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Abstract: Two new hydrated multicomponent crystals of zwitterionic 2-aminonicotinic acid with
maleic and fumaric acids have been obtained and thoroughly characterized by a variety of experi-
mental (X-ray analysis and terahertz Raman spectroscopy) and theoretical periodic density functional
theory calculations, followed by Bader analysis of the crystalline electron density) techniques. It
has been found that the Raman-active band in the region of 300 cm−1 is due to the vibrations of the
intramolecular O-H...O bond in the maleate anion. The energy/enthalpy of the intermolecular hydro-
gen bonds was estimated by several empirical approaches. An analysis of the interaction networks
reflects the structure-directing role of the water molecule in the examined multicomponent crystals. A
general scheme has been proposed to explain the proton transfer between the components during the
formation of multicomponent crystals in water. Water molecules were found to play the key role in
this process, forming a “water wire” between the COOH group of the dicarboxylic acid and the COO–

group of the zwitterion and the rendering crystal lattice of the considered multicomponent crystals.

Keywords: 2-aminonicotinic acid; maleic and fumaric acids; intra- and inter-molecular hydrogen
bonds; structure-directing role of water; periodic (solid-state) DFT computations; low-frequency
Raman spectrum; water wires

1. Introduction

Most pharmaceutical compounds and materials for technological applications are de-
signed and produced as organic molecular crystals [1,2]. The fundamental physicochemical
properties and efficiency of these materials mainly depend on the nature of intermolecular
interactions that are responsible for overall packing arrangements of the molecules or ions
in periodic structures. Thus, the ability to control and modify the crystalline environment
of a material without affecting its intrinsic chemical properties is of great importance to the
development of new solid pharmaceutical forms and molecular devices [3,4]. Changing
the packing arrangement of molecules in the solid state by introducing an additional com-
ponent via the formation of a multicomponent crystal is a powerful strategy for improving
and fine-tuning the most critical properties of a material, including its aqueous solubility
and dissolution rate, physical stability, bioavailability, permeability, mechanical strength,
melting point, etc. [5–10]. The main strategy of deliberate design of multicomponent
crystals relies on the concept of supramolecular synthons [11,12], which are defined as
spatial arrangements of intermolecular interactions [13] that occur in a repeatable and

Symmetry 2021, 13, 425. https://doi.org/10.3390/sym13030425 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3336-4022
https://orcid.org/0000-0002-0511-9903
https://doi.org/10.3390/sym13030425
https://doi.org/10.3390/sym13030425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13030425
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/3/425?type=check_update&version=1


Symmetry 2021, 13, 425 2 of 14

predictable fashion, regardless of the availability of other functional groups [14]. The
identification and understanding of appropriate intermolecular interactions that govern
and control the molecular assembly through supramolecular synthons are the basis of
crystal engineering [15,16]. The major drawback of the synthon approach to the crystal
structure description, however, is that it does not account for the strength and/or impor-
tance of various interactions in controlling the resulting crystal structure. Since the packing
patterns in single- and multi-component crystals are the result of the fine balance between
all the noncovalent interactions in the material, a systematic quantitative assessment of the
strength and nature of intermolecular forces responsible for the formation of supramolecu-
lar synthons is crucial as it provides a deeper insight into the fundamental principles that
drive the formation of multicomponent molecular crystals and determine their properties.

A lot of attention has been recently paid to multicomponent crystals containing
zwitterions and/or ions of drug-like compounds [17–22]. In such crystals, an 8-membered
cycle with two short (strong) N+–H . . . O– bonds can be realized (Figure 2 in Reference [19]).
This synthon, denoted as R2

2(8), has practically never been studied before [23–25], despite
the fact that its energy is quite high (>50 kJ/mol [20]). The mechanism of formation of
this synthon seems obvious, namely, it is formed through a proton transfer between an
acid and a base along the N...H...O bond [19]. If one of the components is a zwitterion,
the mechanism of proton transfer is more complicated and can involve solvent molecules
(water or alcohol), which are often included in the resulting multicomponent crystals [18,20].
The transfer of an excess proton along the water wires has been studied in detail in many
theoretical works [26–28], due to its realization in bio-systems [29–31]. As far as we know,
there have been no theoretical works describing the proton transfer from dicarboxylic acid
to a zwitterion of a drug-like compound in a polar protic solvent.

This work has three aims:

(i). To characterize the structure and hydrogen bond (H-bond) network in two multicom-
ponent crystals—[2AmNic+Mle+H2O] (1:1:1) and [2AmNic+Fum+H2O] (1:1:1)—by
X-ray analysis, terahertz Raman spectroscopy, and periodic density functional theory
(DFT) calculations. 2AmNic denotes 2-amino-nicotinic acid, while Mle and Fum stand
for maleic and fumaric acids, respectively.

(ii). To reveal the structure-directing role of the water molecule in the considered crystals.
(iii). To theoretically substantiate the scheme of proton transfer from the dicarboxylic acid

to the zwitterion by means of water wires.

2. Materials and Methods
2.1. Compounds and Solvents

The 2-aminonicotinic acid (C6H6N2O2, 98%) was purchased from Sigma-Aldrich, and
the maleic (C4H4O4, 98%) and fumaric acids (C4H4O4, 98%) were bought from Merck. The
solvents were purchased from various suppliers and were used as received without further
purification.

2.2. Preparation Procedures

The grinding experiments were performed using a Fritsch planetary micro-mill, model
Pulverisette 7, in 12 mL agate grinding jars with ten 5 mm agate balls at a rate of 500 rpm
for 50 min. In a typical experiment, 100–120 mg of an equimolar 2-aminonicotinic acid/salt
former mixture were placed into a grinding jar, and 40–50 µL of water or a water/methanol
mixture (1:1 v:v) were added with a micropipette. In another method, 200 mg of a 1:1
mixture of 2-aminonicotinic acid and a salt former were suspended in 3 mL of water and
were left to be stirred on a magnetic stirrer at room temperature overnight. The precipitate
was filtered from the solution and dried at room temperature. The identification of the solid
forms obtained by different methods and estimation the solvent content were carried out
by the X-ray powder diffraction (Supplementary Figures S1 and S2) and thermal analysis
(Supplementary Figures S3 and S4).
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The diffraction quality single crystals of fumarate and maleate salts of 2-aminonicotinic
acid were obtained by dissolving 100 mg of a stoichiometric 1:1 mixture of the components
in 12 mL of H2O at 60 ◦C. After complete dissolution, the solution was gently cooled to the
room temperature, covered by Parafilm with a few small holes pierced in it, and left for the
solvent to evaporate. Small colorless crystals appeared in the solution after 5–7 days.

2.3. Thermal Analysis
2.3.1. Differential Scanning Calorimetry (DSC)

The thermal analysis was carried out using a differential scanning calorimeter with
a refrigerated cooling system (Perkin Elmer DSC 4000, Waltham, MA, USA). The sample
was heated in a sealed aluminum sample holder at a rate of 10 ◦C·min−1 in a nitrogen
atmosphere. The unit was calibrated with indium and zinc standards. The accuracy of the
weighing procedure was ±0.01 mg.

2.3.2. Thermogravimetric Analysis (TGA)

The TGA was performed on a TG 209 F1 Iris thermomicrobalance (Netzsch, Selb,
Germany). Approximately 10 mg of the sample was added to a platinum crucible. The
samples were heated at a constant heating rate of 10 ◦C·min−1 and purged throughout the
experiment with a dry argon stream at 30 mL·min−1.

2.4. Single Crystal and Powder X-ray Diffraction (XRD) Experiments

The single-crystal XRD data were collected on a SMART APEX II diffractometer
(Bruker AXS, Karlsruhe, Germany) using graphite-monochromated MoKα radiation
(λ = 0.71073 Å). Absorption corrections based on measurements of equivalent reflec-
tions were applied [32]. The structures were solved by direct methods and refined
by full-matrix least-squares on F2 with anisotropic thermal parameters for all the non-
hydrogen atoms [33]. All the hydrogen atoms were found from a difference Fourier map
and refined isotropically. The crystallographic data for [2AmNic+Mle+H2O] (1:1:1) and
[2AmNic+Fum+H2O] (1:1:1) were deposited by the Cambridge Crystallographic Data
Centre as supplementary publications numbered 2,053,450 and 2,053,451. This informa-
tion can be obtained free of charge from the Cambridge Crystallographic Data Centre at
www.ccdc.cam.ac.uk/data_request/cif.

The X-ray powder diffraction (XRPD) data of the bulk materials were recorded under
ambient conditions in Bragg-Brentano geometry with a Bruker D2 Phaser diffractometer
equipped with a second-generation LynxEye detector with CuKα radiation (λ = 1.5406 Å).

2.5. Raman Spectroscopy

For the Raman measurements, all the powders were compressed into tablets. The
Raman measurements in the spectral range of 10–440 cm−1 were performed using a Raman
microscope with the excitation wavelength 633 nm, provided by a He–Ne laser with the
maximum power of 17 mW (inVia and RL633, Renishaw plc, Spectroscopy Product Division,
Old Town Wotton-Under-Edge, Gloucestershire, UK). The 50× objective lens (Leica DM
2500 M, NA = 0.75, Leica Mikrosysteme Vertrieb GmbHMikroskopie und HistologieErnst-
Leitz-Strasse 17-37, Wetzlar, Germany) was used. The measurements were made with a
built-in double monochromator with dispersion subtraction in the confocal regime (NExT
monochromator, Renishaw plc, Spectroscopy Product Division, Old Town Wotton-Under-
Edge, Gloucestershire, UK). The acquisition time and number of accumulations for the
Raman spectra were adjusted to maximize the signal-to-noise ratio with the minimal sample
degradation. All the spectra for the powder samples were measured at several points and
then averaged to reduce the anisotropy effect on the Raman spectra. The background from
the Raman spectra was subtracted by the cubic spline interpolation method. All the spectra
were divided by the number of accumulations and acquisition time. The dips in the spectra
at wavenumbers of 23 cm−1 and 304 cm−1 are the artefacts of the measurements associated
with the presence of dust particles on the NExT monochromator mirrors.

www.ccdc.cam.ac.uk/data_request/cif
www.ccdc.cam.ac.uk/data_request/cif
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2.6. Periodic (Solid-State) DFT Computations

In the CRYSTAL17 calculations [34], the B3LYP (Becke 3-parameter, Lee-Yang-Parr) [35,36]
and PBE (Perdew-Burke-Ernzerhof) [37] functionals were employed with 6-31G** all-
electron Gaussian-type localized orbital basis sets. The London dispersion interactions
were taken into account by introducing the D3 correction with Becke-Jones damping
(PBE-D3) developed by Grimme et al. [38,39]. The structural relaxations were limited to
the positional parameters of the atoms. In all cases, the experimental crystal structure with
normalized X-H bond lengths was used as the starting point for geometry optimization.
Further details of the calculations are given in Section S1 of Supplementary Materials.

The metric parameters of the H-bonded fragments in the considered crystals are better
reproduced by B3LYP than PBE-D3 (Tables 1 and 2). The enthalpies/energies of inter-
molecular H-bonds calculated using the B3LYP and PBE-D3 approximations are compared
in Supplementary Table S1. In accord with the literature [25], PBE-D3 overestimates the
H-bonded energy. Thus, the B3LYP/6-31G** approximation was used to calculate the
Raman spectra and estimate the H-bond energies in this work.

Table 1. Distances (Å) between the heavy atoms involved in the formation of intermolecular H-bonds
and the angle (degree) of the O . . . H-X fragment, X = O or N, in [2AmNic+Fum+H2O] (1:1:1). The
experiment vs. the theoretical value. The periodic DFT computations were performed at different
levels of approximation with fixed unit parameters.

Fragment 1 Experiment PBE-D3/6-31G** B3LYP/6-31G**

O12 . . . H21-N2 2.877 (175.7) 2.848 (176.4) 2.867 (176.0)
O11 . . . H11-N1 2.662 (175.3) 2.668 (173.5) 2.681 (173.7)
O12 . . . H31-O3 2.702 (174.4) 2.684 (177.9) 2.697 (178.0)
O13 . . . H32-O3 2.859 (167.8) 2.801 (172.2) 2.828 (171.2)

O11 . . . H14-O14 2.559 (164.0) 2.540 (160.6) 2.547 (161.9)
O3 . . . H1-O1 2.582 (165.9) 2.545 (165.4) 2.571 (165.9

1 See Figure 1, the atomic numbering is borrowed from the cif file.
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Table 2. Distances (Å) between the heavy atoms involved in the formation of inter- and intra-molecular
H-bonds and the angle (degree) of the O . . . H-X fragment, X = O or N, in [2AmNic+Mle+H2O] (1:1:1).
The experiment vs. the theoretical values.

Fragment 1 Experiment PBE-D3/6-31G** B3LYP/6-31G**

O12 . . . H21-N2 2.816 (176.4) 2.804 (170.4) 2.811 (171.7)
O11 . . . H11-N1 2.816 (170.1) 2.816 (173.7) 2.818 (172.8)
O12 . . . H31-O3 2.717 (177.2) 2.701 (176.0) 2.706 (176.4)
O13 . . . H32-O3 2.771 (177.5) 2.701 (173.4) 2.706 (177.6)

O3 . . . H1-O1 2.567 (173.0) 2.536 (173.6) 2.550 (174.4)
O11 . . . H14-O14 (intra) 2.460 (174.9) 2.462 (176.1) 2.460 (174.9)

1 See Figure 2, the atomic numbering is borrowed from the cif file.
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3. Results
3.1. Crystal Structure and H-Bond Network

The relevant crystallographic data for the multicomponent crystals are presented in
Supplementary Materials Table S2. The [2AmNic+Fum+H2O] (1:1:1) crystal has a layered
(ribbon) structure. In addition to the R2

2(8) synthon, the dicarboxylic acid anion is stabilized
in the layer by two intermolecular O– . . . H-O bonds, which form both the oxygen atoms
of the COO– group, when interacting with the H2O molecule, and the COOH group of the
fumaric acid (Figure 1 and Table 1). According to Reference [40], the latter H-bond can be
considered short (Table 1). A water molecule forms three H-bonds: two as a proton donor
and one as an acceptor (Figure 1). Two H-bonds formed by the water molecule lie in the
layer, while the third interacts with the fumaric acid molecule in an adjacent layer.

The [2AmNic+Mle+H2O] (1:1:1) crystal does not have a layered (ribbon) structure.
This may be due to the presence of an intramolecular H-bond in the maleate anion. As a
result, this crystal contains one H-bond less per 1:1:1 trimer than the [2AmNic+Fum+H2O]
crystal (Tables 1 and 2). In both crystals, the water molecule forms three H-bonds (Figure 2),
and one of them is short (Table 2). A characteristic feature of the H-bond network in the
considered crystals is bifurcate H-bonds formed by the COO– group of the dicarboxylic
acids. In contrast to Reference [20], all the H-bonds formed by the COO– groups are
“classical” and rather strong (see Section 3.2). It should be noted that compounds with C=O
and P=O groups quite often form bifurcate H-bonds in molecular crystals [41,42], while the
formation of such bonds by the COO– group is a rather rare phenomenon. Both crystals
have a large number of intermolecular H-bonds, with the COO– group proton participating
in the formation of short (strong) intermolecular H-bonds.

A maleate anion has a very short and practically linear intramolecular O . . . H–O
bond (c.f. Tables 1 and 2 in Reference [43]). To identify possible spectral features of this
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H-bond, we recorded a terahertz Raman spectrum of the two crystals as well as crystalline
fumaric acid (Supplementary Figures S5–S7) and compared it with that of crystalline
maleic acid (Figure 4 in Reference [20]). When comparing the spectra of the two crystalline
acids, we came to the conclusion that the band at 320 cm−1 was due to the vibrations of
the intramolecular O . . . H–O bond. The visualization of this vibration (Supplementary
Figure S8) supported this conclusion. The Raman spectrum of the [2AmNic+Mle+H2O]
crystal also exhibits a band in the region of 300 cm−1 (Supplementary Figure S2). It follows
from Figure 3 that this is caused by vibrations of two intramolecular H-bonds: O . . . H–O
in the maleate anion and O . . . H–N in the 2-aminonicotinic acid.
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Figure 3. Schematic representation of the Raman active vibration at 316 cm−1 of the [2AmNic+Mle+H2O]
crystal, evaluated using periodic DFT computations at the B3LYP/6-31G** level. The arrows indicate the
directions of the relative atom displacements.

Unlike crystalline [2AmNic+Fum+H2O] (1:1:1), two N+–H . . . O– bonds in the 8-
membered cycle of the [2AmNic+Mle+H2O] (1:1:1) crystal are almost equivalent (Table 2).
This phenomenon can be explained by the presence of an intramolecular H-bond in the
maleate ion. To substantiate this assumption, we compared the frequency and shape of the
stretching vibrations of the N+–H groups in heterodimers of fumaric and maleic anions
with a 2-amino-nicotinic acid cation (Supplementary Figure S9). In accordance with the
literature data [44], there is strong coupling between the intra- and inter-molecular H-bonds
formed by the oxygen of the CO2

– group.

3.2. The Structure-Directing Role of the Water Molecule

The molecules or ions that make up multicomponent crystals are held together by
various noncovalent interactions, including H-bonds, halogen bonds, and π· · ·π stack-
ing [40,45–50]. The fine balance between these intermolecular forces is mainly responsible
for the physicochemical properties of crystalline materials and plays an important role
in determining their packing arrangements and morphology [51]. Although all types
of intermolecular interactions contribute to the ultimate stability of the crystal structure,
intermolecular H-bonds often play a more prominent role than others due to their strength
and directionality [52–55], tailoring the supramolecular architectures of multicomponent
crystals and enabling a crystal engineering strategy to be applied [12,56,57]. There are
two major groups of multicomponent molecular crystals: cocrystals (that are made from
different neutral chemical entities) [6,58] and organic salts (that consist of charged species
of components) [8,59]. The lattice energies vary from ~160 to ~300 kJ/mol, both for co-
crystals [60–64] and for organic salts [19,65–68]. It should be noted that the estimation of
the lattice energy of organic salts is not straightforward [19].

To elucidate the role of water in the formation of the structure of the considered
crystals, we calculated the contribution of the H-bonds formed by a water molecule to the
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total energy of the intermolecular H-bonds per a 1:1:1 structural unit. Several schemes
for estimating the energy (enthalpy) of intermolecular H-bonds in crystals have been
proposed in the literature. In most cases, empirical approaches that are used relate the
energy of an intermolecular interaction with a certain electron density parameter at the
bond critical point [69–71]. In this case, the calculated values of the electron density,
the values of the parameters derived from the precise X-ray diffraction data, and hybrid
approaches are used [72]. This gives rise to well-founded criticism [73,74]. To obtain
reliable values of the H-bond energies/enthalpies, we used several approaches, two of
which estimated the intermolecular H-bond enthalpy from the spectroscopic [75] and
metric [76] characteristics of these bonds in the crystals. It should be noted that to estimate
the energy of intramolecular H-bonds in the solid state requires the use of other empirical
approaches [77,78].

The results are shown in Table 3. In accordance with the literature data [79,80], all the
approaches yield values of the energies/enthalpies of weak and moderate H-bonds [40]
that are in good agreement with each other. Significant differences in the calculated values
are observed only in short (strong) H-bonds (R(O . . . O) < 2.6 Å), which is caused by
the contribution of the covalent component to the energy of these bonds [81,82]. All the
schemes for estimating energies/enthalpies allow us to conclude that the total energy of
hydrogen bonds formed by water molecules is greater than the energy of the R2

2(8) syn-
thon. According to all of the approaches, the total enthalpies/energies of the H-bonds are
about 40% for [2AmNic+Fum+H2O] and 50% for [2AmNic+Mle+H2O], respectively. This
allows us to conclude that the water molecule determines the structure of the considered
multicomponent crystals.

Table 3. Theoretical values of the enthalpy, ∆HHB, and energy, EHB, of intermolecular H-bonds in the
crystals evaluated using different empirical approaches. The O···H distances, frequencies of the OH
stretching vibrations, and crystalline electron density were calculated at the B3LYP/6-31G** level. The
total ∆HHB/EHB values of the H-bonds formed by the water molecule are indicated in parentheses.

Fragment 1 R(O···H), Å −∆HHB
2, kJ/mol −∆HHB

3, kJ/mol EHB
4, kJ/mol

[2AmNic+Fum+H2O] (1:1:1)

O12 . . . H21-N2 1.840 23.4 - 26.8
O11 . . . H11-N1 1.628 34.0 - 45.7
O12 . . . H31-O3 1.709 29.3 27.8 35.8
O13 . . . H32-O3 2.034 17.2 18.3 24.3
O11 . . . H14-O14 1.563 38.5 39.7 52.9

O3 . . . H1-O1 1.571 37.9 40.7 52.1
∑(–∆HHB/EHB) - 180.3 (84.4) (86.8) 237.6 (112.1)

[2AmNic+Mle+H2O] (1:1:1)

O12 . . . H21-N2 1.792 25.4 - 30.5
O11 . . . H11-N1 1.785 25.7 - 30.2
O12 . . . H31-O3 1.725 28.5 24.8 34.9
O13 . . . H32-O3 1.797 25.2 17.6 28.5

O3 . . . H1-O1 1.525 41.5 43.5 58.2
∑(–∆HHB/EHB) - 146.3 (95.2) (85.9) 182.3 (121.6)

1 The atomic numbering is given in Figures 1 and 2. 2 Evaluated using the Rozenberg approach [76]: −∆HHB
[kJ mol−1] = 0.134·R(O···H) –3.05, where the R(H···O) is the H···O distance (nm). 3 Evaluated using the Iogansen
approach [75]: −∆HHB [kJ mol−1] = 1.386·(∆ν [cm–1] − 40)0.5, where ∆ν = ν(OHfree) − ν(OH) represents the
red-shift value of the OH stretching frequency caused by the formation of the H-bond with the OH group being
the proton donor. It should be noted that ν(OHfree) and ν(OH) are the frequencies of the localized, uncoupled
OH stretching vibration. 4 Evaluated using the Espinoza approach [69]: EHB [kJ mol−1] = 1124·Gb [atomic units],
where Gb is the positively defined local electronic kinetic energy density at the O···H bond critical point.

4. Discussion

Due to the structural features, many medicinal and bioactive compounds are in the
zwitterionic form both in the crystal and in the solution at pH values characteristic of phys-
iological fluids [83,84]. The presence of acidic and basic functional groups in the molecule
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structure with close pKa values (the difference is less than 3 units) leads to the formation of
amphoteric or zwitterionic compounds. Many zwitterionic medicinal compounds have
a high melting point, which is explained by strong intermolecular interactions (primar-
ily H-bonds and dipole–dipole contacts) between the charged fragments of the crystal
molecules. Due to the high energy of the crystal lattice and the permanent intramolecular
multipole moment, a large number of zwitterionic compounds are poorly soluble in both
polar and non-polar solvents [85,86]. In addition, due to the poor membrane permeability,
zwitterions have a low absorption rate compared to neutral and even ionized forms, which
results in limited bioavailability [84,87,88]. One of the most common methods to solve this
problem is salt formation with various organic or inorganic counterions [89]. The formation
of a salt with a zwitterionic compound, in most cases, makes the product melting point
lower compared to that of the initial zwitterionic form as there are fewer dipole–dipole
interactions so that the solubility in polar and non-polar solvents and bioavailability im-
prove [86,90,91]. Despite the large number of publications devoted to the preparation and
study of salts of zwitterionic compounds, the process of proton transfer from an acid to a
zwitterionic molecule during their formation remains poorly understood.

We chose dicarboxylic acid as it could be used to describe the possible pathway of
proton transfer from its COOH group to the COO– group of AmNicAc in water. The
molecule of maleic acid seems to be the most suitable as its second acidic proton is involved
in the formation of the intramolecular H-bond. Fumaric acid is assumed to have a similar
proton transfer pathway, but the presence of a second COOH group makes the theoretical
model much more complicated. The starting structure was a trimer of maleic acid, 2-amino
nicotinic acid, and water (1:1:1), to which we added a minimum number of water molecules
that was necessary for proton transfer. It turned out that two additional water molecules
were enough to implement the process. These molecules interact with the atoms of the 1:1:1
structure or with each other through H-bonds, the energy of which is much higher than
that of the H-bonds in bulk water (the reason for the “strengthening” of the intermolecular
H-bonds is the acidic proton of the COOH group and the COO– group). The calculations
were carried out in the discrete-continuum approximation [92–95] using the Gaussian16
program [96]. The bulk water was described by the polarizable continuum model [96]. The
calculations were carried out in the B3LYP/6-311++G** approximation.

The initial structure is shown in Figure 4A. In accordance with the literature data [26],
the acidic proton goes to the neighboring water molecule and then, by the “relay mech-
anism”, moves to the COO– group of the amino acid. As a result of the synchronous
transfer of the “acidic” proton along the H-bonds chain (along the water wire) and the
intramolecular transition of the proton in the N...H...O fragment, the structure in Figure 4B
is formed. Then, the maleate ion rotates by ~90 degrees and the “first” solvation shell is
rearranged, i.e., the structure in Figure 4C is formed, which is very close to the structure
realized in the crystal, see Figure 2.

The process scheme is shown below. The relative stability of the structures is given in
parentheses (the sum of the electronic and zero-point energies) in kJ/mol:

4A (60.6) -> 4B (19.1) -> 4C (0.0)

This process can be modeled by ab initio molecular dynamics simulations using
relatively small cells [97]. However, such modeling is beyond the scope of this work.
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5. Conclusions

The structure and H-bond network in two multicomponent crystals—[2AmNic+Fum+H2O]
(1:1:1) and [2AmNic+Mle+H2O] (1:1:1)—are characterized by X-ray analysis, terahertz
Raman spectroscopy, and periodic DFT calculations. The intramolecular H-bonds cause the
appearance of a Raman-active band around 300 cm−1 in the [2AmNic+Mle+H2O] (1:1:1)
crystal. The total enthalpy of the intermolecular H-bonds in these crystals, estimated per a
1:1:1 structural unit, is about 160 kJ/mol; moreover, the water molecule accounts for about
90 kJ/mol. This allows us to conclude that the water molecule determines the structure of
the considered multicomponent crystals. A scheme of the transfer of a dicarboxylic acid
proton to a zwitterionic amino acid molecule in the process of the [2AmNic+Fum+H2O]
(1:1:1) and [2AmNic+Mle+H2O] (1:1:1) formation in the polar protic solvent is proposed.
Water molecules were found to play the key role in this process, forming a “water wire”
between the COOH group of the dicarboxylic acid and the COO– group of the zwitterion.
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4/13/3/425/s1, Section S1: Computational details; Table S1: Theoretical values of the enthalpy, ∆HHB,
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at the B3LYP/6-31G** level; Figure S9: Schematic representation of the IR active vibration at 2524
cm−1 of the fumaric acid-2-amino-nicotinic acid zwitterion heterodimer (the upper panel) and 2636
cm−1 of the maleic acid-2-amino-nicotinic acid zwitterion (the lower panel), evaluated using DFT
computations at the B3LYP/6-31G** level; Table S2: Crystallographic data for [2AmNic+Fum+H2O]
(1:1:1) and [2AmNic+Mle+H2O] (1:1:1) multicomponent crystals.
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