

Feature-based methods may lead to misleading explanations when the features are
correlated [91]. For example, if we have data that contains the height and the weight of a
person, shuffling the features might lead to unrealistic and impossible scenarios (one-meter
person weighing 150 kg). Feature-based methods will use the unrealistic data to provide
explanations and that will lead to misleading explanations. Moreover, shuffling the features
adds randomness to the measurement. When the feature-based method call is repeated,
the results might be different from the previous calls causing interpretation instability [32].
One way to avoid this problem is to check first the correlation between the features. If there
is no correlation, then feature-based methods are applied.

• Perturbation-Based Methods

When features are dependent, interpreting an ML model that is trained with small
training data with perturbation-based IML techniques can lead to misleading interpreta-
tions [81]. Perturbations can generate an unrealistic dataset that is used to train the IML
model which might lead to misleading explanations. The new data that are generated
using perturbation-based methods might lie outside the joint multivariate distribution
data. Even if features are independent, computing the values for the feature of inter-
est using an equidistant grid may lead to incorrect findings [81,83]. Moreover, in some
perturbation-based methods, a single prediction may obtain different explanations when
the interpretations method repeat the call for the same prediction. These issues arise due
to the random sampling and data perturbation that are used to generate explanations.
The new generated data might not be same as the previous one that perturbation-based
interpretation method generate which leads to different explanations.

• Rule-Based Methods

Rule-based methods deal with categorical features, and any numeric feature to be
used needs to be changed to be categorical. Changing numerical features to categorical is
not trivial and has many open questions. Moreover, many rule-based methods are prone to
overfitting and require feature selection to reduce the dimensionality of the feature space.
Reducing the feature dimensionality is also required to reduce the complexity of the expla-
nations generated by rule-based methods. For example, a rule-based method that produces
an explanation with hundreds of rules is difficult to understand. Reduction of feature
dimensionality is needed to reduce the number of rules and provides easier explanation.
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• Image-Based Methods

As seen in Figure 11 and previous formulas, most image-based methods highlight the
pixels with significant impact to the prediction. Such method might provide ambiguous
explanations. For example, highlighting a pixel does not easily reveal any useful infor-
mation. Moreover, pixel-based methods can be very fragile, and by introducing a small
change to the image irrelevant to the prediction, they can lead to very different pixel being
highlighted as explanation [92].

In the next section, we present our thought on IML and the future direction of the field.

7. Discussion and Future Direction

Interpretability is an essential and even indispensable property that impacts discover-
ing knowledge, debugging, or justifying the model predictions and improving the model
performance. In the following, we will discuss some of the highlighted points in IML and
the field’s future direction.

• Interpretability is Important in Critical Applications

There is an argument stating that explaining black-box models can lead to failed
explanations [93] and that only transparent models are trustworthy; such an approach is
limiting the area of interpretability to very few methods. We have witnessed the incredible
success in technology that used black-box models in significant areas such as autopilot
driving and aircraft collision systems that compute their output without human interaction.
We believe that there are two circumstances in which interpretability is not required [94]:
(1) when there are no severe consequences or significant implications for incorrect results,
and (2) when the problem has been extensively studied and validated in real-world appli-
cations. Therefore, we can argue that interpretability is essential to build trust and improve
knowledge in many critical applications; however, applying black-box models in such
applications must not be a limitation. After all, we should use mathematical models as
tools, not as masters [95]. However, before rushing into very complex ML models, it is
always better to train different methods and evaluate the performance.

• Interpretability Cannot be Mathematically Measured.

Note that the correct measurement of IML properties is one of the challenges of IML.
The main reason is that they are related to real-world objectives, which are difficult to encode
as mathematical functions such as ethics [41]. Moreover, interpretability cannot be measured
because it depends on human understanding, which differs between individuals. Therefore,
we can argue that measuring the interpretation certainty is mathematically impossible.

• Different People Need Different Explanations

Note that different users require different types of explanations. Therefore, to develop
an IML model, we can argue that explanations need to fulfill at least three factors: user
knowledge and understanding, the application domain, and the problem use case [10].
For example, in the healthcare field, we are dealing with doctors who are experts in
their sector. Thus, explanations need to be made considering the doctor’s knowledge,
application domain, and the disease to make data-driven decisions that lead to higher
quality service. Such explanation will give the doctors the confidence about the model
prediction. Therefore, we can argue that ML interpretability is domain-specific [93].

• Human Understanding is Limited

In terms of understanding, humans can understand ML models built on simple and
not too many rules, such as linear models and simple decision trees. With such a model, it
is intuitive to understand input–output mapping. As a result, the effect of changing any
input can be interpreted without knowing the value of other inputs. Deep learning models,
on the other hand, typically involve nonlinear inputs that have strong interactions. That
means the input–output mapping will be complex, and the effect of changing any input
may depend on the values of the other inputs, which makes it hard to be understood by a
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human [96]. Overall, DL and ML model learns and extract rules and takes deterministic
decisions based on the data given. Because such decisions are based on complex rules,
it is difficult to be understood by humans, and therefore it is called a black-box model.
Consequently, we can argue that developing interpretation methods that facilitate human
understanding of the black-box model prediction is garnered much attention.

• Visual Interpretability is Promising

The human cognitive ability to understand visual representation makes it a perfect
tool to interpret the performance of ML models. Visual representation is a powerful tool
used to interpret the relationship between the ML model input and output in a transparent
way [97]. In real-world practice, visualization has been applied to facilitate very complex
fields such as the stock market and has been used to take many critical decisions. Therefore,
visual analytic has become a field of interest for many researchers [98]. We believe that
visual representation will be a great tool to interpret the model performance and generate
transparent ML models.

• Model Agnostic Interpretation is Trending

Model-agnostic methods have gained researchers’ attention due to their flexibility [7]
that grant it the ability to work separately from the ML model. This advantage grants
developers the flexibility to apply the model-agnostic method to any ML model. Another
advantage of model-agnostic is that it is not limited to a particular form of explanation.
For example, a linear explanation might be the best way to explain the model in a specific
ML model; however, a graphic explanation can be better in another model. In addition,
the low switching cost of the model-agnostic methods is another advantage that allows
developers to compare the explanations generated by different methods [99]. Therefore,
there has been an increasing interest in model-agnostic interpretability methods as they are
model-independent.

• Local Explanations are More Accurate

Local explanations provide more trust to the model outcome as they focus on data to
generate individual explanations. On the contrary, global explanations concentrate on the
whole model functionality to provide insight into the decision-making process. As a result,
local explanations are more reliable than global explanations in terms of certainty.

8. Conclusions

It is significant to utilize IML models in healthcare domains to help healthcare pro-
fessionals make wise and interpretable decisions. In this paper, we provided an overview
of the principles, proprieties, and outcomes of IML. More importantly, we discussed in-
terpretability approaches and ML methods used in healthcare supported by examples
of state-of-the-art healthcare applications to provide a tutorial on the development and
applications of IML models. Besides, the challenges faced by applying IML models in
healthcare domains were addressed in this study. We also highlighted some points and
the future directions of developing and applying IML in healthcare to support ML-based
decision-making in critical situations.
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Abbreviations
The main abbreviations of this work are:

[H] ML Machine Learning
IML Interpretable Machine Learning
DL Deep Learning
GDPR General Data Protection Regulation
EHR Electronic Health Record
CVD Cardiovascular Diseases
ANN Neural Network
CNN Convolutional Neural Network
1D CNN One Dimensional Convolutional Neural Network
RNN Recurrent Neural Network
XGBoost eXtreme Gradient Boosting
Adaboost Adaptive Boosting
GBoost Gradient Boosted trees
RF Random Forest
SVM Support Vector Machine
KNN Key Nearest Neighbors
DT Decision Trees
GAM Generalized Additive Model
LR Logistic Regression
PDP Partial Dependence Plot
ICE Individual Conditional Expectation
ALE Accumulated Local Effects plot
OOB Out-Of-Bag
LIME Local Interpretable Model-agnostic Explanation
SHAP Shapley Additive exPlanation
LDH Lactic DeHydrogenas
hs-CRP High-Sensitivity C-Reactive Protein
EHR Electronic Health Record
BETA Black Box Explanations through Transparent Approximations
MUSE Model Understanding through Subspace Explanations,
SLSE SuperLearner Stacked Ensembling
SLIM Supersparse Linear Integer Model
GENESIM Genetic Extraction of a Single Interpretable Model
ALIME Autoencoder Based Approach for Local Interpretability
OptiLIME Optimized LIME
AUC Area Under Curve
AC Accuracy
F1 F1-score
MSE Mean Square Error
LRP Layer wise Relevance Propagation
DNN Deep Neural Networks
CXR Chest Radiography Images
Grad-CAM Gradient-weighted Class Activation Mapping
DTs Decision Trees
MI Model internal
FS Feature Summary
SI Surrogate intrinsically interpretable
N/A Not Available
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