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Abstract: In this manuscript, we examine the dynamical behavior of the coherence in open quantum
systems using the l1 norm. We consider a two-qubit system that evolves in the framework of
Kossakowski-type quantum dynamical semigroups (KTQDSs) of completely positive maps (CPMs).
We find that the quantum coherence can be asymptotically maintained with respect to the values
of the system parameters. Moreover, we show that the quantum coherence can resist the effect of
the environment and preserve even in the regime of long times. The obtained results also show that
the initially separable states can provide a finite value of the coherence during the time evolution.
Because of such properties, several states in this type of environments are good candidates for
incorporating quantum information and optics (QIO) schemes. Finally, we compare the dynamical
behavior of the coherence with the entire quantum correlation.

Keywords: open quantum systems; asymptotic states; master equation; quantum coherence; total
quantum correlation

PACS: 03.67.-a; 03.65.Yz; 03.65.Ud

1. Introduction

In recent years, both theoretically and experimentally, several quantum phenomena
have been considered as resources for the implementation of different tasks of quantum
information and optics (QIO). In general, quantum correlations require the development
of coherent superpositions of quantum states [1–7]. Its origins may be traced back to
Einstein, Podolsky, and Rosen’s (EPR) concept of the “EPR paradox” [8]. They claimed
that quantum physics is being used to describe “spooky action at a distance”. The ability
of local measurements to govern a quantum system without access to it was explored by
E. Schrödinger [9]. Subsequently, Bell introduced the so-called Bell inequality to demon-
strate that this “spooky action” is responsible for creating a nonclassical correlation that
defies any classical description [10]. Quantum coherence underlies various quantum ef-
fects in nanomaterials [11,12], quantum measurements and quantum metrology [13–17],
applications of quantum mechanics to biological objects [18–20], etc. In keeping with the
fundamental importance of quantum coherence, an accurate theory of coherence has only
recently been defined with the necessary constraints to ensure that quantum coherence
is a physical source [21]. As a result, unique quantum measures based on the l1-norm
and relative entropy [21] have been developed to check these limitations. Furthermore,
nonlocal correlation or the convex-roof construction can be utilized to identify the amount
of coherence [22,23], and an operational theory of coherence has been presented [24].
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Quantum coherence has recently attracted much attention to the development of an
experimental technique with the control and observation of quantum phenomena in differ-
ent quantum systems. Realistic quantum systems are always unavoidably interacting with
their environment, which results in the decoherence during their dynamical evolution [25].
In the past few decades, the relaxation and dephasing in open quantum systems have
been largely studied in the literature with Markovian and non-Markovian dynamics. The
dynamics are interesting features of quantum systems, which makes the time component
interesting in itself [26]. In most models that describe open quantum systems, the amount
of coherence decreases asymptotically to zero and the entanglement dynamics emphasize
the phenomenon of sudden death for decoherent environments [27]. From this perspective,
the asymptotic dynamics of many quantum quantities provide us with ideal systems for
comprehending quantum characteristics, which play an important role in QIO. Quantum
dot systems [28–32], impurity systems [33–37], trapped ions [38–40], and other quantum
systems can be used to implement many of these quantum systems. The performance
of quantum qualities is frequently identified by the external noise reflected in physical
quantum systems. As a result, methods for estimating the noise level must be developed
and discovered in order to avoid the decay phenomenon in the presence of decoherence.
Identifying the parameters of a quantum system’s environment will be a crucial step in
minimizing its impact.

Recently, coherence trapping has attracted much attention and has been studied
within the open quantum systems considering the information backflow in dephasing
qubits [41] and particle indistinguishability in noisy quantum networks [42]. The quantum
coherence of two-qubit systems through noisy channels is also studied, where several types
of quantum channels with memory are considered [43]. Moreover, the phenomenon of
coherence in multiqubit systems traversing the correlated quantum channels is considered
and two remarkable quantum phenomena that can be used for protecting and controlling
the quantum coherence are demonstrated [44]. In the present manuscript, we examine the
phenomenon of coherence for a class of two-qubit states using Kossakowski-type quantum
dynamical semigroups (KTQDSs) of completely positive maps (CPMs). These dynamics
exhibits quantum states with a finite value of the coherence with respect to the initial
states, including separable and entangled states. Such quantum states can be considered to
execute logical operations, and perform a universal quantum computation and information.
We examine how the coherence evolves in this type of the present model by showing the
phenomenon of the coherence trapping where the coherence can be preserved even in
the regime of long times. These characteristics make quantum states a suitable option
for implementing different QIO schemes in this type of environment. Furthermore, we
show that the l1 norm of coherence may be used to reveal the quantum correlation during
the dynamics.

The present manuscript is structured as follows. In Section 1, we describe the physical
model for the open quantum system in the framework of KTQDSs of CPMs. Furthermore,
we give a review of the quantum coherence using the l1 norm. In Section 2, we provide
the major findings and discuss them. The comparison of coherence and total quantum
correlation in asymptotic dynamics is the subject of Section 3. The conclusion is provided
in the last section.

2. Open Quantum System and Coherence

In the section, we display the physical model that describes the open system in the
framework of KTQDS of CPMs as well as the measure of quantum coherence using the
l1 norm.

We assume a quantum system consisting of two qubits that are submerged in an
environment within the techniques of a weak-coupling limit [45]. Here, the irreversible
dynamics are characterized by using one-parameter semigroups of the linear maps, the so-
called dynamical semigroups that are realized from Γ(t) = exp(Lt). These dynamics can be
governed through the master equation of the density operator W: ∂tW(t) = L[W(t)] where
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the generator L considers the effect of the environment by using the different elements of
the Kossakowski matrix [45–47]:

∂tW(t) = L[W(t)] = −i
v

2

[
Ξ3, W(t)

]
+

3

∑
i,j=1

Mij

(
ΞiW(t)Ξj −

1
2

{
ΞjΞi, W(t)

})
(1)

where v is the frequency of the system, σi are the Pauli matrices, Ξi := σi ⊗ I+ I⊗ σi
represents the 2× 2 identity matrix and the matrix M is given by

M = [Mij] =

 1 im 0
−im 1 0

0 0 1

 m ∈ R, m2 ≤ 1. (2)

For all t ≥ 0, the semigroup generated by Equation (1) consists of CPMs Γ(t).
The dissipative contribution to the generator can be written as [48]

D[W(t)] =
6

∑
x,y=1

Axy

[
FyWFx −

1
2
{FxFy, W}

]
, (3)

with the help of the matrices Fx = σx ⊗ I for x = 1, 2, 3, Fx = I⊗ σx−3 for x = 4, 5, 6. By
using the Pauli matrices of each qubit, σ

(1)
i = σi ⊗ I and σ

(2)
i = I⊗ σi, the dissipative

terms reads

D[W(t)] =
3

∑
i,j=1

Mij

2

∑
α,β=1

(
σ
(α)
i W(t)σ(β)

j − 1
2
{σ(β)

j σ
(α)
i , W(t)}

)
. (4)

where σ
(α)
i are the Kraus operators with α = 1, 2 and i = 1, 2, 3, and the 6× 6 Kossakowski

matrix is given by

A =
[

A(αβ)
ij

]
=

(
A(11) A(12)

A(21) A(22)

)
=

(
M M
M M

)
. (5)

From the open system theory [45,49], the elements A(αβ)
ij can be obtained by using

the Fourier transforms of the time correlation function according to the equilibrium state
of environment ω, ω

(
E(α)

i E(β)
j (t)

)
, where the operator E(α)

i represents the interaction
between the system and environment. The symmetry in the matrix (5) occurs when the
two qubits are linearly related to the operators of the bath such that E(1)

1,2,3 = E(2)
1,2,3 = E1,2,3

and ω(E1,2E3(t)) = 0.
For simplicity, we consider the initial states of the two-qubit system in the form:

W(0) = a00|0〉〈0|+ a11|1〉〈1|+ a22|2〉〈2|+ a33|3〉〈3|
+a01|0〉〈1|+ a10|1〉〈0|, (6)

where a00, a11, a22, and a33 are real numbers satisfying the unit trace and positivity condition.
The set {|0〉, |1〉, |2〉, |3〉} defines an orthonormal basis that is aligned to the standard basis
of two qubits by

|0〉 = |00〉, |1〉 = |11〉, |2〉 = |01〉+ |10〉√
2

, |3〉 = |01〉 − |10〉√
2

. (7)
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The density operator can be represented in the standard basis as

W(0) =


a00 0 0 a01
0 a22+a33

2
a22−a33

2 0
0 a22−a33

2
a22+a33

2 0
a10 0 0 a11

. (8)

The state (8) is entangled if and only if (a00+a22)
2

4 < a2
01 or a00a11 < (a22−a33)

2

4 . This state
includes large classes of two-qubit states, such as Bell states, Horodecki states [50], Werner
states [51], etc.

The density operator, W(t), of two qubits at time t is given by

W(t) =a00(t)|0〉〈0|+ a11(t)|1〉〈1|+ a22(t)|2〉〈2|+ a33(t)|3〉〈3|
+ a01(t)|0〉〈1|+ a10(t)|1〉〈0|. (9)

where

a00(t) =
(1−m)2

3 + m2 F +
2(1 + m)a00 − (1−m)2(a11 + a22)

3 + m2 F+(t)

+
√

1−m2 (1 + m)2a00 − 2(1−m)a11 + (1 + α)2a22

(1 + m)(3 + m2)
F−(t)

a11(t) =
(1 + m)2

3 + m2 F− (1 + m)2a00 − 2(1 + m)a11 + (1 + m)2a22

3 + m2 F+(t)

−
√

1−m2 2(1 + m)a00 − (1−m)2(a11 + a22)

(1−m)(3 + m2)
F−(t)

a22(t) =
(
1−m2)
3 + m2 F +

2(1 + m2)a22 − (1−m2)(a00 + a11)

3 + m2 F+(t)

+
√

1−m2 (1 + m)3a00 + (1−m)3a11 − 2
(
1−m2)a22

(1−m2)(3 + m2)
F−(t)

a33(t) = a33

a01(t) = a01 exp(−12t)

a10(t) = a10 exp(−12t), (10)

with

F = a00 + a11 + a22, F+(t) = e−8t cosh 4t
√

1−m2,

F−(t) = e−8t sinh 4t
√

1−m2. (11)

It is generally known that connecting a system with its own environment does not
have to destroy quantum coherence in an open system, but can instead produce it in certain
circumstances. This can happen in the present model and the environment’s ability to
generate coherence is due to the Kossakowski generator of the system dynamics.

The fundamental properties of coherence depend on the nondiagonal elements of
the system density operator. The l1 norm of coherence detects the coherence by using the
absolute value of the nondiagonal elements. The l1 norm of coherence is introduced as

CL = min
δ∈I
‖W − δ‖l1 = ∑

i 6=j

∣∣Wij
∣∣, (12)

where I describes the set of incoherent states. The parameters i and j represent the row and
column index, respectively. The measure CL verifies the monotony for all of the quantum
states. We mention that the norm of coherence of the quantum system is evaluated with
respect to the standard basis.



Symmetry 2021, 13, 2445 5 of 10

When the time t goes to infinity, the elements of the density matrix (9) are given by

lim
t→∞

a00(t) =
(1−m)2(1− a33)

3 + m2 , (13)

lim
t→∞

a11(t) =
(1 + m)2(1− a33)

3 + m2 , (14)

lim
t→∞

a22(t) =
(1−m2)(1− a33)

3 + m2 , (15)

lim
t→∞

a33(t) = a33, (16)

lim
t→∞

a01(t) = lim
t→∞

a10(t) = 0, (17)

and the coherence tends to reach the value

lim
t→∞

CL(t) = |a22(t→ ∞)− a33(t→ ∞)|. (18)

3. Asymptotic Dynamics of Quantum Coherence in Open Quantum System Systems

We have chosen vast classes of initial states defined by Equation (8) exploiting separa-
ble and nonseparable states to investigate the effect of initial parameters on the asymptotic
dynamical behavior of quantum coherence in open quantum systems.

In Figure 1, we display the variation of the measure CL versus the time t for differ-
ent values of the parameter m considering initially separable states. The dashed blue
(m = 0.5) and dash-dotted red (m = 0.1) lines correspond to an initially separable pure
state W(0) = |0〉〈0|; the solid green (m = 0.5) and dotted black (m = 0.1) lines correspond
to an initially separable mixed state, W(0) = (|3〉〈3|+ |4〉〈4|)/2. In general, we find that
the environment has a comparable effect on the measure CL, with dissipation being able to
increase and create the amount of coherence in the system, which subsequently achieves a
stable value and persists even over extended periods of time. Interestingly, we can observe
that the revival rate of the amount of coherence may take place by adjusting the parameter
m. These results provide additional evidence that the initially separable states of the input
state can be considered as good candidates for implementation of different tasks of QIO.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

t

C
L

Figure 1. Dynamics of the coherence for initially separable states is displayed versus the time t for
different values of the parameter m. The dashed blue (m = 0.5) and dash-dotted red (m = 0.1) lines
correspond to an initially separable pure state W(0) = |0〉〈0|; the solid green (m = 0.5) and dotted
black (m = 0.1) lines correspond to an initially separable mixed state, W(0) = 1/2(|2〉〈2|+ |3〉〈3|).
The influence of the environment on the measure of coherence CL is obtained to be similar, and that
the dissipation can be able to enhance the amount of the quantum coherence during the dynamics;
then, the function CL reaches a constant value and is preserved even in the regime of long times.
Furthermore, the revival rate of the function CL depends on the choice of the parameter m.
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In Figure 2, we display the time evolution of the function CL as a function of time t
for initially entangled states. The dashed blue (m = 0.5) and dash-dotted red (m = 0.1)
lines correspond to an initially maximally pure state, |Ψ〉 = 1/

√
2(|01〉+ |10〉); the solid

green (m = 0.5) and dotted black (m = 0.1) lines correspond to an initially Horodecki state,
W(0) = a|Ψ〉〈Ψ|+ (1− a)(|00〉〈00|), with a = 0.4. It is evident that the dynamics of the
function CL depends on the initial conditions. We note that for the initial Bell state, the
amount of the coherence decays almost monotonously with the time t from the maximal
value at t = 0. For the Horodecki state and by a proper choice of the parameter m, the
function CL can be firstly raised from a finite value at t = 0 to its maximal value and then
attains the asymptotic value. The dependence of the measure CL on the initial conditions
demonstrates that an adequate choice of the system parameters can raise and preserve the
coherence amount during the dynamics.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

t

C
L

Figure 2. Dynamics of the coherence for initially entangled quantum states is displayed versus
the time t for different values of the parameter m. The dashed blue (m = 0.5) and dash-dotted
red (m = 0.1) lines correspond to an initially maximally pure state, |Ψ〉 = 1/

√
2(|01〉+ |10〉); the

solid green (m = 0.5) and dotted black (m = 0.1) lines correspond to an initial Horodecki state,
W(0) = a|Ψ〉〈Ψ|+ (1− a)(|0〉〈0|), with a = 0.4. The influence of the environment on the function
CL is obtained to be similar for initially entangled states, so the function CL tends to attain a constant
value and is preserved even in the regime of long times. The dependence of the quantum coherence
on the initial conditions clearly demonstrates that an appropriate choice of system parameters can
lead to the enhancement and preservation of quantum coherence during the dynamics.

From the obtained results, we obtain that the amount of quantum coherence under
KTQDSs, which represents a rich set of asymptotic quantum states, may be controlled and
preserved during the evolution. The environment’s influence should not only have a nega-
tive impact on the quantity of coherence, but it can also be able to grow and asymptotically
sustain it even over extended periods of time. This is possible in the current model, where
the improvement of quantum coherence is owing to the dissipative contribution (4), in
which the Hamiltonian of two qubits does not include coupling terms and hence cannot
be seen as a source to produce and increase the quantity of coherence during dynamics.
Because the off-diagonal contributions in the matrix (5) couple a system of two qubits, this
is possible. This is only necessary, but not sufficient, to provide a long-term improvement
in coherence and durability.
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4. Coherence and Total Quantum Correlation

In the present section, we compare the dynamics of the quantum coherence with the
total quantum correlation for separable and nonseparable states.

Currently, the total quantum correlation is a useful physical resource and its concept
depends on the local uncertainty (LU), which is a full-fledged discord-like [52] family of
quantifiers of total quantum correlations. It is defined by [53]

UT = min
KΓ

1

I
(

W, KΓ
1

)
, (19)

where the parameter Γ describes the spectrum of KΓ
1 , the amount I represents the skew

information, where the minimization over a spectrum of observables leads to a specific
measurement of the family. The LU is defined by

UT(W) = 1− λmax{H}, (20)

with λmax representing the maximum eigenvalue of the 3× 3 symmetric H with the matrix
elements

(H)ij = Tr{
√

W(σi1 ⊗ I)
√

W
(
σj1 ⊗ I

)
}. (21)

For pure states, the LU is normalized to 1 and coincides with the value of the linear
entropy.

In Figures 3 and 4, we have plotted the time variation of the functions CL and UT
for initially separable and entangled states. In general, we can see that the behavior of
quantum coherence and total quantum correlation is obtained to be similar with respect to
the parameters involved in the quantum states. These characteristics make the quantum
coherence a suitable candidate for detecting the information content in the open quantum
systems, and exploit it in multiple tasks of QIO.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

t

C
L
,U

T

Figure 3. Dynamics of the total quantum correlation and coherence for initially separable states is
displayed versus the time t with m = 0.1. The dashed blue (total quantum correlation) and dash-
dotted red (quantum coherence) lines correspond to an initially separable pure state W(0) = |0〉〈0|;
the solid green (total quantum correlation) and dotted black (quantum coherence) lines correspond
to an initially separable mixed state, W(0) = 1/2(|2〉〈2|+ |3〉〈3|). The asymptotic behavior of the
functions CL and UT is shown to be comparable according to the various parameters that are involved
in the state of two qubits, and the quantifiers exhibit the same behavior and maintain their value
even over extended periods of time.
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Figure 4. Dynamics of the total quantum correlation and coherence for initially entangled states
is displayed versus the time with m = 0.1. The dashed blue (total quantum correlation) and
dash-dotted red (quantum coherence) lines correspond to an initially maximally pure state, |Ψ〉 =
1/
√

2(|01〉+ |10〉); the solid green (total quantum correlation) and dotted black (quantum coherence)
lines correspond to an initial Horodecki state, W(0) = a|Ψ〉〈Ψ|+ (1− a)(|0〉〈0|), with a = 0.4. The
asymptotic behavior of the functions CL and UT is shown to be comparable according to the various
parameters that are involved in the state of two qubits, and the quantifiers exhibit the same behavior
and maintain their value even over extended periods of time.

5. Conclusions

We have examined in detail the behavior of the quantum coherence in open systems
using the l1 norm. We have considered a two-qubit system that evolves in the framework
of KTQDSs of CPMs. We have obtained that the quantum coherence can be asymptotically
maintained with respect to the values of the initial parameters. We have proven that quan-
tum coherence can withstand the effects of the environment and persist even over lengthy
periods of time. We have observed that during an evolution, the initial separable states can
give a limited value of coherence. Because of these characteristics, quantum systems in this
type of environment are good candidates for implementing different QIO schemes. Finally,
we have demonstrated that the l1-norm of coherence and quantum correlation exhibit the
same behavior during dynamics. From a phenomenological standpoint, the current work
may be more helpful in understanding specific experimental measurements of quantum
coherence dissipation under real conditions, as well as providing more hints for future
research in this area.
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