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Abstract: One of the most important tasks of any platform for big data processing is storing the
data received. Different systems have different requirements for the storage formats of big data,
which raises the problem of choosing the optimal data storage format to solve the current problem.
This paper describes the five most popular formats for storing big data, presents an experimental
evaluation of these formats and a methodology for choosing the format. The following data storage
formats will be considered: avro, CSV, JSON, ORC, parquet. At the first stage, a comparative
analysis of the main characteristics of the studied formats was carried out; at the second stage,
an experimental evaluation of these formats was prepared and carried out. For the experiment,
an experimental stand was deployed with tools for processing big data installed on it. The aim of the
experiment was to find out characteristics of data storage formats, such as the volume and processing
speed for different operations using the Apache Spark framework. In addition, within the study,
an algorithm for choosing the optimal format from the presented alternatives was developed using
tropical optimization methods. The result of the study is presented in the form of a technique for
obtaining a vector of ratings of data storage formats for the Apache Hadoop system, based on an
experimental assessment using Apache Spark.

Keywords: formats for storing big data; volume and processing speed data; tropical optimiza-
tion methods

1. Introduction

The development of technologies that work with data have contributed to the emer-
gence of various tools for big data processing [1]. Big data means such volumes of informa-
tion collected from various sources, where processing using traditional methods becomes
very difficult or impossible [2,3]. At the same time, most researchers agree that big data
can be understood through not only the volume, but also their ability to be sources for
generating valuable information and ideas [4].

The development of platforms for analytical data processing has become a popular
direction in the field of working with big data [5]. Such platforms are designed not only
for processing, but also for storing data. The best known among such platforms is Apache
Hadoop [6]. Hadoop is a set of software utilities [7], the core of which is a distributed
file system that stores data in certain formats, and a data processor that implements the
MapReduce processing model [8].

However, due to various limitations of this system, new implementations of big data
processing systems were implemented (e.g., Hive [9], Impala [10], Apache Spark [11],
etc.). These tools, on the one hand, are independent products, and on the other hand,
are additional tools for the Apache Hadoop system.
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Frameworks, such as Apache Spark [12], allow working with a variety of file formats.
For this study, five formats supported by this framework were selected: avro, CSV, JSON,
ORC, and parquet. The aim of the paper is to study the features of file formats used for
storing big data, as well as to conduct an experimental evaluation of the formats. Such tools
allow providing a convenient language for data selection. In addition, these tools can work
with a variety of file formats.

However, when developing system architectures based on Apache Hadoop, the ques-
tion of choosing the optimal data storage format may arise.

This paper describes the five most popular formats for storing big data in the Apache
Hadoop system, presents an experimental evaluation of these formats and tropical opti-
mization methods for choosing an effective solution.

Tropical (or idempotent) mathematics is an area of applied mathematics that studies
the theory and applications of semirings with idempotent addition.

The use of models and methods of tropical algebra allows reducing several nonlinear
problems to a linear form in terms of an idempotent semiring or semifield. In other
words, the transformation of the original problem to the form of tropical optimization with
idempotent operations leaves the optimality properties of the original and the reduced
problem to be invariant. This means that it is a symmetric transformation. The use of
this approach simplifies the interpretation of the results and finds application in solving
practical problems of planning, placement, and decision-making.

One of the directions of tropical mathematics is the development of methods for
solving optimization problems that can be formulated and solved in terms of idempotent
mathematics (tropical optimization problems). The theory is based on the correspondence
between constructions over the field of real numbers and similar constructions related
to various idempotent semirings. For example, [13] describes the solving problems that
reduce to the best approximate solution, in the sense of the Chebyshev metric of a vector
linear equation, where the product is understood in the sense of tropical algebra.

The study is aimed at developing a technique that is able to define the most effective
data format in the condition described for data format usage in the use of big data.

The article is organized as follows. Section 2 provides background regarding the prob-
lem of choosing software components. Section 3 describes the details of the experimental
setup. The configuration of the hardware, software, and the data preparation method is
given, and the results of the experiment are described. Section 4 presents mathematical
methods for choosing the solution based on the tropical optimization theory. Section 5
presents the discussion. The Conclusion presents the results obtained during the study.

2. Background

The problem of choosing software components has been studied by various au-
thors [14–24]. The papers present a selection of various components of the system, as well as
methods for the experimental evaluation of the selected components. For example, [14,15]
present a methodology for choosing libraries for software development using methods of
evolutionary calculus. In [16–18], an experimental assessment of integration messaging
systems is presented. This paper presents methodology for conducting a study of the data
transfer rate in such systems. However, the authors do not give recommendations on the
choice of an integration messaging system.

Papers [19–24] present studies of big data storage formats, such as avro, parquet,
orc, etc. These studies represent the results of studying different formats in terms of
performance, or choosing an alternative for specific purposes. For example, the authors
in [23] study data storage formats for storing data in web systems or data for research
in bioinformatics, respectively. These are highly specialized studies for specific tasks.
Study [24] addresses a problem similar to the current study. However, this study only
affects the avro and parquet storage formats and indirectly talks about other data storage
formats.
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However, the cited works do not investigate the issue of choosing a data storage format.
Most of these studies provide the results of examining each format and recommendations
on the choice for the problem under study. It should be noted that data storage can be
carried out using relational databases. However, in recent years, NoSQL solutions have
gained popularity [25,26], some of which support different data storage formats.

Using a sub-optimal format for storing big data can lead to various errors and diffi-
culties when working with data. Thus, the use of formats that do not support complex
data structures (such as arrays or dates) can lead to incorrect result sets when fetching data
using SQL-like tools in a system, such as Hadoop. In addition, the use of formats that do
not use data archiving or metadata can lead to an increase in data retrieval time. Therefore,
for systems where the speed of analytical data processing is critical, a forced delay may
occur. For systems that require platform independence, there may be a need for expensive
system modifications. Different storage formats for big data affect a number of criteria for
software satisfaction. These criteria include the speed of working with data (reading, writ-
ing, analytical processing, etc.), the speed of development and implementation, portability
to different platforms, etc.

The current study is focused on developing techniques for selecting the optimal
storage format for Apache Hadoop. The basis of the proposed technique is an experimental
assessment of data storage formats and a mathematical model for choosing the optimal
solution based on tropical optimization methods. To select the data format, the paper solves
the problem of constructing an assessment system, a system of criteria and methods for
obtaining their reliable numerical values based on experimental studies, as well as choosing
and using an optimization method based on quality criteria. It should be noted that the
study does not solve the issue of the functionality of the proposed formats, but reflects the
feasibility of using them in the proposed conditions.

3. Method and Experiment

For the current study, the following data storage formats will be considered: avro, csv,
json, orc, parquet.

Let us consider the features of the internal structure of the studied data storage
formats.

Avro is a row-oriented data storage format. It contains a schema in the JSON format,
which allows faster reading and interpretation operations [27]. The file structure consists
of a header and data blocks [27]. Avro format supports primitive types, such as Boolean,
int, long, float, etc., and complex types, such as array or map.

Comma-separated values (CSV) is a textual format describing data in form of a table.
A CSV file does not support different data types and structures—all data are presented as
strings.

JavaScript object notation is a simple text format. JSON has gained popularity in
storing big data in document databases. JSON supports data types and structures, such as
string, number, Boolean, arrays, null, internal objects.

Optimized row columnar is a column-oriented storage format [28]. Data in ORC are
strongly typed. ORC has a shared internal structure—division into strips independent from
each other. ORC files contain metadata storing in compressed forms, and include statistical
and descriptive information, indexes, stripe, and stream information. ORC supports a
complete set of types, including complex types (structures, lists, maps, and unions) [29].
ORC also complies with ACID requirements by adding delta files.

Apache Parquet is a column-oriented binary format. It allows defining compres-
sion schemes at the column level and adding new encodings as they appear [30]. Par-
quet supports simple (Boolean, int32, float, etc.) and complex (byte_array, map) data types.
The Parquet file contains metadata written after meaningful data to provide a one-pass
write.

Table 1 contains the comparation of the described storage formats.
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Table 1. Comparative analysis of the main characteristics of data storage formats.

Avro CSV JSON ORC Parquet

Platform
independence + + + - -

The ability to change
the file - + + - -

Record complex
structures + - + + +

Compliance with
ACID - - - + -

Format type row-
oriented text, string text,

objective
column-
oriented

column-
oriented

File compression + - - + +
The presence of

metadata - - - + +

To estimate the data storage formats, the technique described in the following was
developed. The technique consists of two parts:

1. Experimental evaluation of the studied data storage formats.
2. Analysis of Spark data processing functions using different storage formats.

3.1. Experimental Evaluation

The first stage in the study was to conduct an experimental evaluation of these formats.
The experimental evaluation consisted of simulated processing of the dataset. An ex-

perimental stand was deployed for testing. For the study, a dataset of 10 million records
was generated. Appendix A contains the experimental resources.

Figure 1 illustrates an experiment schema.
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Figure 1. Experiment schema.

The host file system contains the generated dataset. A Java virtual machine, which
supports the Spark application executor (driver), is installed on the host. After starting the
Spark application, Spark context is generated, the storage files are being read by the Spark
application, and the operation studied is being performed. Since the Spark application
supports lazy evaluations [31], the moment of completion of the operation is considered to
receive the count of the records in the resulting dataset.

For each data format, a study was conducted, consisting of test runs of the Spark
application and performing the same set of operations. The following calculations were
conducted.
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The total size of the dataset. One of the most important characteristics of data is its
volume. Since volume becomes critical in systems for processing and storing big data,
it becomes necessary to search for such a format that would have the ability to store data
with a minimum volume.

Reading all lines. The most important parameter in data processing and analysis is
the time to read the data. In this test, the time taken to read all records was measured.

Filtering data. Data filtering is one of the most frequently used operations in data
processing and analysis.

Search for unique strings. An equally important operation in data processing and
analysis is the search for unique records.

Sorting. Sorting is the most complex operation, both in design and in databases, so the
results of this test are important when analyzing big data storage formats.

Grouping. Grouping is also one of the most used operations in data analysis and
processing.

Figures 2–7 illustrate the results obtained during experimental evaluation.
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However, the results obtained cannot be considered final, since any data processing
and storage system is constantly updated with this data. To study the rate of change in
processing time when working with different formats, three more data sets were generated
with a similar structure: 5 million records, 25 million records, and 50 million records.

For each of the obtained data sets, the operations described earlier were also carried
out. Each of the obtained values was used to calculate the rate of change in the file
processing time. The rate was calculated using the following formula:

ratei =
durationi
duration1

where durationi is an operation duration for ith dataset
Below are graphs of the results of calculating the rate of changes in the processing

time of files of different formats, according to operations. The Y-axis on the Figures 8–12
shows the rate calculated for datasets of different volumes.
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As presented, there is an anomaly in the operations of sorting, filtering, and grouping
in the form of a slight change in the processing time of the files. This requires studying the
algorithm for processing these formats for hidden functions built into the Apache Spark
framework that affect such changes.

3.2. Analysis of the Spark Algorithm

To further compare the storage formats of big data, let us analyze the algorithms
used by the framework for each operation for each data storage format. It should be
understood how the framework works with each data storage format. To obtain statistical
information on the operation of the algorithm, the Spark Web User Interface tool built into
the main framework [32] was used, which collects information about the operation of the
application.

As stated earlier, the Spark framework supports lazy evaluation. Therefore, to analyze
the algorithms, two operations were performed: transformation, represented by the opera-
tion under study, and action, which is the operation of counting the number of objects in
the dataset.

The following were chosen as the main metrics:

- Stages count;
- Task count on each stage;
- Shuffle spill (memory/drive) on each stage;
- Median value statistics.

For example, consider the following three operations performed:

- Searching for unique objects;
- Data filtering;
- Sorting.

Search for unique objects. Figure 13 shows an algorithm that is common to all data
storage formats. As it can be seen in the figure, the algorithm consists of three stages.
Appendix B contains the detailed characteristics obtained for this operation.
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Data filtering. Data filtering algorithm consists of two stages. Figure 14 shows the
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(Exchange). Appendix B contains detailed characteristics obtained for this operation.
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Figure 14. Algorithm schema of data filtering.

Sorting. Sorting, unlike the previous two operations, consists of two jobs, each of
which consists of one or more stages. Figures 15 and 16 show the algorithm for work-
ing with files on the first and second job, respectively. Appendix B contains detailed
characteristics obtained for this operation.
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Following the above analysis, the data processing algorithm is the same for each
storage format.

The differences in the results obtained are insignificant, which means that the results
obtained during the experiment are typical for the presented data storage formats. Thus,
the framework does not significantly affect the conduct of the experiment.

4. Results

The problem of choosing the optimal format was presented in the form of several
optimization tasks using the tropical optimization algorithm [33,34].

The aim of the algorithm is to calculate the rating vector of the alternatives presented.
It consists of the following stages:

1. Paired comparisons of each alternative;
2. The comparison of the criteria themselves;
3. Optimization task solution.

It should be noted that the comparison of alternatives is based on the required task.
Appendix C contains the tables of paired comparison of the criteria and alternatives.

There are no special rules for evaluating alternatives. Each researcher has the right to
determine the rules for the comparative assessment of alternatives. In addition, the assess-
ment of alternatives and criteria depends on the tasks assigned to the researcher.

It is important to know the following features of compiling comparison matrices:



Symmetry 2021, 13, 195 12 of 22

- aij describes the degree of preference for alternative i over alternative j;
- aij = a−1

ji .

As part of the current research, the following methodology for evaluating ratings was
developed. It consists of the following rules for choosing preferences:

1. Platform independence is not the most important characteristic, because the study is
aimed to find the optimal file format for Apache Hadoop system.

2. The ability to record complex structures has an important role, since it provides great
opportunities for data processing and analysis.

3. The ability to modify data is not critical, since most big data storage platforms comply
with the “write once—read many” principle.

4. The possibility of compression has an indirect role since it affects the volume of data.
5. The presence of metadata is an indicator that does not require analysis, because it

affects the speed of reading and grouping data.

According to the experiments results, the following rules were formulated:

1. The data volume plays an important role in the processing and storage of big data,
but is not critical, since the storage hardware has become much cheaper in recent
years.

2. Reading all lines is an important indicator, since it most fully reflects the speed of
data processing using a particular data storage format.

3. The filter and search for unique values are equally important characteristics; however,
these functions rely on the subtraction of all strings, the importance of which is
defined in the previous paragraph.

4. Applying a function, grouping, and finding the minimum value are the next most
important indicators, since they are interesting from the point of view of analytics
than engineering.

5. Sorting is the least important of the criteria presented, as it is most often used to
visualize data.

To assess the preference of one or another indicator, the following scale is introduced:

• Equals = 1;
• More (less) important = 2 (1/2);
• Much more important = 4 (1/4);
• Critical = 6 (1/6);
• If necessary, it is possible to use intermediate values.

Before describing the algorithm, it is necessary to introduce the basic definitions of
tropical algebra [33].

Consider the set of positive real numbers R+, on which two operations are defined:
the operation of idempotent addition ⊕ with a neutral element 0, the result of which is
the choice of the maximum of the terms, and the operation of multiplication ⊗ with a
neutral element 1 (defined as usual). For each element x on the set, an inverse element
x−1 is defined, such that xx−1 = x−1x = 1. The resulting system is called the idempotent
semifield.

The definition of matrices in an idempotent semifield is usual.
The trace is defined as follows:

tr A = a11 ⊕ ann

The tropical spectral radius of a matrix is a following scalar:

λ = ⊕n
m=1 tr

1
m (Am)

The asterate operator means next operation:

A∗ = I ⊕ A ⊕ . . . ⊕ An−1
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Using the given matrices, calculate the rating vector of alternatives [34]. The algorithm
for calculating the rating vector of alternatives consists of the following steps:

1. According to criteria matrix, calculate the weight vector of criteria:

w =
(

µ−1C
)∗

, where µ = tr C ⊕ . . . ⊕ tr
1
m (Cm) and C is criteria matrix

2. If result matrix contains more than one vector (up to a positive factor), find the least
differentiating vectors:

w1 =
(

δ−111T ⊕ µ−1C
)∗

, where δ = 1T
(

µ−1C
)∗

1

and the most differentiating vectors:

w2 = P
(

I ⊕ P−
sk P

)
,

where P is a matrix
(
µ−1C

)∗ removing columns linearly independent from another, Psk is a
matrix created from matrix P by nullifying every element, except Psk, and k and s indexes
are calculated using following formula:

k = argmax
j

1T pj p−j 1, s = argmax
i

p−1
ik .

3. Using w1 = (w(1)
i ) and w2 = (w(2)

i ) calculate weighted amounts of paired compar-
isons matrixes:

D1 = w(1)
1 A1 ⊕ . . . ⊕ w(1)

m Am, D2 = w(2)
1 A1 ⊕ . . . ⊕ w(2)

m Am

4. Calculate the least differentiating vector of the rating of alternatives:

x1 =
(

v−1
1 D1

)∗
, where v1 = tr D1 ⊕ . . . ⊕ tr

1
n (Dn

1 )

If resulting vector is not unique, calculate it in a different way:

x1 =
(

δ−1
1 11T ⊕ v−1

1 D1

)∗
where δ1 = 1T

(
v−1

1 D1

)∗
1

5. Calculate the most differentiating vector of the rating of alternatives:

x2 =
(

v−1
2 D2

)∗
, where v2 = tr D2 ⊕ . . . ⊕ tr

1
n (Dn

2 )

If resulting vector is not unique, calculate it in a different way:

x2 = Q
(

I ⊕ Q−
skQ

)∗,

where Q is a matrix
(

v−1
2 D2

)∗
removing columns linearly independent from another, Qsk is

a matrix created from matrix Q by nullifying every element except Qsk, and k and s indexes
are calculated using following formula:

k = arg max
j

1Tqjq−j 1, s = arg max
i

q−1
ik .

At first, calculate spectral radius using calculation rules in the independent semifield
–µ = 1.5874.
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To find the least differentiating weights vector, let us calculate weights vector. The re-
sult gives the following the least differentiating weights vector:

w1 ≈
(

1 1.26 1.26 3.17 3.17 4 4 4 4 1.26
0.63 0.8 0.8 2 2 2.5 2.5 2.5 2.5 1

)T

The resulting matrix contains to vectors. For following calculation, we choose only
one vector—for example, the first one. Using the weights vector, let us calculate the least
differentiating vector of rating of alternatives:

x1 ≈
(

1 1 0.56 1.42 1.42
)T

Let us calculate the most differentiating vector of rating of alternatives. At first,
calculate weights vector for this:

w2 ≈
(

1 2 2 5 5 6.35 6.35 6.35 6.35 1.6
0.4 0.8 0.8 2 2 2.5 2.5 2.5 2.5 1

)T

For the example, we take only the first weights vector. Let us calculate the most
differentiating vector of rating of alternatives. As a result, the following vector was
obtained:

x2 ≈
(

1 1 0.56 1.42 2
)T

The resulting vector looks similar to the previous one. According to this decision,
the format rating is built as follows:

parquet ∼= orc � avro ∼= csv � json.

The parquet and orc formats received the highest score in the ranking of alternatives.
The avro and csv formats showed an average result. Json had the worst result.

5. Discussion

This study presented is an example of the application of experimental evaluation and
tropical optimization methods to find the optimal data storage format when developing a
data processing and storage system using the Apache Hadoop platform and the Apache
Spark framework.

This study can be used to build data processing and storage systems based on the
Apache Hadoop platform or similar solutions. In addition, it can be an example of a solution
to similar problems when a selection from a list of alternatives is required. Such questions
can arise both when choosing data storage formats and other tools and system components.

The resulting solution is based on the results of specific tests and does not reflect
the popularity or functionality of the formats under consideration, it only reflects the
expediency of using the formats in the conditions under consideration—the presence of
big data and the use of the Apache Hadoop platform.

However, unlike other similar studies [14,17–19], this study solved the problem of
choosing an effective solution by methods of tropical algebra based on matrices constructed
on the basis of experimental parameter estimates. The use of the proposed approach
made it possible to take into account several investigated parameters for evaluating data
storage formats without introducing additional hypotheses about the priorities of the
evaluation criteria. The use of tropical analysis tools, its symmetric properties during the
transition to idempotent semirings made it possible to form an algorithm for choosing
solutions, which will expand its use for similar problems when using other formats or
other experimental methods.

For example, big data processing systems are cluster systems, which allow processing
more data using several nodes connected to a computer network. In this study, a single
node was used, the results of which may differ from clustering a similar dataset. There-
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fore, the authors plan to continue the experiment using clusters with different types of
configuration and resources.

In addition, the rate of change in processing time formats depending on the volume
should be studied.

6. Conclusions

The paper presents a methodology for choosing a data storage format based on
an experimental evaluation of the five most popular formats using the Apache Spark
framework.

The study consisted of two parts: experimental and computational. In the experimen-
tal part, each format was evaluated based on several test runs. For the experiment, an
experimental stand was deployed with tools for processing big data installed on it. The aim
of the experiment was to find out characteristics of data storage formats, such as the volume
and processing speed for different operations using the Apache Spark framework.

In the computational part, an algorithm for choosing alternatives using tropical opti-
mization methods was presented, the essence of which is to solve a multi-criteria decision-
making problem, which results is presented in the form of vector of preference degrees.

The article also provides an example of assigning ratings for alternatives. The algo-
rithm helps to find the optimal solution for the specific requirements of the system.

The contribution of the study (presented in this paper) is that a technique of choosing
a data storage format has been developed, using the example of experimental assessment
and the methods of tropical algebra. As an example, the formats supported by the Apache
Hadoop system and the Apache Spark framework, as one of the most popular frameworks
for processing big data, were used.

It should be noted that this study was not aimed at studying the functional features
of the presented data storage formats. The main goal of the study is to build a rating
of the presented alternatives based on their experimental assessment using the entered
parameters necessary for solving a specific problem.

These techniques can be useful for practical use. In any company, when developing or
using software, there is always a choice of which package or system to use. An important
selection criterion is the exchange of data with other components, which are often deter-
mined by data formats. In the paper, for the considered use cases of big data, the choice of
the best solution was made, which can be useful in a similar case. However, the methods
and experimental studies and quality indicators, as well as the optimization algorithm, are
described in sufficient detail, and can be used for similar tasks where the choice of format
is important, while the conditions for using the formats and the set of alternative options
may be different.

This study can be one example for solving similar problems, without introducing
additional hypotheses concerning the priorities of the evaluation criteria.
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Appendix A Experimental Resources

To evaluate experimental assessment, the experimental stand was built. The stand
configuration is presented in Table A1. Table A2 contains the description of the data
generated for the study.

Table A1. Experimental stand configuration.

Element Characteristics

CPU Intel Core i7-8565U 1.8 GHz 4 cores
RAM 16 GB

Operating system Windows 10 64x
Platform Java Virtual Machine

Programming language used Java v. 1.8
The framework used Apache Spark v. 2.4

Table A2. Description of the generated data.

Field Name Data Type

name string
surname string

age 32 bit integer
country string
balance 64 bit integer

card number string
currency string

account open date calendar

Appendix B Statistics of the Operations Performed

The statistics obtained during the experimental evaluation are presented below.
Tables A3–A5 show the comparative characteristics at each stage for operation of

searching for unique objects.

Table A3. Stage 0 characteristics of the searching for unique values.

Criteria Avro CSV JSON ORC Parquet

Task count 9 10 20 9 9

Shuffle spill
(mem-

ory/disk)

0.0 B/
703.0 MB

0.0 B/
611.5 MB - 0.0 B/

702.9 MB
0.0 B/

703.2 MB

Median Values Statistics by Task

Scheduler
Delay 20 ms 11 ms 6 ms 15 ms 9 ms

Task Deserial-
ization
Time

29 ms 21 ms 3 ms 30 ms 17 ms

Garbage
Collection

Time
2 s 2 s 0.3 s 2 s 3 s

Peak
Execution
Memory

232.0 MB 248.4 MB 144.0 MB 232.0 MB 232.0 MB

Shuffle spill
(mem-

ory/disk)

0.0 B/
85.5 MB

0.0 B/
76.2 MB - 0.0 B/

85.5 MB
0.0 B/

85.5 MB
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Table A4. Stage 1 characteristics of the searching for unique values.

Criteria Avro CSV JSON ORC Parquet

Task count 200 200 200 200 200

Shuffle write 11.5 KB/
200

11.5 KB/
200

11.5 KB/
200

11.5 KB/
200 11.5 KB/200

Median Values Statistics by Task

Scheduler
Delay 1 ms 2 ms 1 ms 1 ms 2 ms

Task Deserial-
ization
Time

1 ms 2 ms 2 ms 1 ms 1 ms

Garbage
Collection

Time
0 ms 0 ms 0 ms 0 ms 0 ms

Peak
Execution
Memory

18.0 MB 18.0 MB 18.0 MB 18.0 MB 18.0 MB

Shuffle Read
Size/Records

4.0 MB/
50,018

4.5
MB/50,013

4.1 MB/
50,018

4.0 MB/
50,018

4.0 MB/
50,018

Shuffle Write
Size/Records 59.0 B/1 59.0 B/1 59.0 B/1 59.0 B/1 59.0 B/1

Table A5. Stage 2 characteristics of the searching for unique values.

Criteria Avro CSV JSON ORC Parquet

Task count 1 1 1 1 1

Median Values Statistics by Task

Scheduler
Delay 2 ms 0 ms 0 ms 0 ms 1 ms

Task Deserial-
ization
Time

1 ms 2 ms 1 ms 2 ms 0 ms

Garbage
Collection

Time
0 ms 0 ms 0 ms 0 ms 0 ms

Peak
Execution
Memory

0.0 B 0.0 B 0.0 B 0.0 B 0.0 B

Below are Tables A6 and A7, showing the values of the main characteristics obtained
at each stage for operation of the data filtering.
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Table A6. Stage 0 characteristics of the sorting.

Criteria Avro CSV JSON ORC Parquet

Task count 9 10 20 9 9

Median Values Statistics by Task

Scheduler
Delay 52 ms 48 ms 17 ms 0.1 s 28 ms

Task Deserial-
ization
Time

26 ms 20 ms 4 ms 32 ms 10 ms

Garbage
Collection

Time
97 ms 93 ms 17 ms 45 ms 43 ms

Peak
Execution
Memory

0.0 B 0.0 B 0.0 B 0.0 B 0.0 B

Table A7. Stage 1 characteristics of the sorting.

Criteria Avro CSV JSON ORC Parquet

Task count 9 10 20 9 9

Median Values Statistics by Task

Scheduler
Delay 4 ms 3 ms 2 ms 3 ms 2 ms

Task Deserial-
ization
Time

17 ms 1 ms 7 ms 11 ms 18 ms

Garbage
Collection

Time
0.2 s 0.2 s 86 ms 0.2 s 0.1 s

Peak
Execution
Memory

0.0 B 0.0 B 0.0 B 0.0 B 0.0 B

Shuffle Write
Size/Records

5.5
MB/1,166,764

4.8
MB/1,000,000

2.8
MB/582,729

5.5
MB/1,166,764

5.6
MB/1,166,764

Tables A8–A11 describe each stage of the sorting operation.

Table A8. Stage 0 characteristics of the sorting.

Criteria Avro CSV JSON ORC Parquet

Task count 200 200 200 200 200

Shuffle write 11.5 KB/
200

11.5 KB/
200

11.5 KB/
200

11.5 KB/
200 11.5 KB/200

Median Values Statistics by Task

Scheduler
Delay 2 ms 1 ms 2 ms 1 ms 1 ms

Task
Deserialization

Time
2 ms 2 ms 2 ms 1 ms 2 ms

Garbage
Collection

Time
0 ms 0 ms 0 ms 0 ms 0 ms

Peak Execution
Memory 10.0 MB 10.0 MB 10.0 MB 10.0 MB 10.0 MB

Shuffle Read
Size/Records

242.7
KB/50,856

243.9
KB/50,955

243.3
KB/50,943

242.5
KB/50,934

243.8
KB/50,908

Shuffle Write
Size/Records 59.0 B/1 59.0 B/1 59.0 B/1 59.0 B/1 59.0 B/1
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Table A9. Stage 1 characteristics of the sorting.

Criteria Avro CSV JSON ORC Parquet

Task count 1 1 1 1 1
Median Values Statistics by Task

Scheduler
Delay 1 ms 2 ms 1 ms 0 ms 1 ms

Task Deserial-
ization
Time

1 ms 1 ms 1 ms 1 ms 1 ms

Garbage
Collection

Time
0 ms 0 ms 0 ms 0 ms 0 ms

Peak
Execution
Memory

0.0 B 0.0 B 0.0 B 0.0 B 0.0 B

Table A10. Stage 2 characteristics of the sorting.

Criteria Avro CSV JSON ORC Parquet

Task count 200 200 200 200 200

Shuffle write 11.5 KB/
200

11.5 KB/
200

11.5 KB/
200

11.5 KB/
200 11.5 KB/200

Median Values Statistics by Task

Scheduler
Delay 2 ms 1 ms 2 ms 1 ms 1 ms

Task Deserial-
ization
Time

2 ms 2 ms 2 ms 1 ms 2 ms

Garbage
Collection

Time
0 ms 0 ms 0 ms 0 ms 0 ms

Peak
Execution
Memory

10.0 MB 10.0 MB 10.0 MB 10.0 MB 10.0 MB

Shuffle Read
Size/Records

242.7
KB/50,856

243.9
KB/50,955

243.3
KB/50,943

242.5
KB/50,934

243.8
KB/50,908

Shuffle Write
Size/Records 59.0 B/1 59.0 B/1 59.0 B/1 59.0 B/1 59.0 B/1

Table A11. Stage 3 characteristics of the sorting.

Criteria Avro CSV JSON ORC Parquet

Task count 1 1 1 1 1

Median Values Statistics by Task

Scheduler
Delay 1 ms 2 ms 1 ms 0 ms 1 ms

Task Deserial-
ization
Time

1 ms 1 ms 1 ms 1 ms 1 ms

Garbage
Collection

Time
0 ms 0 ms 0 ms 0 ms 0 ms

Peak
Execution
Memory

0.0 B 0.0 B 0.0 B 0.0 B 0.0 B
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Appendix C Matrices of Alternatives Comparisons

To assess the alternatives, matrices of comparison of criteria and alternatives were
compiled for each criterion.

Table A12 describes the criteria preference matrix.

Table A12. Critria preference matrix.

Criteria Platform In-
dependence

Recording
Complex
Structure

Volume
Reading

All
Lines

Filter Unique
Values Grouping Sorting

Platform
independence 1 1/2 1/2 1/5 1/5 1/4 1/4 1/2

Recording complex
structure 2 1 1 1/4 1/4 1/2 1/2 1

Volume 2 1 1 1/4 1/4 1/2 1/2 1
Reading all lines 5 4 4 1 1 1/2 1/2 2

Filter 5 4 4 1 1 1/2 1/2 2
Unique values 4 2 2 2 2 1 1 4

Grouping 4 2 2 2 2 1 1 4
Sorting 2 1 1 1/2 1/2 1/4 1/4 1

Tables A13–A20 describe the matrices of the alternatives according to each criterion.

Table A13. Rating of alternatives according to platform independence.

Avro CSV JSON ORC Parquet

avro 1 1 1 3 3
csv 1 1 1 3 3
json 1 1 1 3 3
orc 1/3 1/3 1/3 1 1

parquet 1/3 1/3 1/3 1 1

Table A14. Rating of alternatives according to recording complex structure.

Avro CSV JSON ORC Parquet

avro 1 3 1 1 1
csv 1/3 1 1/3 1/3 1/3
json 1 3 1 1 1
orc 1 3 1 1 1

parquet 1 3 1 1 1

Table A15. Rating of alternatives according to volume.

Avro CSV JSON ORC Parquet

avro 1 2 4 1/2 1/2
csv 1/2 1 3 1/3 1/3
json 1/4 1/3 1 1/4 1/4
orc 2 3 4 1 1

parquet 2 3 4 1 1

Table A16. Rating of alternatives according to reading all lines.

Avro CSV JSON ORC Parquet

avro 1 1 3/2 3/4 1/2
csv 1 1 3/2 3/4 1/2
json 2/3 2/3 1 1/2 1/3
orc 4/3 4/3 2 1 2/3

parquet 2 2 3 3/2 1
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Table A17. Rating of alternatives according to filter.

Avro CSV JSON ORC Parquet

avro 1 1 2 1/4 1/4
csv 1 1 1/2 1/4 1/4
json 1/2 1/2 1 1/4 1/4
orc 4 4 4 1 1

parquet 4 4 4 1 1

Table A18. Rating of alternatives according to searching for unique values.

Avro CSV JSON ORC Parquet

avro 1 8/7 8/7 1 5/7
csv 7/8 1 1 7/8 5/8
json 7/8 1 1 7/8 5/8
orc 1 8/7 8/7 1 5/7

parquet 7/5 8/5 8/5 7/5 1

Table A19. Rating of alternatives according to grouping.

Avro CSV JSON ORC Parquet

avro 1 1/2 2 1/2 1/3
csv 2 1 3 4/5 3/5
json 1/2 1/3 1 1/4 1/5
orc 2 5/4 4 1 3/4

parquet 3 5/3 5 4/3 1

Table A20. Rating of alternatives according to sorting.

Avro CSV JSON ORC Parquet

avro 1 1 3/2 2/3 1/2
csv 1 1 3/2 2/3 1/2
json 2/3 2/3 1 1/2 1/3
orc 3/2 3/2 2 1 2/3

parquet 2 2 3 3/2 1
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