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Abstract: The crossing number of a graph G is the minimum number of edge crossings over all
drawings of G in the plane. The main purpose of this paper is to determine the crossing numbers of
the join products of six symmetric graphs on six vertices with paths and cycles on n vertices. The
idea of configurations is generalized for the first time onto the family of subgraphs whose edges cross
the edges of the considered graph at most once, and their lower bounds of necessary numbers of
crossings are presented in the common symmetric table. Some proofs of the join products with cycles
are done with the help of several well-known auxiliary statements, the idea of which is extended by
a suitable classification of subgraphs that do not cross the edges of the examined graphs.
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1. Introduction

We consider finite and simple graphs G with the vertex set V(G) and the edge set
E(G), and refer to Klešč [1] for further notation and terminology. The crossing number cr(G)
of a graph G is the minimum possible number of edge crossings over all drawings of G in
the plane. It is well known that a drawing with a minimum number of crossings called
an optimal drawing is always a good drawing, meaning that no edge crosses itself, no two
edges cross more than once, and no two edges are incident with the same vertex cross. Let
D be a good drawing of the graph G. We denote the number of crossings in D by crD(G).
If Gi and Gj are edge-disjoint subgraphs of G, we denote the number of crossings between
edges of Gi and edges of Gj by crD(Gi, Gj), and the number of crossings among edges of
Gi in D by crD(Gi).

Many applications have the problem of reducing the number of edge crossings in
the drawings of graphs; one of the most popular areas is the implementation of a VLSI
layout, which caused a revolution in circuit design and has a strong influence on parallel
computations. So, the mentioned problem is, therefore, investigated not only by the graph
theory, but also by a lot of computer scientists in an effort to, for example, minimize the
number of joints on the motherboards of computers. Since edge crossings in clustered
level graphs are very similar to edge crossings in level graphs, a cross minimization has its
application also in the graph-state quantum computation; see Bachmaier et al. [2]. Garey
and Johnson [3] proved that calculation of the crossing number of a given simple graph in
general is an NP-complete problem. A survey of the exact values of the crossing numbers
for several families of graphs can be found by Clancy et al. [4].

Throughout this paper, Kleitman’s result [5] on the crossing numbers for some com-
plete bipartite graphs Km,n are used in several parts of proofs. He proved that

cr(Km,n) =
⌊m

2

⌋⌊m− 1
2

⌋⌊n
2

⌋⌊n− 1
2

⌋
, if m ≤ 6. (1)
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The join product of two graphs Gi and Gj, denoted as Gi + Gj, is obtained from vertex-
disjoint copies of Gi and Gj by adding all edges between V(Gi) and V(Gj). For |V(Gi)| = m
and |V(Gj)| = n, the edge set of Gi + Gj is the union of the disjoint edge sets of the graphs
Gi, Gj and Km,n. Let Dn, Pn, and Cn be the discrete graph, the path, and the cycle on n vertices,
respectively. The crossings numbers of the join products of all graphs of order at most
four with paths and cycles have been well known for a long time by Klešč [6,7], and Klešč
and Schrötter [8]. We present a new technique of recalculating the number of crossings
due to the combined fixation of different types of subgraphs in an effort to achieve the
crossings numbers of G + Pn and G + Cn also for all graphs G of orders five and six. Of
course, cr(G + Pn) and cr(G + Cn) are already known for a lot of connected graphs G of
orders five and six [1,9–17], but only for some disconnected graphs [18–20].

Let G∗ be the graph of order six consisting of one 4-cycle and a path P3, whose one
end vertex is identical to one vertex of the 4-cycle. The crossing number of G∗ + Dn equal
to 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

is determined in Theorem 1 with the proof that is strongly based
on different symmetries between the investigated subgraph configurations in G∗ + Dn.
Here, the idea of configurations is generalized onto the family of subgraphs whose edges
cross the edges of G∗ at most once, and the obtained lower bounds of necessary numbers
of crossings are presented in the common symmetric Table 1. Note that we are unable to
establish cr(G∗ + Dn) using the methods presented in [21] because there is a possibility
to obtain a subgraph T j with crD(Ti, T j) = 1 and crD(G∗, T j) = 1 in some subdrawing
D(G∗ ∪ Ti) induced by a drawing D of G∗ + Dn in which crD(G∗, Ti) = 0; see also Table 1.
The result of the main Theorem 1 can be extended to the same crossing number of G∗ + Pn
in Corollary 2, using two special drawings of G∗ + Pn for n even and odd. The crossing
numbers of Gi + Dn for two other graphs Gi of order six are given in Corollaries 1 and 3 by
adding new edges to the graph G∗.

Table 1. The minimum numbers of edge crossings between two different subgraphs Ti and T j for
two configurations Xp and Yq of the subgraphs Fi and Fj, respectively.

- A1 A2 A3 A4 B1 B2

A1 6 3 5 4 1 4
A2 3 6 4 5 4 1
A3 5 4 6 5 2 3
A4 4 5 5 6 3 2

B1 1 4 2 3 6 1
B2 4 1 3 2 1 6

Let H∗ be the graph on six vertices consisting of one 4-cycle and two leaves adjacent
to two different but not opposite vertices of the 4-cycle. In [22], Staš proved the crossing
number of H∗ + Dn for n ≥ 1 using the properties of cyclic permutations. The crossing
number of H∗ + Pn is given using its good drawing and presented in Corollary 5. Conse-
quently, the obtained values of cr(G∗ + Pn) and cr(H∗ + Pn) help us to state cr(G1 + Pn) as
the result of Theorem 5, thanks to multiple symmetries of the graph G1. cr(Hi + Pn) also
for two other graphs Hi of order six are presented in Theorems 3 and 4 by adding new
edges to the graph H∗.

The paper concludes by giving the crossing numbers of the join products of the six
graphs of order six mentioned above with the cycles Cn. Additionally, in this paper, some
proofs are supported by two well-known auxiliary statements: Lemmas 5 and 6.

2. Cyclic Permutations and Configurations

Let G∗ be the connected graph on six vertices such that it contains as a subgraph
one 4-cycle and a path P3 whose one end vertex is identical to one vertex of the 4-cycle
(for brevity, we write C?

4 ). Without lost of generality, let V(G∗) = {v1, v2, . . . , v6}, and
let v3v4v5v6v3 and v1v2v3 be the vertex notation of the 4-cycle C?

4 and the path on three
vertices in all our considered good drawings of G∗, respectively. Notice that each join
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product G∗ + Dn consists of exactly one copy of the mentioned graph G∗ and n different
vertices t1, . . . , tn, where each such vertex ti is adjacent to any vertex of G∗. Throughout the
paper, we denote by Ti the subgraph of G∗ + Dn induced by the six edges incident with
the vertex ti. This enforces that the considered graph T1 ∪ · · · ∪ Tn is isomorphic to K6,n,
which yields

G∗ + Dn = G∗ ∪ K6,n = G∗ ∪
(

n⋃
i=1

Ti

)
. (2)

In any drawing D of the join product G∗ + Dn, by the rotation rotD(ti) of a vertex ti,
we understand the cyclic permutation that records the (cyclic) counter-clockwise order
in which the edges leave ti. See also Hernández-Vélez et al. [23] and Woodall [24]. We
use the notation (123456) if the counter-clockwise order of the edges incident with the
vertex ti is tiv1, tiv2, tiv3, tiv4, tiv5, and tiv6. Notice that a rotation is a cyclic permutation,
and therefore, we try to represent each cyclic permutation by the permutation with 1
in the first position whenever possible. Let rotD(ti) denote the inverse permutation of
rotD(ti). In the paper, it is very helpful to separate n different subgraphs Ti of G∗ + Dn
into three subsets depending on the number of crossings between Ti and G∗ in D. Let
RD = {Ti : crD(G∗, Ti) = 0} and SD = {Ti : crD(G∗, Ti) = 1}. Each remaining subgraph
Ti crosses the edges of G∗ more than once. For any Ti ∈ RD ∪ SD, we also write Fi instead
of G∗ ∪ Ti.

We also have to emphasize that there at least 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

crossings in each
good drawing D of G∗ + Dn with the empty set RD provided by

crD(G∗ + Dn) = crD(K6,n) + crD(G∗) + crD(G∗, K6,n) ≥ 6
⌊n

2

⌋⌊n− 1
2

⌋
+ n

≥ 6
⌊n

2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
.

According to the expected result of Theorem 1, this leads to a consideration of the
nonempty set RD in all good drawings of G∗ + Dn. As we can always redraw a crossing of
two edges of C?

4 to get a new drawing of C?
4 (with vertices in a different order) with fewer

edge crossings, the proof of Lemma 1 can be omitted. It is also well known that the same
crossing number is obtained for two isomorphic subdrawings of one graph induced by any
drawing of the join product with another graph.

Lemma 1. In any optimal drawing D of the join product G∗ + Dn, the edges of C?
4 do not cross

each other. Moreover, the subdrawing of G∗ induced by D, in which there is a possibility to obtain
a subgraph Ti ∈ RD, is isomorphic to one of the two drawings depicted in Figure 1.

(a) (b)

v1

v2

v3

v
4 v5

v6

v1

v2

v3

v4 v5

v6

Figure 1. Two possible non-isomorphic drawings of the graph G∗ for which cr(C?
4 ) = 0, and also

with a possibility of obtaining a subgraph Ti whose edges do not cross the edges of G∗. (a): the
planar drawing of G∗; (b): the drawing of G∗ with crD(G∗) = 1.

Assume a good drawing D of the join product G∗+ Dn in which the edges of G∗ do not
cross each other. For this purpose, consider the planar drawing of the graph G∗ as shown in
Figure 1a. For subgraphs Ti ∈ RD, we establish all possible rotations rotD(ti) which could
appear in the considered drawing D. Clearly, there is only one subdrawing of Fi \ {v2, v3}
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and can be represented by the subrotation (1654). We have just four possibilities of getting
a subdrawing of Fi = G∗ ∪ Ti, depending on which of the two regions the edges tiv2
and tiv3 can be placed in. Thus, there are four different cyclic permutations for rotD(ti)
with crD(G∗, Ti) = 0, namely, the cyclic permutations (123654), (165432), (136542), and
(126543). Let us denote these cyclic permutations by A1 = (123654), A2 = (165432),
A3 = (136542), and A4 = (126543). We say that a subdrawing of Fi has the configuration
Ap, if rotD(ti) = Ap for some p ∈ {1, 2, 3, 4}. Suppose their drawings are as shown in
Figure 2 because it does not matter which of the regions in D(G∗ ∪ Ti) is unbounded in
our considerations.
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6
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A
1
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2
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3
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4

Figure 2. Four possible drawings of Fi with a configuration fromM.

In a contemplated good drawing of the graph G∗ + Dn with the planar subdrawing
of G∗, some configuration Ap may not appear. Hence, let MD denote the set of all
existing configurations Ap in the considered drawing D such that they are included in
the set M = {A1,A2,A3,A4}. Figure 2 also points to the possibilities of obtaining a
subgraph Tk ∈ SD with crD(Ti, Tk) = 1 and crD(Ti, Tk) = 2 for any subgraph Fi with
the configuration A1, A2 ∈ MD and A3, A4 ∈ MD, respectively. For this purpose, there
are two different cyclic permutations for rotD(tk) with crD(G∗, Tk) = 1, namely, the cyclic
permutations (154632) and (123465). Let us denote these two cyclic permutations by
B1 = (154632) and B2 = (123465). We say that a subdrawing of Fk has the configuration
Bq, if Tk ∈ SD and rotD(tk) = Bq for q ∈ {1, 2}. In view of our other considerations,
suppose their drawings are as shown in Figure 3. Obviously, rotD(tl) equal to either
(154632) or (123465) may not force just one crossing on only some edge of G∗ by the
corresponding subgraph Tl if the vertex tl is placed in the outer region of D(G∗) with the
four vertices v3, v4, v5, and v6 of G∗ on its boundary. As in the previous case of four possible
configurations, let ND denote the set of all existing configurations Bq in the considered
drawing D such that they are included in the set N = {B1,B2}.

v
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v
1

v
2

v
2

v
3 v

3

v
4

v
4 v

5
v
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v
6

v
6

B
1 B

2

Figure 3. Two possible drawings of Fk with a configuration from N .
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Now, our aim is to establish a minimum number of edge crossings between two
different subgraphs Fi and Fj using the idea of mentioned configurations. For two configu-
rations X and Y fromMD (not necessarily different), let crD(X ,Y) denote the number of
edge crossings in D(Ti ∪ T j) for two different subgraphs Ti, T j ∈ RD such that Fi, Fj have
configurations X , Y , respectively. We denote by cr(X ,Y) the minimum value of crD(X ,Y)
over all pairs X and Y fromM among all good drawings D of the join product G∗ + Dn.
In the following, our goal is to determine the lower bounds of cr(X ,Y) for all possible
pairs X ,Y ∈ M and we also partially extend this idea of lower bounds to a subfamily of
subgraphs by which the edges G∗ are crossed exactly once, that is, for subgraphs with the
configurations B1 and B2.

At least five interchanges of adjacent elements of (123654) are necessary to obtain
cyclic permutation (136542) = (124563) because only one interchange of the adjacent
elements of (123654) produces the cyclic permutation (136542). (Let Tx and Ty be any two
different subgraphs represented by their rot(tx) and rot(ty) of the same length m, where m
is a positive integer of at least 3. If the minimum number of interchanges of adjacent ele-
ments of rot(tx) required to produce rot(ty) is at most z, then crD(Tx, Ty) ≥

⌊m
2
⌋⌊m−1

2
⌋
− z,

see also Woodall [24].) Using this knowledge, the edges of each subgraph Ti with the con-
figuration A1 of Fi are crossed at least five times by the edges of each subgraph T j with
the configurationA3 of Fj, that is, cr(A1,A3) ≥ 5. The same idea also force cr(A1,A2) ≥ 3,
cr(A1,A4) ≥ 4, cr(A2,A3) ≥ 4, cr(A2,A4) ≥ 5, and cr(A3,A4) ≥ 3. Moreover, by a
simple discussion, we can verify that the lower bound of cr(A3,A4) can be increased
up to 5. Let Fi be any subgraph with the configuration A3, and let T j be some different
subgraph from RD satisfying the restriction crD(Ti, T j) < 5. If we place the vertex tj in the
region of D(G∗ ∪ Ti) with the three vertices v2, v3 and v4 of G∗ on its boundary, then the
edges tjv1, tjv5 and tjv6 produce exactly one, one and two crossings on the edges of Ti,
respectively. Thus, rotD(tj) = (165432) = A2. Other placements of the vertex tj imply at
least five crossings on the edges of Ti ∪ T j. Clearly, also cr(Ap,Ap) ≥ 6 for any p = 1, 2, 3, 4.
The same method as above can be applied to establish the remaining lower bounds of two
configurations fromM∪N . All resulting lower bounds are summarized in the common
symmetric Table 1 in which Xp and Yq are configurations of two different subgraphs Fi

and Fj, where X ,Y ∈ {A,B} and if X = A or Y = A then p ∈ {1, 2, 3, 4} or q ∈ {1, 2, 3, 4};
otherwise, p ∈ {1, 2} or q ∈ {1, 2}, respectively.

3. The Crossing Number of G∗+ Dn

In a good drawing of G∗ + Dn, two different vertices ti and tj of the graph G∗ + Dn

are said to be antipodal if the edges of the corresponding subgraph Ti ∪ T j do not cross each
other. A drawing is said to be antipode-free if it does not contain any two antipodal vertices.

Lemma 2. For n > 2, let D be a good and antipode-free drawing of G∗ + Dn with the subdrawing
of G∗ induced by D given in Figure 1a. For some p ∈ {1, 2}, if there is a subgraph Ti ∈ RD with
the configuration Ap ∈ MD of Fi and a subgraph Tk ∈ SD such that crD(Ti, Tk) = 2, then

(a) crD(G∗ ∪ Ti ∪ Tk, Tl) ≥ 8 for any subgraph Tl ∈ RD, l 6= i; and
(b) crD(G∗ ∪ Ti ∪ Tk, Tl) ≥ 7 for any subgraph Tl ∈ SD, l 6= k; and
(c) crD(G∗ ∪ Ti ∪ Tk, Tl) ≥ 6 for any subgraph Tl 6∈ RD ∪ SD.

Proof. Let A1 be the configuration of Fi and remark that it is uniquely represented by its
rotD(ti) = (123654). The induced subdrawing D(G∗ ∪ Ti) of Fi contains just six regions
with the vertex ti on their boundaries. If we consider a subgraph Tk ∈ SD satisfying
the restriction crD(Ti, Tk) = 2, then the corresponding vertex tk can only be placed in
the region with the four vertices v1, v2, v3, and v4 of G∗ on its boundary. Using this
knowledge, the edges tkv1, tkv3, and tkv4 produce no crossings on edges of Fi, and the edge
tkv2 either crosses the edge tiv1 or does not cross any edge of Fi. If tkv2 crosses tiv1, then
rotD(tk) = (125463). If the edges of Fi are not crossed by tkv2 and also tkv5 crosses v3v4 of
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G∗, then rotD(tk) = (164532). Finally, if tkv5 crosses tiv4, then tkv6 crosses either v2v3, tiv3
with rotD(tk) = (154362) or v4v5, tiv4 with rotD(tk) = (156432).

In the following, we suppose Tk ∈ SD with rotD(tk) = (125463), but a similar idea
can be applied to the other three cases mentioned above.

(a) Let us assume Tl ∈ RD, l 6= i, with the configuration Ap ∈ MD of Fl for some
p ∈ {1, . . . , 4}. Table 2 summarizes the minimal values of necessary crossings among
the edges in the subdrawing D(Ti ∪ Tk ∪ Tl). The values in the first column of
Table 2 are given by the lower bounds from the first column of Table 1. Moreover, the
mentioned results in the second column of Table 2 are obvious for p = 1 and p = 3,
because crD(T j, Tl) = 1 for A1 of Fl and crD(T j, Tl) = 2 for A3 of Fl can be achieved
for some T j ∈ SD only with the configuration B1 of Fj again by Table 1 (note that
rotD(tk) 6= rotD(tj)). For the configuration A2 of Fl , it is easy to verify in all possible
regions of D(G∗ ∪ Tl) that the edges of Tl must be crossed by Tk more than four times.
Finally for p = 4, crD(Tk, Tl) ≥

⌊ 6
2
⌋⌊ 6−1

2
⌋
− 2 = 4 provided by two interchanges of

adjacent elements of rotD(tl) produce rotD(tk). As Tl ∈ RD, the minimum value in
the last column of Table 2 forces the mentioned minimum number of edge crossings.

(b) As crD(Ti, Tk) = 2 with rotD(tk) = (125463), the subdrawing D(G∗ ∪ Ti ∪ Tk) is
clearly interpreted, and so it is not difficult to check in all considered regions of
the induced subdrawing D(G∗ ∪ Ti ∪ Tk) that the edges of G∗ ∪ Ti ∪ Tk are crossed
more than six times by any subgraph Tl ∈ SD, l 6= k. The second way is to use the
software COGA created by Berežný and Buša [25] to generate all permutations of six
elements in which we need at most five exchanges of adjacent elements to achieve
both rotations, rotD(ti) and rotD(tk).

(c) Let Tl be any subgraph whose edges cross the edges of G∗ more than once. As
crD(Ti, Tk) = 2 and crD(K6,3) ≥ 6 by (1), the edges of Ti ∪ Tk must be crossed at least
four times by Tl , which yields crD(G∗ ∪ Ti ∪ Tk, Tl) ≥ 2 + 4 = 6.

Table 2. All possibilities of the configurations Ap of Fl for Tl ∈ RD with l 6= i.

conf(Fl) crD(T i, T l) crD(Tk, T l) crD(T i ∪ Tk, T l)

A1 6 2 8
A2 3 5 8
A3 5 3 8
A4 4 4 8

Due to the symmetry of the configurations A1 and A2, the proof can proceed in the
same way also for the configuration A2 of Fi, and so the proof of Lemma 2 is done.

Lemma 3 (See [26] Lemma 3.1). For n > 2, let D be a good and antipode-free drawing of
G∗ + Dn. Let 2|RD| + |SD| > 2

⌈ n
2
⌉
, and let Ti, T j ∈ RD be two different subgraphs with

crD(Ti ∪ T j) ≥ 4. If both conditions

crD(G∗ ∪ Ti ∪ T j, Tl) ≥ 10 for any Tl ∈ RD \ {Ti, T j}, (3)

crD(G∗ ∪ Ti ∪ T j, Tk) ≥ 7 for any Tk ∈ SD (4)

hold, then there are at least 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

crossings in D.

Lemma 4. cr(G∗ + D1) = 0 and cr(G∗ + D2) = 2.

Proof. The graph G∗ + D1 is planar, and so cr(G∗ + D1) = 0. Let H be the graph of order
five consisting of one 4-cycle v3v4v5v6v3 and one leaf v2 adjacent to the vertex v3. This was
proved by Klešč and Schrötter [12] that cr(H + P2) = 2. As G∗ + D2 contains a subgraph
that is a subdivision of H + P2, we obtain cr(G∗ + D2) ≥ cr(H + P2) = 2. The proof of
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Lemma 4 is done due to the subdrawing of the graph G∗ + D2 having exactly two crossings
in Figure 4.

v
1

v
2

v
3

v
4

v
5

v
6

t
1

t _⌈ ⌉n2
t
n

+1_⌈ ⌉n2
t

Figure 4. The drawing of G∗ + Dn with 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

crossings.

Theorem 1. cr(G∗ + Dn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

for n ≥ 1.

Proof. The good drawing of the join product G∗ + Dn with exactly 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

cross-
ings in Figure 4 enforces the required upper border, that is, cr(G∗ + Dn) ≤ 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
.

To prove the lower border by induction on n, suppose that for some n ≥ 3 using Lemma 4,
there is a drawing D such that

crD(G∗ + Dn) < 6
⌊n

2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
, (5)

and let also

cr(G∗ + Dm) = 6
⌊m

2

⌋⌊m− 1
2

⌋
+ 2
⌊m

2

⌋
for any 2 ≤ m < n. (6)

We first show that the considered drawing D is with no antipodal vertices. For this
purpose, let crD(Ti, T j) = 0 hold for two different subgraphs Ti and T j. If at least one of Ti

and T j, say Ti, does not cross the edges of G∗, then the edges of G∗ ∪ Ti must be crossed by
T j more than once, that is, crD(G∗ ∪ Ti, T j) ≥ 2. If Ti, T j 6∈ RD, then crD(G∗, Ti ∪ T j) ≥ 2.
The well-known fact cr(K6,3) = 6 by (1) produces at least six crossings on the edges of
Ti ∪ T j by each other subgraph Tk, k 6= i, j. So, the number of crossings in D satisfies

crD(G∗ + Dn) = crD(G∗ + Dn−2) + crD(Ti ∪ T j) + crD(K6,n−2, Ti ∪ T j) + crD(G∗, Ti ∪ T j)

≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 2
⌊n− 2

2

⌋
+ 0 + 6(n− 2) + 2 = 6

⌊n
2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
.

The obtained contradiction with the assumption (5) does not allow the existence of
two antipodal vertices, that is, D is an antipode-free drawing. If we use the notation
r = |RD| and s = |SD|, then crD(K6,n) ≥ 6

⌊ n
2
⌋⌊ n−1

2
⌋

again by (1) together with (5) force
the following relation with respect to the edge crossings of the subgraph G∗ in D:

crD(G∗) + ∑
Ti∈RD

crD(G∗, Ti) + ∑
Ti∈SD

crD(G∗, Ti) + ∑
Ti 6∈RD∪SD

crD(G∗, Ti) < 2
⌊n

2

⌋
,

i.e.,
crD(G∗) + 0r + 1s + 2(n− r− s) < 2

⌊n
2

⌋
. (7)
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The mentioned inequality (7) subsequently enforces 2r + s > 2n− 2
⌊ n

2
⌋
= 2d n

2 e, that
is, r ≥ 1 and r > n− r− s. As the set RD is nonempty, we deal with the possibilities of
obtaining a subgraph Ti ∈ RD, and a contradiction with the assumption (5) is reached in
all considered cases.

Case 1: crD(G∗) = 0. As r ≥ 1, we consider the subdrawing of G∗ induced by D given
in Figure 1a and we deal with the possible configurations Ap from the nonempty setMD.
For p ∈ {1, 2}, let us first consider that Ap ∈ MD and let also for some Ti ∈ RD with the
configuration Ap of Fi there is a subgraph Tk ∈ SD by which the edges of Ti are crossed
exactly twice. Then, by fixing the subgraph G∗ ∪ Ti ∪ Tk and using the lower bounds in
Lemma 2, we have

crD(G∗ + Dn) = crD(K6,n−2) + crD(K6,n−2, G∗ ∪ Ti ∪ Tk) + crD(G∗ ∪ Ti ∪ Tk) ≥ 6
⌊

n−2
2

⌋⌊
n−3

2

⌋
+8(r− 1) + 7(s− 1) + 6(n− r− s) + 3 ≥ 6

⌊
n−2

2

⌋⌊
n−3

2

⌋
+ 7(n− 2) + 3 ≥ 6

⌊
n
2

⌋⌊
n−1

2

⌋
+ 2
⌊

n
2

⌋
.

This contradicts the assumption (5). Therefore, suppose that for any Tk ∈ SD,
crD(Ti, Tk) 6= 2 holds for each subgraph Ti ∈ RD with the configuration Ap of Fi,
p ∈ {1, 2}. In the following, we discuss two main subcases with respect to whether
the set ND is empty or not.

Subcase 1: LetND be an empty set, that is, the edges of G∗ ∪ Ti are crossed more than
three times by any subgraph Tk ∈ SD, where Ti ∈ RD with some configuration Ap ∈ MD
of Fi.

i. {A1,A2} ⊆ MD. In the rest of the paper, assume two different subgraphs Tn−1, Tn ∈
RD such that Fn−1 and Fn have mentioned configurations A1 and A2, respectively.
By summing the values in the first two rows for four possible columns of Table 1
we obtain crD(G∗ ∪ Tn−1 ∪ Tn, Ti) ≥ 9 for any Ti ∈ RD with i 6= n − 1, n. Using
a relatively strong assumption of Subcase 1, any subgraph Tk ∈ SD crosses the
edges of both G∗ ∪ Tn−1 and G∗ ∪ Tn more than three times. This in turn means
that crD(G∗ ∪ Tn−1 ∪ Tn, Tk) ≥ 1 + 3 + 3 = 7 trivially holds for any Tk ∈ SD. Each
of n − r − s subgraph Tl 6∈ RD ∪ SD of K6,n−2 crosses G∗ ∪ Tn−1 ∪ Tn more than
four times using crD(Tn−1 ∪ Tn, Tl) ≥ 3. As crD(G∗ ∪ Tn−1 ∪ Tn) ≥ 3, by fixing the
subgraph G∗ ∪ Tn−1 ∪ Tn, we have

crD(G∗ + Dn) ≥ 6
⌊

n−2
2

⌋⌊
n−3

2

⌋
+ 9(r− 2) + 7s + 5(n− r− s) + 3

= 6
⌊

n−2
2

⌋⌊
n−3

2

⌋
+ 5n + 2(2r + s)− 15 ≥ 6

⌊
n−2

2

⌋⌊
n−3

2

⌋
+ 5n + 2

(
2
⌈ n

2
⌉
+ 1
)
− 15,

where the obtained number of crossings 6
⌊ n−2

2
⌋⌊ n−3

2
⌋
+ 5n + 4

⌈ n
2
⌉
− 13 contradicts

the assumption (5) only for n odd. For n even, it also applies if crD(Tn−1 ∪ Tn) > 3 or
2r + s > n + 1. Suppose the case for crD(Tn−1 ∪ Tn) = 3 and 2r + s = n + 1, which
yields s ≥ 1. This knowledge enables us to add at least one more crossing into the
mentioned number of crossings 6 n−2

2
n−4

2 + 5n + 4 n
2 − 13, because over 14 possible

regions of the symmetric subdrawing D(G∗ ∪ Tn−1 ∪ Tn), the edges of G∗ ∪ Tn−1 ∪ Tn

are crossed at least eight times by each Tk ∈ SD. This also confirms a contradiction
with the assumption in D.

ii. {A1,A2} 6⊆ MD. If Ap ∈ MD for only p ∈ {3, 4}, by fixing the subgraph G∗ ∪ Ti for
some Ti ∈ RD, we have

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 5(r− 1) + 4s + 3(n− r− s) + 0

≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 4(n− 1) ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
.

Of course, the same idea for the cases of {A1,A3} ⊆ MD and {A2,A4} ⊆ MD forces
the same result because crD(Ti, T j) ≥ 5 is also provided using the values in Table 1 for
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any subgraph T j ∈ RD, j 6= i if we fix the subgraph G∗ ∪ Ti with the configuration A3
and A4 of Fi, respectively. All these subcases contradict the assumption (5) in D, and
therefore, the case of |MD| = 2 offers only two possibilities of eitherMD = {A1,A4}
orMD = {A2,A3}. If we fix any two subgraphs Ti, T j ∈ RD such that Fi, Fj have the
configurations A1 and A4, respectively, then Table 1 confirms that the condition (3)
holds. The condition (4) follows from the special assumption ND = ∅ of Subcase 1.
As crD(Ti ∪ T j) ≥ 4, the discussed drawing again contradicts the assumption of D by
Lemma 3. Finally, ifMD = {Ap} for only one p ∈ {1, 2}, the proof can proceed in
the same way as in the case of Ap ∈ MD for only p ∈ {3, 4}.
Subcase 2: LetND be a nonempty set, that is, there is a possibility to obtain a subgraph

Tk ∈ SD satisfying crD(G∗ ∪ Ti, Tk) ≥ 2 for some Ti ∈ RD with either A1 or A2 of Fi. Let
us denote SD(B1) = {Tk ∈ SD : rotD(tk) = (154632)}, SD(B2) = {Tk ∈ SD : rotD(tk) =
(123465)}, and consequently s1 = |SD(B1)|, s2 = |SD(B2)|. Notice that SD(B1) and
SD(B2) are two disjoint subsets of SD, and s1 + s2 ≤ s, that is, s− s1 − s2 ≥ 0. Using their
symmetry, let s1 be greater than s2 provided that at least one of the sets SD(B1) and SD(B2)
is nonempty. Now, we discuss the four possible subcases:

i. A1 ∈ MD and assume some subgraph Fi, having the configuration A1. Let Tk be a
subgraph from the nonempty set SD(B1). By summing the values in two considered
rows for four possible columns of Table 1, we obtain crD(G∗ ∪ Ti ∪ Tk, T j) ≥ 7 for any
T j ∈ RD with j 6= i. The subgraph Fk is represented by the cyclic permutation (154632),
and so crD(G∗ ∪ Ti ∪ Tk, Tl) ≥ 1 + 1 + 6 = 8 holds for any other Tl ∈ SD(B1), l 6= k.
Moreover, crD(Ti ∪ Tk, Tl) ≥ 5 is fulfilling for any Tl with l 6= i, k because five
interchanges of adjacent elements of rotD(ti) produce rotD(tk). This forces crD(G∗ ∪
Ti ∪ Tk, Tl) ≥ 1 + 5 = 6 for any Tl ∈ SD(B2) and crD(G∗ ∪ Ti ∪ Tk, Tl) ≥ 2 + 5 = 7
for any Tl 6∈ RD ∪ SD. As crD(G∗ ∪ Ti ∪ Tk) ≥ 2, by fixing the subgraph G∗ ∪ Ti ∪ Tk,
we have

crD(G∗ + Dn) ≥ 6
⌊

n−2
2

⌋⌊
n−3

2

⌋
+ 7(r− 1) + 8(s1 − 1) + 6s2 + 7(s− s1 − s2) + 7(n− r− s) + 2

= 6
⌊

n−2
2

⌋⌊
n−3

2

⌋
+ 7n + (s1 − s2)− 13 ≥ 6

⌊
n
2

⌋⌊
n−1

2

⌋
+ 2
⌊

n
2

⌋
.

ii. A1 6∈ MD and A3 ∈ MD. Let us assume the configuration A3 of some subgraph Fi,
and let Tk ∈ SD(B1). Taking into account the subgraph G∗ ∪ Ti ∪ Tk, let us count the
necessary crossings in D. It is obvious that we have to deal with the possible existence
of a subgraph Tl ∈ SD by which the edges of G∗ ∪ Ti ∪ Tk can be crossed at most six
times. For this reason, suppose that crD(G∗ ∪ Ti ∪ Tk, Tl) = 6 is fulfilling for some
Tl ∈ SD \ SD(B2), l 6= k. This enforces that the edge tlv4 of Tl must cross the edge
v2v3 of G∗, which yields rotD(tl) = (124365). Since the subgraph Fl is identifiable
by its rotation rotD(tl), the minimum number of edge crossings of Ti ∪ Tk ∪ Tl by
some subgraph T j ∈ RD, j 6= i, of at least 11 can be shown by using the properties
of cyclic permutations. Over all possible regions of D(G∗ ∪ Ti ∪ Tk ∪ Tl) the edges
of G∗ ∪ Ti ∪ Tk ∪ Tl are crossed at least 10 times by each subgraph T j ∈ SD with
j 6= k, l and crD(G∗ ∪ Ti ∪ Tk ∪ Tl , T j) ≥ 9 is also true for any T j 6∈ RD ∪ SD. As
crD(G∗ ∪ Ti ∪ Tk ∪ Tl) ≥ 3 + 6, by fixing the subgraph G∗ ∪ Ti ∪ Tk ∪ Tl , we have

crD(G∗ + Dn) ≥ 6
⌊

n−3
2

⌋⌊
n−4

2

⌋
+ 11(r− 1) + 10(s− 2) + 9(n− r− s) + 9 = [6

⌊
n−3

2

⌋⌊
n−4

2

⌋
+9n + (2r + s)− 22 ≥ 6

⌊
n−3

2

⌋⌊
n−4

2

⌋
+ 9n +

(
2
⌈ n

2
⌉
+ 1
)
− 22 ≥ 6

⌊
n
2

⌋⌊
n−1

2

⌋
+ 2
⌊

n
2

⌋
.

To finish the proof of this subcase, suppose that crD(G∗ ∪ Ti ∪ Tk, Tl) > 6 holds for
any subgraph Tl ∈ SD \ SD(B2), l 6= k. Again by summing corresponding values of
Table 1, we obtain crD(G∗ ∪ Ti ∪ Tk, T j) ≥ 8 for any T j ∈ RD with j 6= i. The subgraph
Fk is represented by the cyclic permutation (154632), and so crD(G∗ ∪ Ti ∪ Tk, Tl) ≥
1+ 2+ 6 = 9 for any Tl ∈ SD(B1), l 6= k. Moreover, crD(Ti ∪ Tk, Tl) ≥ 4 also holds for
any Tl with l 6= i, k because four interchanges of adjacent elements of rotD(ti) produce
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rotD(tk). This forces crD(G∗ ∪ Ti ∪ Tk, Tl) ≥ 1 + 4 = 5 for any Tl ∈ SD(B2) and
crD(G∗ ∪ Ti ∪ Tk, Tl) ≥ 2 + 4 = 6 for any Tl 6∈ RD ∪ SD. As crD(G∗ ∪ Ti ∪ Tk) ≥ 3,
by fixing the subgraph G∗ ∪ Ti ∪ Tk, we have

crD(G∗ + Dn) ≥ 6
⌊

n−2
2

⌋⌊
n−3

2

⌋
+ 8(r− 1) + 9(s1 − 1) + 5s2 + [7(s− s1 − s2) + 6(n− r− s) + 3

= 6
⌊

n−2
2

⌋⌊
n−3

2

⌋
+ 6n + (2r + s) + 2(s1 − s2)− 14 ≥ 6

⌊
n−2

2

⌋⌊
n−3

2

⌋
+ 6n + 2

⌈ n
2
⌉
+ 1

+2− 14 ≥ 6
⌊

n
2

⌋⌊
n−1

2

⌋
+ 2
⌊

n
2

⌋
.

Both subcases again confirm a contradiction in D.
iii. A1,A3 6∈ MD and A4 ∈ MD. Assume the configuration A4 of some subgraph Fi

for Ti ∈ RD. If the set SD(B2) is empty, then the proof proceeds in the same way,
like in Subcase 1 with Ap ∈ MD for only p ∈ {3, 4}. Now, let Tk and Tl be some
subgraphs from the nonempty sets SD(B1) and SD(B2), respectively. Over all possible
regions of D(G∗ ∪ Ti ∪ Tk ∪ Tl), each of the n − 3 subgraphs T j, j 6= i, k, l, crosses
G∗ ∪ Ti ∪ Tk ∪ Tl at least 10 times. As crD(G∗ ∪ Ti ∪ Tk ∪ Tl) ≥ 4 + 4, by fixing
the subgraph G∗ ∪ Ti ∪ Tk ∪ Tl , we have

crD(G∗ + Dn) ≥ 6
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 10(n− 3) + 8 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
.

iv. MD = {A2}. If the set SD(B2) is empty, then the proof also proceeds in the same way,
like in Subcase 1 withMD = {Ap} for only one p ∈ {1, 2}. Now, let Tk and Tl be some
subgraphs from the nonempty sets SD(B1) and SD(B2), respectively. For Ti ∈ RD,
only using the lower bounds from Table 1, the edges of G∗ ∪ Ti ∪ Tk ∪ Tl must be
crossed by any T j ∈ RD ∪ SD(B1) with j 6= i, k and T j ∈ SD(B2) with j 6= l at least
11 and 9 times, respectively. Again, over all possible regions of D(G∗ ∪ Ti ∪ Tk ∪ Tl),
exactly nine crossings on G∗ ∪ Ti ∪ Tk ∪ Tl can only be achieved by a subgraph, either
T j ∈ SD(B2), j 6= l or T j 6∈ RD ∪ SD. As crD(G∗ ∪ Ti ∪ Tk ∪ Tl) ≥ 5 + 3, by fixing
the subgraph G∗ ∪ Ti ∪ Tk ∪ Tl , we have

crD(G∗ + Dn) ≥ 6
⌊

n−3
2

⌋⌊
n−4

2

⌋
+ 11(r− 1) + 11(s1 − 1) + 9(s2 − 1) + 10(s− s1 − s2)

+9(n− r− s) + 8 = 6
⌊

n−3
2

⌋⌊
n−4

2

⌋
+ 9n + (2r + s) + (s1 − s2)− 23

≥ 6
⌊

n−3
2

⌋⌊
n−4

2

⌋
+ 9n + 2

⌈ n
2
⌉
+ 1 + 1− 23 ≥ 6

⌊
n
2

⌋⌊
n−1

2

⌋
+ 2
⌊

n
2

⌋
.

Both subcases also contradict the assumption (5) in D.

Case 2: crD(G∗) = 1, and we consider the subdrawing of G∗ induced by D given in
Figure 1b. The set RD must be nonempty according to the inequality (7). For subgraphs
Ti ∈ RD, there is only one subdrawing of Fi \ v2 identifiable by its subrotation (15634).
The edge tiv2 can be added to two regions of Fi \ v2, but the proof proceeds in the same
way, like in Subcase 1, with Ap ∈ MD for only p ∈ {3, 4} for both such possibilities of Fi

by adding the edge tiv2.
We have shown that there are at least 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2

⌊ n
2
⌋

crossings in each good
drawing D of G∗ + Dn.

4. Two Graphs G1 and G2

In Figure 5, let G1 be the graph on six vertices obtained from G∗ by adding the new
edge v1v6, i.e., G1 = G∗ ∪ {v1v6}. Similarly, let G2 = G∗ ∪ {v4v6}. The good drawing of
G1 + Dn with exactly 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

crossings can be obtained if we add the edge v1v6
to the graph G∗ with no new crossing in Figure 4. The graph G∗ + Dn is a subgraph of
G1 + Dn, and therefore, cr(G1 + Dn) ≥ cr(G∗ + Dn). Thus, the following result is obvious.
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G
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v
6

G
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v
1

v
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3
v
4

v
5

v
6

Figure 5. Two graphs G1 and G2 by adding one new edge to the graph G∗.

Corollary 1. cr(G1 + Dn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

for n ≥ 1.

Remark that the exact value of the crossing number of the graph G1 + Dn was already
obtained by Klešč and Schrötter [27].

For n even, Figure 6 shows the good drawing of the join product G∗ + Pn with exactly
6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

crossings provided by the edges of K6,n cross each other 6
⌊ n

2
⌋⌊ n−1

2
⌋

times and any subgraph Ti crosses the edges of G∗ just once.

v
1

v
2

v
3

v
4

v
5

v
6

P
n
*

t
1

_t n
2

_t n
2 +1

t
n

Figure 6. The drawing of G∗ + Pn with 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

crossings for n even.

For n odd, at least 3, Figure 7 shows the good drawing of G∗+ Pn also with 6
⌊ n

2
⌋⌊ n−1

2
⌋

+2
⌊ n

2
⌋

crossings by adding one subgraph T
n+1

2 by which the edges of each of the n− 1
graphs Ti, i 6= n+1

2 are crossed exactly three times, that is,

6
n− 1

2
n− 3

2
+ 2

n− 1
2

+ 3(n− 1) = 6
n− 1

2
n− 1

2
+ 2

n− 1
2

.



Symmetry 2021, 13, 2441 12 of 17

v
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v
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v
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n
*

t
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t
n_t n 1

2
_t n
2

+3

_t n
2
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Figure 7. The drawing of G∗ + Pn with 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

crossings for n odd.

The lower bound is the same, based on Theorem 1, using that G∗ + Dn is a subgraph
of G∗ + Pn.

Corollary 2. cr(G∗ + Pn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

for n ≥ 2.

The graph G∗ is a subgraph of G2, and so cr(G2 + Pn) ≥ cr(G2 + Dn) ≥ cr(G∗ + Dn).
We can also obtain the drawings of G2 + Pn with exactly 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

crossings by
adding the edge v4v6 to the graph G∗ without additional crossings into both Figures 6 and 7.

Corollary 3. cr(G2 + Dn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

for n ≥ 1.

Corollary 4. cr(G2 + Pn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

for n ≥ 2.

5. Three Graphs H∗, H1, and H2

In Figure 8, let H∗ be the connected graph of order six consisting of one 4-cycle and
two leaves adjacent to two different but not opposite vertices of the 4-cycle. Let v3v4v5v6v3
and v1, v2 be the vertex notation of the 4-cycle and two leaves of H∗, respectively. The
crossing number of H∗ + Dn was established by Staš [22].

H

v
1

v
2

v
3

v
4

v
5 v

6

*

Figure 8. The planar drawing of the graph H∗.

Theorem 2 (See [22] Theorem 1). cr(H∗ + Dn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

for n ≥ 1.

The same reasoning as for the graph G∗ + Pn using the drawing of H∗ + Pn in Figure 9
gives the following result.
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v
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v
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v
6
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t
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t
n

_⌈ ⌉n2
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_⌈ ⌉n2
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Figure 9. The drawing of H∗ + Pn with 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

crossings.

Corollary 5. cr(H∗ + Pn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

for n ≥ 2.

In Figure 10, let H1 be the graph obtained from the planar drawing of H∗ in Figure 8
by adding the edge v1v4, i.e., H1 = H∗ ∪ {v1v4}. Similarly, let H2 = H∗ ∪ {v1v4, v2v5}. The
join products of the graphs H1 and H2 with Pn were already investigated by Draženská [10]
and Klešč [1], respectively.

H
2

H
1

v
1

v
2

v
3

v
4

v
5

v
6

v
1

v
2

v
3

v
4

v
5

v
6

Figure 10. Two graphs H1 and H2 by adding new edges to the graph H∗.

Theorem 3 (See [10] Theorem 1). cr(H1 + Pn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 1 for n ≥ 2.

Theorem 4 (See [1] Theorem 3.1). cr(H2 + Pn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 1 for n ≥ 2.

Theorem 5. cr(G1 + Pn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 1 for n ≥ 2.

Proof. The good drawing of the join product G1 + Pn with exactly 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 1

crossings by adding n new edges v1v6, titi+1, i = 1, . . . , n− 1, into the drawing in Figure 4
enforces the required upper border, that is, cr(G1 + Pn) ≤ 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 1. To

prove the lower border using Corollary 1, we assume a good drawing D of G1 + Pn with
6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

crossings. By Corollaries 2 and 5, none of the edges of the 6-cycle of G1
is crossed in D, because otherwise, removing such a crossed edge of the 6-cycle from G1
results in a good drawing of either G∗ + Pn or H∗ + Pn with fewer than 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋

crossings. This also enforces the planar subdrawing of G1 induced by D, and therefore,
we can only suppose the subdrawing of the graph G1 given in Figure 5. As there is no
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crossing on any edge of the path P∗n in D again by Corollary 1, all vertices ti of P∗n are
placed in the same region of D(G1). This forces all vertices ti to be placed in the region of
induced subdrawing D(G1) with all six vertices of G1 on its boundary, which also yields
that the edge v3v6 cannot be crossed by any subgraph Ti in D. As |RD| = n, the considered
subdrawing of G1 ∪ Ti is represented by the rotation (123456) and crD(Ti, T j) ≥ 6 fulfilling,
by each other, subgraph T j ∈ RD; see Woodall’s results [24]. Thus, we have

crD(G1 + Pn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 6(n− 1) + 0 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ 2
⌊n

2

⌋
+ 1.

The obtained contradiction completes the proof of Theorem 5.

6. The Crossing Numbers of Join Products of Cycles with Six Graphs of Order Six

Let us suppose a graph G on six vertices with the vertex set V(G) = {v1, v2, . . . , v6},
and let t1, t2, . . . , tn, t1 be the vertex notation of the n-cycle Cn for n ≥ 3. The join product
G + Cn consists of one copy of the graph G, one copy of the cycle Cn, and the edges joining
each vertex of G with each vertex of Cn. Let C∗n denote the cycle as a subgraph of G + Cn
induced on the vertices of Cn not belonging to the subgraph G. The subdrawing D(C∗n)
induced by any good drawing D of G + Cn represents some drawing of Cn. For the vertices
v1, v2, . . . , v6 of graph G, we denote by Tvi the subgraph induced by n edges joining the
vertex vi with n vertices of C∗n. The edges joining six vertices of G with n vertices of Cn
form the complete bipartite graph K6,n, and so

G + Cn = G ∪ K6,n ∪ C∗n = G ∪
( 6⋃

i=1

Tvi

)
∪ C∗n. (8)

In the proofs of the theorems, the following two statements regarding some restricted
subdrawings of G + Cn are useful.

Lemma 5 (See [6] Lemma 2.2). Let D be a good drawing of Dm + Cn, m ≥ 2, n ≥ 3 in
which no edge of C∗n is crossed, and C∗n does not separate the other vertices of the graph. Then,
for all i, j = 1, 2, . . . , m, two different subgraphs Tvi and Tvj cross each other in D at least⌊ n

2
⌋⌊ n−1

2
⌋

times.

Lemma 6 (See [28] Lemma 1). Let G be a graph of order m, m ≥ 1. In an optimal drawing of the
join product G + Cn, n ≥ 3, the edges of C∗n do not cross each other.

Theorem 6. cr(G∗ + Cn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 2 for n ≥ 3.

Proof. In both Figures 6 and 7, it is possible to add the edge t1tn that creates the cycle C∗n
on the vertices of P∗n with just two additional crossings, i.e., C∗n is crossed by two edges v3v4
and v3v6 of the graph G∗. So, cr(G∗ + Cn) ≤ 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 2. To prove the lower

border, let D be a good drawing of G∗ + Cn with at most 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 1 crossings.

By Theorem 1, at most, one edge of C∗n can be crossed in D, and we can also suppose that
the edges of C∗n do not cross each other using Lemma 6. The induced subdrawing D(C∗n)
divides the plane into two regions with at least four vertices of the 4-cycle of G∗ in one of
them, and so three possible cases may occur:

Case 1: No edge of C∗n crosses any edge of G∗, that is, all six vertices of G∗ must
be placed in one region of the subdrawing D(C∗n). As at least five different subgraphs
Tvi cannot cross the edges of C∗n, any two such different subgraphs Tvi and Tvj cross
each other at least

⌊ n
2
⌋⌊ n−1

2
⌋

times by Lemma 5. This forces at least (5
2)
⌊ n

2
⌋⌊ n−1

2
⌋
>

6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 1 crossings in D.
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Case 2: Some edge of C∗n crosses the edge v1v2 of G∗. Five vertices v2, v3, v4, v5, and
v6 of G∗ are placed in one region of D(C∗n) and any subgraph Tvi , i = 2, . . . , 6, cross no
edge of G∗. We obtain a contradiction in D using the same estimate as in the previous case.

Case 3: Some edge of C∗n crosses the edge v2v3 of G∗. Again by Lemma 5, there exist
at least (

4
2

)⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋⌊n− 1
2

⌋
+ 1 + crD(G∗) + s + 2(n− r− s) (9)

crossings in D, where |RD| = r and |SD| = s. The empty set RD contradicts the assumption
of D for all n ≥ 3 and we also obtain at least 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 2 crossings in the obtained

number (9) for all integers n more than 6. For 3 ≤ n ≤ 6 and r ≥ 1, we suppose only two
subdrawings of G∗ presented in Figure 1. Let us first consider the planar subdrawing of
G∗ induced by D given in Figure 1a. For n = 3, if either r = 2, s = 1 or r = 3, we obtain at
least 10 and 12 crossings in D using only some of the values in Table 1, respectively. The
similar idea can be applied for n = 4 if r ≥ 3. For r = 2 and s = 2, if we would like to
get the smallest possible number of crossings equal to 17 over the four subgraphs with
configurations A1, A2, B1, and B2 (in an effort to obtain their lower bounds in Table 1), we
obtain two additional crossings on the edge of C∗n by which the edge v2v3 of G∗ is crossed.
For n = 5 and n = 6, it is sufficient, due to (9), to deal only with cases n = r, which again,
only thanks to the values from Table 1, give us the numbers of crossings contradicting the
assumption in D. Finally, assume the nonplanar subdrawing of G∗ induced by D given
in Figure 1b. The number of crossings obtained in (9) confirms a contradiction in D for
all n at least 5. For n = 3 and n = 4, if either n = r or n = 4, r = 3, s = 1, we can verify
the contradicting numbers of crossings in D by a very fast recalculation because the edges
of Ti ∪ T j and Ti ∪ Tk cross each other at least five and three times for any three different
subgraphs Ti, T j ∈ RD, Tk ∈ SD, respectively. The proof of Theorem 6 is done.

In both Figures 6 and 7 by adding the edge v4v6, it is possible to add the edge t1tn
that creates C∗n on the vertices of P∗n with just two additional crossings. Thus, the result of
Corollary 6 is obvious, because G∗ + Cn is a subgraph of G2 + Cn, and so cr(G2 + Cn) ≥
cr(G∗ + Cn).

Corollary 6. cr(G2 + Cn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 2 for n ≥ 3.

Theorem 7. cr(H∗ + Cn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 2 for n ≥ 3.

Proof. The proof proceeds similarly like for the graph G∗ + Cn in Theorem 6. In Figure 9,
adding the edge t1tn to P∗n offers the good drawing of H∗ + Cn with 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 2

crossings. If we assume a drawing D of H∗ + Cn with at most 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 1

crossings, then the result of Theorem 2 forces at most one crossing on the edges of C∗n in D.
At least five vertices of H∗ (that are placed in the same region of the induced subdrawing
D(C∗n)) with the corresponding five subgraphs Tvi produce at least (5

2)
⌊ n

2
⌋⌊ n−1

2
⌋

crossings
in D.

Due to Theorem 7, the good drawing of H∗ + Cn in Figure 11 is optimal. Clearly, we
can add both edges v1v4 and v2v5 to the graph H∗ with no new crossing, and therefore, the
crossing numbers of H1 + Cn and H2 + Cn are at most 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 2. The result

of Corollary 7 is again obvious, because H∗ is a subgraph of H1, which is also a subgraph
of H2, and so cr(H2 + Cn) ≥ cr(H1 + Cn) ≥ cr(H∗ + Cn) = 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 2.
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Figure 11. The drawing of H∗ + Cn with 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 2 crossings.

Corollary 7. cr(H1 + Cn) = cr(H2 + Cn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 2 for n ≥ 3.

Remark that the crossing number of H2 + Cn was already obtained by Klešč [1]. The
proof of Theorem 8 can be omitted due to using arguments that are similar to those in the
proof of Theorem 5, where the crossings numbers of two graphs G∗ + Cn and H∗ + Cn are
already given by 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 2.

Theorem 8. cr(G1 + Cn) = 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ 2
⌊ n

2
⌋
+ 3 for n ≥ 3.

7. Conclusions

We expect that similar special drawings, such as those for the join product G∗ + Pn in
Figures 6 and 7, can be helpful to determine the crossing numbers of the other symmetric
graphs on six vertices in the join products with the paths Pn. In some proofs for the join
products with the cycles Cn, we also expect other connection options for the use of two
different types of subgraphs, as stated in the proof of Theorem 6. The results of G∗ + Pn,
G1 + Pn, H∗ + Pn and G∗ + Cn, G1 + Cn, H∗ + Cn should be also used to establish the
crossing numbers of the join products of the completed graph K6 with the paths and the
cycles on n vertices. One of the possible ideas for using multiple symmetries (as in the case
of K6) is already presented in the proof of Theorem 5.
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11. Klešč, M; Kravecová, D.; Petrillová, J. The crossing numbers of join of special graphs. Electr. Eng. Inform. 2011, 2, 522–527.
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