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Abstract: The oscillation of differential equations plays an important role in many applications
in physics, biology and engineering. The symmetry helps to deciding the right way to study
oscillatory behavior of solutions of this equations. The purpose of this article is to establish new
oscillatory properties which describe both the necessary and sufficient conditions for a class of
nonlinear second-order differential equations with neutral term and mixed delays of the form(

p(ι)
(
w′(ι)

)α
)′

+ r(ι)uβ(ν(ι)) = 0, ι ≥ ι0 where w(ι) = u(ι) + q(ι)u(ζ(ι)). Furthermore, examining
the validity of the proposed criteria has been demonstrated via particular examples.

Keywords: Lebesgue’s dominated convergence theorem; neutral; oscillation; nonoscillation; non-linear

1. Introduction

In this paper we present our work in the study of certain oscillation properties of
second-order differential equations containing mixed delays.

Nowadays, the analysis of qualitative properties of ordinary differential equations is
attracting considerable attention from the scientific community due to numerous applica-
tions in several contexts as Biology, Physics, Chemistry, and Dynamical Systems. For some
details related the recent studies on oscillation and non-oscillation properties, exponential
stability, instability, existence of unbounded solutions of the equations under consideration,
we refer the reader to the books [1,2]. It is worth pointing out that both oscillation and
stability criteria are currently used in the studies of nonlinear mathematical models with
delay for single species and several species with interactions, in logistic models, α-delay
models, mathematical models with varying capacity, mathematical models for food-limited
population dynamics with periodic coefficients, diffusive logistic models (for instance,
diffusive Malthus-type models with several delays, autonomous diffusive delayed logis-
tic models with Neumann boundary conditions, periodic diffusive logistic Volterra-type
models with delays, and so on). In the last few years, the research activity concerning the
oscillation of solutions of neutral differential equations has been received considerable
attention. Moreover, neutral equations contribute to many applications in economics,
physics, medicine, engineering and biology, see [3–8]. The literature is full of very interest-
ing results linked with the oscillation properties for second-order differential equations.
Now we recall some studies that have a strong connection with the content of this paper.
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In [9], the authors obtained some oscillation criteria of the following second-order neutral
differential equations(

p(ι)[u(ι) + q(ι)u(ζ(ι))]′
)′
+ r(ι)u(σ(ι)) + v(ι)u(η(ι)) = 0

considering the cases in which the arguments are delayed, advanced or mixed. In [10], the
authors had investigated some oscillation properties of the solutions of the following equation

(p(ι)z′(ι))′ + r(ι)u(σ(ι)) = 0, ι ≥ ι0 ≥ 0,

where z(ι) = u(ι) + a(ι)u(ι− τ) + b(ι)u(ι + δ). It is interesting to notice that, in the afore-
mentioned works, the authors obtained only sufficient conditions that ensure the oscillation
of the solutions of the considered equations. A problem worthy of investigations is the
study of necessary and sufficient conditions for oscillation, and some satisfactory answers
were given in [11–18]. Finally, the interested readers are referred to the following papers
and to the references therein for some recent results on the oscillation theory for ordinary
differential equations of several orders [19–27].

In this work, we obtained the necessary and sufficient conditions for the oscillation of
solutions to second-order non-linear differential equations in the form(

p(ι)
(
w′(ι)

)α
)′

+ r(ι)uβ(ν(ι)) = 0, ι ≥ ι0, (1)

where
w(ι) = u(ι) + q(ι)u(ζ(ι)).

The functions r, p, q, ν, ζ are continuous and satisfy the conditions stated below;

(a) ν ∈ C([0, ∞),R), ζ ∈ C2([0, ∞),R), ν(ι) < ι, ζ(ι) < ι, limι→∞ ν(ι) = ∞,
limι→∞ ζ(ι) = ∞.

(b) ν ∈ C([0, ∞),R), ζ ∈ C2([0, ∞),R), ν(ι) > ι, ζ(ι) < ι, limι→∞ ν(ι) = ∞,
limι→∞ ζ(ι) = ∞.

(c) p ∈ C1([0, ∞),R), r, r̃ ∈ C([0, ∞),R); 0 < p(ι), 0 ≤ r(ι), 0 ≤ r̃(ι), for all ι ≥ 0.
(d) q ∈ C2([0, ∞),R+) with 0 ≤ q(ι) ≤ a < 1.
(e) limι→∞ P(ι) = ∞ where P(ι) =

∫ ι
0 p−1/α(s)ds.

(f) α and β are the quotient of two positive odd integers.

2. Preliminary Results

To make our notations simpler, we set

R1(ι) = r(ι)
(
(1− a)w

(
ν(ι)

))β
.

Lemma 1. Suppose (a)–(f) holds for ι ≥ ι0, and if u is an eventually positive solution of (1). Then
w satisfies

0 < w(ι), w′(ι) > 0, and
(

p(ι)
(
w′(ι)

)α
)′
≤ 0 f or ι ≥ ι1 . (2)

Proof. Let u be an eventually positive solution. Then w(ι) > 0 and there exists ι0 ≥ 0 such
that u(ι) > 0, u(ν(ι)) > 0, u(ζ(ι)) > 0 for all ι ≥ ι0. Then (1) gives that(

p(ι)
(
w′(ι)

)α
)′

= −r(ι)uβ(ν(ι)) ≤ 0 (3)

which shows that p(ι)
(
w′(ι)

)α is non-increasing for ι ≥ ι0. Next we claim that for w > 0,
p(ι)

(
w′(ι)

)α is positive for ι ≥ ι1 > ι0. If not, let p(ι)
(
w′(ι)

)α ≤ 0 for ι ≥ ι1, we can choose
c > 0 such that

p(ι)
(
w′(ι)

)α ≤ −c ,

that is,
w′(ι) ≤ (−c)1/α p−1/α(ι) .
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Integrating both sides from ι1 to ι we get

w(ι)− w(ι1) ≤ (−c)1/α
(

P(ι)− P(ι1)
)
.

Taking limit both sides as ι → ∞, we have limι→∞ w(ι) ≤ −∞ which leads to a
contradiction to w(ι) > 0. Hence, p(ι)

(
w′(ι)

)α
> 0 for ι ≥ ι1 i.e., w′(ι) > 0 for ι ≥ ι1.

Hence proved.

Lemma 2. Suppose (a)–(f) hold for ι ≥ ι0, and if u is an eventually positive solution of (1). Then
w satisfies

u(ι) ≥ (1− a)w(ι) f or ι ≥ ι1. (4)

Proof. Assume that u be an eventually positive solution of (1). Then w(ι) > 0 and there
exists ι ≥ ι1 > ι0 such that

u(ι) = w(ι)− q(ι)u(ζ(ι))

≥ w(ι)− q(ι)w(ζ(ι))

≥ w(ι)− q(ι)w(ι)

=
(
1− q(ι)

)
w(ι)

≥ (1− a)w(ι) .

Hence w satisfies (4) for ι ≥ ι1.

Remark 1. The above two lemmas hold for any α and β (i.e., α ≥ β or α ≤ β).

3. Main Results

Theorem 1. Let (b)–(f) hold for ι ≥ ι0 and β > α. Then every solution of (1) is oscillatory if and
only if ∫ ∞

0
p−1/α(s)

[ ∫ ∞

s
r(ψ)dψ

]1/α
ds = ∞ . (5)

Proof. Let u is an eventually positive solution of (1). Then w(ι) > 0 and there exists ι0 ≥ 0
such that u(ι) > 0, u(ν(ι)) > 0, u(ζ(ι)) > 0 for all ι ≥ ι0. Thus, Lemmas 1 and 2 holds
for ι ≥ ι1. By Lemma 1, there exists ι2 > ι1 such that w′(ι) > 0 for all ι ≥ ι2. Then there
exists ι3 > ι2 and c > 0 such that w(ι) ≥ c for all ι ≥ ι3. Next using Lemma 2, we wet
u(ι) ≥ (1− a)w(ι) for all ι ≥ ι3 and (1) become(

p(ι)
(
w′(ι)

)α
)′

+ R1(ι) ≤ 0. (6)

Integrating (6) from ι to ∞ we get

[p(s)
(
w′(s)

)α
]∞ι +

∫ ∞

ι
R1(s)ds ≤ 0 .

Since p(ι)
(
w′(ι)

)α is positive and non-decreasing, limι→∞ p(ι)
(
w′(ι)

)α finitely exists
and is positive.

p(ι)
(
w′(ι)

)α ≥
∫ ∞

ι
R1(s)ds ,

that is,

w′(ι) ≥ p−1/α(ι)
[ ∫ ∞

ι
R1(s)ds

]1/α

= (1− a)β/α p−1/α(ι)
[ ∫ ∞

ι
r(s)wβ

(
ν(s)

)
ds
]1/α

.
(7)



Symmetry 2021, 13, 367 4 of 8

Using the assumption (b) and w(ι) is non-decreasing,

w′(ι) ≥ (1− a)β/α p−1/α(ι)
[ ∫ ∞

ι
r(s)ds

]1/α
wβ/α(ι) ,

that is,

w′(ι)
wβ/α(ι)

≥ (1− a)β/α p−1/α(ι)
[ ∫ ∞

ι
r(s)ds

]1/α
.

Taking integration both sides from ι3 to ∞ we have,

(1− a)β/α
∫ ∞

ι3
p−1/α(s)

[ ∫ ∞

s
r(ψ)dψ

]1/α
ds ≤

∫ ∞

ι3

w′(s)
wβ/α(s)

ds < ∞

due to β > α, which is a contradiction to (5) and hence the sufficient part of the theorem
is proved.

Next by applying contrapositive argument we proved the necessary part. If (5) does
not hold, then for every ε > 0 there exists ι ≥ ι0 for which∫ ∞

ι
p−1/α(s)

[ ∫ ∞

s
r(ψ)dψ

]1/α
ds < ε for ι ≥ T,

where 2ε =
[

1
1−a

]−β/α
> 0. Let us define a set

V =
{

u ∈ C([0, ∞)) :
1
2
≤ u(ι) ≤ 1

1− a
for all ι ≥ T

}
and Φ : V → V as

(Φu)(ι) =


0 if ι ≤ T,

1+a
2(1−a) − q(ι)u(ζ(ι))

+
∫ ι

ι p−1/α(s)
[ ∫ ∞

s r(ψ)uβ(ν(ψ))dψ
]1/α

ds if ι > T .

Next we prove (Φu)(ι) ∈ V. For u(ι) ∈ V,

(Φu)(ι) ≤ 1 + a
2(1− a)

+
∫ ι

T
p−1/α(s)

[ ∫ ∞

s
r(ψ)

( 1
1− a

)β
dψ
]1/α

ds

≤ 1 + a
2(1− a)

+
( 1

1− a

)β/α
× ε

=
1 + a

2(1− a)
+

1
2
=

1
1− a

and further, for u(ι) ∈ V

(Φu)(ι) ≥ 1 + a
2(1− a)

− q(ι)× 1
1− a

+ 0 ≥ 1 + a
2(1− a)

− a
1− a

=
1
2

.

Hence, Φ maps from V to V.

Now we are going to find a fixed point for Φ in V which will eventually give a positive
solution of (1).
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First, we define a sequence of functions in V by

u0(ι) = 0 for ι ≥ ι0,

u1(ι) = (Φu0)(ι) =

{
0 if ι < T
1
2 if ι ≥ T

,

un+1(ι) = (Φun)(ι) for n ≥ 1, ι ≥ T.

Here, we see u1(ι) ≥ u0(ι) for each fixed ι and 1
2 ≤ un−1(ι) ≤ un(ι) ≤ 1

1−a , ι ≥ T
for all n ≥ 1. Thus, un converges point-wise to a function u. By Lebesgue’s Dominated
Convergence Theorem u is a fixed point of Φ in V, which shows that there has a non-
oscillatory solution. This completes the proof of the theorem.

Theorem 2. Let (a), (c)–(f) hold for ι ≥ ι0 and β < α. Then every solution of (1) is oscillatory if
and only if ∫ ∞

0
r(ψ)[(1− a)P

(
ν(ψ)

)
]β dψ = ∞ . (8)

Proof. Let u(ι) be an eventually positive solution of (1). Then proceeding as in Theorem 1,
we have ι2 > ι1 > ι0 such that (7) holds for all ι ≥ ι2. Using (e), there exists ι3 > ι2 for
which P(ι)− P(ι3) ≥ 1

2 P(ι) for ι ≥ ι3. Integrating (7) from ι3 to ι, we have

w(ι)− w(ι3) ≥
∫ ι

ι3
p−1/α(s)

[ ∫ ∞

s
R1(κ)dκ

]1/α
ds

≥
∫ ι

ι3
p−1/α(s)

[ ∫ ∞

ι
R1(κ)dκ

]1/α
ds,

that is,

w(ι) ≥ (P(ι)− P(ι3))
[ ∫ ∞

ι
R1(κ)dκ

]1/α

≥ 1
2

P(ι)
[ ∫ ∞

ι
R1(κ)dκ

]1/α
. (9)

Hence,

w(ι) ≥ 1
2

P(ι)U1/α(ι) for ι ≥ ι3

where

U(ι) =
∫ ∞

ι
r(κ)

(
(1− a)w

(
ν(κ)

))β
dκ .

Now,

U′(ι) = −r(ι)
(
(1− a)w

(
ν(ι)

))β

≤ − 1
2β

r(ι)[(1− a)P
(
ν(ι)

)
]βUβ/α

(
ν(ι)

)
≤ 0 (10)

which shows that U(ι) is non-increasing on [ι4, ∞) and limι→∞ U(ι) exists. Using (10) and
(a), we find
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[
U1−β/α(ι)

]′
= (1− β/α)U−β/α(ι)U′(ι)

≤ −1− β/α

2β
r(ι)[(1− a)P

(
ν(ι)

)
]βUβ/α

(
ν(ι)

)
U−β/α(ι)

≤ −1− β/α

2β
r(ι)[(1− a)P

(
ν(ι)

)
]β . (11)

Integrating (11) from ι3 to ι we have,[
U1−β/α(s)

]ι

ι4
≤ −1− β/α

2β

∫ ι

ι3
r(s)[(1− a)P

(
ν(s)

)
]βds,

that is,

1− β/α

2β

[ ∫ ∞

0
r(s)[(1− a)P

(
ν(s)

)
]β ds]β

]
≤ −

[
U1−β/α(s)

]ι

ι3
< U1−β/α(ι3) < ∞

which contradicts (8). This completes the proof of the theorem.

Example 1. Consider the neutral differential equations(((
u(ι) + e−ιu(ζ(ι))

)′)1/3
)′

+ ι(u(ι + 2))5/3 = 0 . (12)

Here α = 1/3, p(ι) = 1, 0 < q(ι) = e−ι < 1, ν(ι) = ι + 2. For β = 5/3, we have
β = 5/3 > α = 1/3. To check (5) we have∫ ∞

ι0

[ 1
p(s)

[ ∫ ∞

s
r(ψ) dψ

]]1/α
ds =

∫ ∞

2

[ ∫ ∞

s
ψ dψ

]3
ds = ∞.

So, all the conditions of of Theorem 1 hold. Thus, each solution of (12) is oscillatory.

Example 2. Consider the neutral differential equations(
e−ι
((

u(ι) + e−ιu(ζ(ι))
)′)11/3

)′
+

1
ι + 1

(u(ι− 2))7/3 = 0 . (13)

Here α = 11/3, p(ι) = e−ι, 0 < q(ι) = e−ι < 1, ν(ι) = ι − 2, P(ι) =
∫ ι

0 e3s/11ds =
11
3 (e3ι/11 − 1). For β = 7/3, we get β = 7/3 < α = 11/3. To check (8) we have

1
(2)β

[ ∫ ∞

0
r(ψ)[(1− a)P

(
ν(ψ)

)
]β dψ

]
=

1
(2)7/3

∫ ∞

0

1
ψ + 1

[
(1− a)

11
3
(
e3(ψ−2)/11 − 1

)]7/3
dψ = ∞ .

So, all the conditions of Theorem 2 hold, and therefore, each solution of (13) is oscillatory.

4. Conclusions

In this work, we studied second order highly nonlinear neutral differential equations
and established necessary and sufficient conditions for the oscillation of (1) when the
neutral coefficient lies in [0, 1). We already studied this for the case when −1 ≤ q(ι) ≤ 0.
The obtained method is applicable for any type of second-order delay differential equation.
In this direction, we have an open problem, namely: "Can we find the necessary and sufficient
conditions for the oscillation of the solutions to the equations (1) for the range −∞ < q(ι) < −1 or
1 < q(ι) < ∞?".
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