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Abstract: Two-dimensional (2D) square, rectangular and hexagonal lattices and 3D parallelepipedic
lattices of spin crossover (SCO) compounds which represent typical examples of first order phase
transitions compounds are studied in terms of their size, shape and model through an Ising-like
Hamiltonian in which the fictitious spin states are coupled via the respective short and long-range
interaction parameters J, and G. Furthermore, an environmental L parameter accounting for surface
effects is also introduced. The wealth of SCO transition properties between its bi-stable low spin (LS)
and high spin (HS) states are simulated using Monte Carlo Entropic Sampling (MCES) method which
favors the scanning of macro states of weak probability occurrences. For given J and G, the focus is
on surface effects through parameter L. It is shown that the combined first-order phase transition
effects of the parameters of the Hamiltonian can be highlighted through two typical temperatures,
TO.D., the critical order-disorder temperature and Teq the equilibrium temperature that is fixed at
zero effective ligand field. The relative positions of TO.D. and Teq control the nature of the transition
and mediate the width and position of the thermal hysteresis curves with size and shape. When
surface effects are negligible (L = 0), the equilibrium transition temperature, Teq. becomes constant,
while the thermal hysteresis’ width increases with size. When surface effects are considered, L 6= 0,
Teq. increases with size and the first order transition vanishes in favor of a gradual transition until
reaching a threshold size, below which a reentrance phenomenon occurs and the thermal hysteresis
reappears again, as shown for hexagonal configuration.

Keywords: Monte Carlo simulations; entropic-sampling algorithm; spin-crossover; first-order phase
transition; thermal hysteresis

1. Introduction

The quest to improve our knowledge on phenomenon and processes driving the
properties of complex materials is challenging for researchers involved not only in exper-
imental but also in theoretical research fields. The term complex is used here to denote
molecular systems subjected at the nanometer scale to the influence of a surrounding media.
Modeling and simulating physical processes can be achieved either from analytical and
or from numerical methods. Whereas the former can solve exactly both finite and infinite
model systems, the latter is more appropriate to study finite complex ones. Monte Carlo
methods are appropriate to study stochastic systems and as such have been applied to spin
crossover (SCO) materials.

Concerning SCO materials [1–12], a typical example of a first-order phase transition,
the Monte Carlo methods are used in combination with certain models such as: Ising-like
model, atom-phonon coupling (APC) model or mechanical-elastic model. All these models
are used to simulate the response of SCO materials when they are subjected to external
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perturbations such as: thermal or/and pressure variation, light irradiation, applied external
magnetic or electrical fields. The importance granted to these materials are based on their
potential application in displays, nanoelectronics, data storage or as temperature or/and
pressure or light sensors. These materials which are characterized by two stable states,
a diamagnetic low spin (LS) with a degeneracy gLS state and a paramagnetic high spin
(HS) state with a degeneracy gHS (> gLS). At the solid state, the interactions between the
molecules are at the origin of a thermal hysteresis, that is the fingerprint of a first order
phase transition.

In this contribution, we apply the Monte Carlo entropic sampling (MCES) method,
described in Section 3, to solve the Hamiltonian associated to the Ising-like model, that will
be described in Section 2. The results and the discussion are presented in Section 4, and we
conclude in Section 5.

2. Spin Crossover Phenomenon with a Typical First-Order Phase Transition

The spin transition phenomenon was discovered in 1931 by Cambi et al. [13,14]. They
revealed an “abnormal” magnetic behavior during the study of a series of Fe(III) com-
pounds based on dithiocarbamate ligand. Later, in 1963, Madeja et al. [15] presented results
of measurements of magnetic susceptibilities of the series of compounds [Fe(II)phen2×2]
(phen = 1,10-phenanthroline; X− = Cl−, Br−, I−, N3

−, SCN−, SeCN−). In 1964, Baker
et al. [16] reported the first spin transition of a solid state Fe(II) complex with the [Fe(phen)2
(NCS)2] complex. The same year, Ewald et al. [17] introduced the notion of spin-crossover.

Spin transition (ST) or spin crossover (SCO) complex magnetic systems form a class of
compounds that are thus characterized by two spin states, low spin (LS) and high spin (HS).
They are bistable molecular materials having the properties to switch between the LS state
and the HS state when they are subjected to an external physical constraint such as pressure,
temperature, electric or magnetic field or light-matter interaction. The corresponding
physical magnetic, optical, thermal, electrical and mechanical properties depend on the
change of the spin state and consequently can be used as pressure, temperature, light or
electromagnetic field sensors. Computational physics to simulate these properties has
thus emerged as a field of research based on a Hamiltonian operator that accounts for
the different coupling scheme present in the complex SCO compounds and a pertinent
numerical algorithm.

Wajnflasz and Pick [18] model, developed in the 70s, the so called “Ising-like” model,
by the introduction of a fictitious spin (σ = +1 (HS) and σ = −1 (LS) to describe the spin
states and a parameter J that accounts for the interactions between the molecules, may be
regarded as the initial step towards a comprehensive modeling of the effects studied in this
work. The total Hamiltonian was solved in the mean field approximation.

The Hamiltonian associated to the Wajnflasz and Pick model writes as follows:

H =
∆
2

N

∑
i=1

σi − J ∑ σi σj (1)

∆ (>0) is the difference between the fundamental energy of the HS and LS states. N is the
total number of molecules.

In the mean field approximation and taking account the different degeneracies gHS
and gLS of the two states, the Hamiltonian (1) can be written as:

H =
∆− kBT ln(g)

2

N

∑
i=1

σi − J
N

∑
i=1

z σi〈σ〉 (2)

where kB is the Boltzmann constant, g = gHS
gLS

, z is the number of nearest neighbors and 〈σ〉
is the thermal average value of σ.

This genuine model (2) has a very simple phase diagram. The transition temperature,
Teq, of the system, defined as the temperature at which a half of the (HS) spins converts
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to (LS), is obtained by cancelling the effective ligand field, ∆− kBT ln(g), which gives
Teq = ∆

kB ln (g)
, and the transition is of first-order when TC = J

kB
> Teq and continuous

(gradual) otherwise.
It is worth mentioning that the present description of the SCO phenomenon in terms

of Ising-like model is only phenomenological. More realistic descriptions, based on elastic
models [19–22] taking into account the volume change at the transition, demonstrated that
this type of models is isomorphic with an Ising-like model combining short- and long-
range interactions [23].

These interactions, represented by the coupling parameters, J and G in the present
extended Wajnflashz model of Equation (3), are due to the elastic strain field propagating
along the lattice through acoustic phonons. The long-range interaction contribution is
assumed here, for simplicity, as uniform and of infinite-range. This type of interaction,
is known to be equivalent of mean-field model, which then justifies the mean-field treat-
ment in Equation (1). Therefore, to go beyond model (1), and in order to reproduce the
experimental results of thermal hysteresis shapes, it is important to combine in the same
Hamiltonian both long- and short-range interactions.

Among these extensions, in 1999 Linares et al. [24] analyzed the shape of thermal
hysteresis in 1D SCO compounds, and proposed significant improvement of model (1)
by integrating a long-range interaction term (G) along with a short-range one (exchange-
like, J), in the extended 1D Ising-like Hamiltonian, and studied analytically the conditions
to obtain first and gradual spin transitions. One year later, the dynamical version of this
model was investigated by Boukheddaden et al. [25].

Here, we are interested in the equilibrium thermodynamic properties of the 2D version
of this model, whose Hamiltonian writes:

H =
∆− kBT ln(g)

2

N

∑
i=1

σi − J ∑
〈i,j〉

σi σj − G
N

∑
i=1

σi 〈σ〉 (3)

where, 〈i, j〉 means that only the term, J (short-range interaction), connects the nearest
neighbors sites.

As in the previous case, the infinite long-range interaction, expressed through 〈σ〉
in the Equation (3) allows, by self-consistent numerical method, to reproduce in specific
conditions, the thermal hysteresis observed in spin-crossover compounds.

To take into account the interaction between the molecules at the surface and the
external medium, an additional energetic contribution to the ligand field (L term) has been
introduced [20–22].

H =
∆− kBT ln(g)

2

N

∑
i=1

σi − J ∑
〈i,j〉

σi σj − G
N

∑
i=1

σi 〈σ〉 − L
M

∑
k=1

σk (4)

where σk stands for the spin state of the M molecules at the surface.
As previously shown [26–28], the parametric form of the total Hamiltonian is ex-

pressed as:
H = − h m – J s – L c (5)

where:

h = − ∆− kB T ln(g)− 2 G 〈σ〉
2

(6)

is the effective energy gap between (HS) and (LS) states, and the macroscopic variables m,
s and c are defined as follows:

m =
N

∑
i=1

σi (7)

s = ∑
〈i,j〉

σi σj (8)
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c =
M

∑
k=1

σk (9)

From the total number of configurations, 2N , there are d(m, s, c) configurations with
the same m, s and c values. The purpose of the Monte Carlo-entropic sampling method
(MCES) is to scan these “density of states” d (m, s, c). Let’s introduce N′ (< 2N) the
number of different macro-states characterized by the same values of (m, s, c).

The partition function is given by:

Z =
N′

∑
1

d(m, s, c) exp(−β (−h m − J s− L c) ) (10)

and β = 1
kB T .

The thermal average value of the operator 〈σ〉 is given by the following relation,

〈σ〉 = ∑N′
1

m
N d(m, s, c) exp(−β (−h m − J s− L c) )

Z
(11)

which is related to the high-spin fraction (Nhs) by the expression:

Nhs =
1 + 〈σ〉

2
(12)

Moreover, by assuming that the transition temperature Teq of the system corresponds
to a null total effective ligand-field, then it can be shown that:

Teq =
N−M

N
Tbulk

eq +
M
N

Tsur f
eq (13)

where Tbulk
eq and Tsur f

eq are the bulk and surface transition temperatures respectively. Note
that M depends on the type of configuration of the nanoparticles.

3. Monte-Carlo Entropic Sampling Method

Monte Carlo methods are frequently used in solid state physics to study the equi-
librium properties of matter at the macroscopic scale and, to a lesser extent the non-
equilibrium properties close to equilibrium. The properties of metastable states remain
a challenge to the theoretical physicist. For example, by construction, the Monte Carlo
Metropolis algorithm scans the most probable configurations, which are the configurations
that shape the Boltzmann equilibrium thermodynamic trajectory in the phase space.

To obtain the density of states, the entire space of configurations must be visited,
which is achieved by the entropic sampling method (MCES) [29–31]. This method is based
on the idea that any desired distribution P can be obtained from a Monte Carlo method, if
this distribution appears in the detailed balance equation that writes as:

Pi Wi→j = Pj Wj→i (14)

where Wi→j is the transition probability from state (i) to state (j).
In this contribution, the “states” in Equation (14) are the macro-states characterized by

(mi, si, ci) and the detailed balance equation is given by the relation,

P〈mi , si , ci〉 W〈mi , si , ci〉 → 〈mj , sj cj〉 = P〈mj , sj , cj〉 W〈mj , sj , cj〉 → 〈mi , si ci〉 (15)

In the framework of the entropic sampling algorithm, the following probability is
introduced such that:

Pi =
1
di

=
1

d(mi, si, ci)
(16)



Symmetry 2021, 13, 587 5 of 14

Such a choice of Pi favors the macrostates with small density of states and dampens
those with high density.

Using d(mi, si, ci) as a bias, a “Monte-Carlo step” run and a histogram of the fre-
quency of the macrostates H(mi, si, ci) are obtained. Then the density of states in the next
“Monte Carlo step” is improved by the following relation:

d(mi+1, si+1, ci+1) = H(mi, si, ci) × d(mi, si, ci) (17)

This technique is used iteratively until an almost constant (flat) H(mi, si, ci) histogram
is obtained. The density of states d(mi, si, ci) is then used to calculate the partition function
and the thermal average value of the fictitious spin operator.

4. Results and Discussion

In a first stage, the thermal dependence of the (HS) fraction obtained for 2D configu-
rational topology of nanoparticles is presented and the size, shape and surface (L) effects
under temperature are analyzed for square, rectangular and hexagonal shaped lattices.
Next, the shape effects and the influence of a ligand-field (L) are studied for 3D compounds.

4.1. 2D Square Lattice: Size Effects under Temperature
4.1.1. The Case L = 0

Figure 1 shows the thermal evolution of the (HS) fraction without the peripheral ligand-
field, which amounts to setting L/kB = 0 in the calculations. The interactions between the
edge molecules and their surrounding matrix are therefore not taken into account and in
the absence of this corresponding ligand field, the equilibrium temperatures of the surface
Tsur f

eq and the bulk Tbulk
eq are equal. Hence, according to the term h in Equation (6), the set

of thermodynamic parameters ∆/kB = 1300 K (enthalpy change) and ln(g) = 6.01 (entropy
change) leads to (∆/kB)/ ln(g) ≈ 216.3 K which therefore corresponds to the equilibrium
temperature Teq for the 3 × 3 to 12 × 12 lattices, as depicted in Figure 1. Additionally
denoted by T1/2, it corresponds to an equal distribution of the configurations in the state
(BS) and in the state (HS).
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Figure 1. Thermal evolution of the (HS) fraction for different square lattices: 4 × 4 (blue star), 5 × 5
(purple star), 8 × 8 (orange star), 10 × 10 (green star) and 12 × 12 (red star). The computational
parameters are: ∆/kB = 1300 K, G/kB = 174.6 K, J/kB = 15.7 K, L/kB = 0 K, ln(g) = 6.01.
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As can also be seen in Figure 1, the change of spin state is not of the same type
depending on the size of the lattice. The 4× 4 system exhibits a sharp spin transition which
is the imprint of a more cooperative system, in which each metal center interacts more
strongly with the others and is influenced by the change in the spin state of its neighbors.
A hysteresis loop, typical of a first-order transition, is associated with larger systems 5 × 5,
8 × 8, 10 × 10 and 12 × 12, which are highly cooperative. By increasing the size of the
nanoparticle configuration, the coupling between the molecules strengthens and the order-
disorder transition temperature TO.D. of the system (or Curie temperature) increases. At
the onset of the following condition Teq < TO.D., a hysteretic behavior appears. A zoom
around the transition temperature, in Figure 2, highlights this phenomenon.
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Figure 2. Enlarged view of the simulated thermal evolution of the (HS) fraction at the transition
zone for different square lattices: 4 × 4 (blue star), 5 × 5 (purple star), 8 × 8 (orange star), 10 × 10
(green star) and 12 × 12 (red star). The computational parameters are: ∆/kB = 1300 K, G/kB = 174.6 K,
J/kB = 15.7 K, L/kB = 0 K, ln(g) = 6.01.

The transition temperatures reported in Figure 3, in the heating mode (Tup) and in
the cooling mode (Tdown), clearly show that the width of the hysteresis ∆T = Tup − Tdown
increases with the size of the system.
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Figure 3. Size dependence of the lower (Tdown) and upper (Tup) transition temperatures of the
thermal (HS) fraction corresponding to Figure 2. The computational parameters are: ∆/kB = 1300 K,
G/kB = 174.6 K, J/kB = 15.7 K, L/kB = 0 K, ln(g) = 6.01.
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4.1.2. The Case L 6= 0

By adding the interaction term L between surface molecules and the environment,
it is wise for analysis to distinguish different types of sites in the simulations. In fact,
molecules located in the bulk (Nb) and on the surface (Ns) do not have the same number of
first-neighbors (q) and the same number of interactions with the environment (z). Then, the
expressions of surface and bulk transition temperatures (N = Ntot = Nb + Ns and M = Ns),
can be cast as:

Tbulk
eq =

∆
kB ln(g)

, Tsur f
eq =

∆− 2 L
kB ln(g)

and Teq =
Nb Tbulk

eq + Ns Tsur f
eq

Ntot
(18)

Taking into account the interaction term L, a competition appears between Teq and
TO.D.. When the lattice size is reduced, the total number of interactions between molecules
decreases and the order-disorder temperature decreases. At the same time, the equilibrium
temperature decreases. As can be seen in Figure 4, for the 4× 4 compounds, the equilibrium
temperature Teq decreases faster than the order-disorder temperature TO.D., which leads to
the appearance of a first-order transition with a hysteresis loop. This behavior is similar to
that reported by Peng et al. [32] for a [Fe(pz) {Ni (CN)4 }] SCO nanoparticle.

Symmetry 2021, 13, x FOR PEER REVIEW 8 of 16 
 

 

Figure 3. Size dependence of the lower (Tdown) and upper (Tup) transition temperatures of the thermal 
(HS) fraction corresponding to Figure 2. The computational parameters are: Δ/kB = 1300 K, J/kB = 15.7 
K, G/kB = 174.6 K, L/kB = 0 K, ln(g) = 6.01. 

 

4.1.2. The Case L ≠ 0 
By adding the interaction term L between surface molecules and the environment, it 

is wise for analysis to distinguish different types of sites in the simulations. In fact, mole-
cules located in the bulk (Nb) and on the surface (Ns) do not have the same number of first-
neighbors (q) and the same number of interactions with the environment (z). Then, the 
expressions of surface and bulk transition temperatures (N = Ntot = Nb + Ns and M = Ns), can 
be cast as: 𝑇௘௤௕௨௟௞ =  ∆௞ಳ  ୪୬(௚)      ,   𝑇௘௤௦௨௥௙ =  ∆ିଶ ௅௞ಳ ୪୬(௚)    and    𝑇௘௤ =  ே್ ೐்೜್ೠ೗ೖ  ା ேೞ ೐்೜ೞೠೝ೑  𝑁𝑡𝑜𝑡  (18)

Taking into account the interaction term L, a competition appears between Teq and 
TO.D.. When the lattice size is reduced, the total number of interactions between molecules 
decreases and the order-disorder temperature decreases. At the same time, the equilib-
rium temperature decreases. As can be seen in Figure 4, for the 4 × 4 compounds, the 
equilibrium temperature Teq decreases faster than the order-disorder temperature TO.D., 
which leads to the appearance of a first-order transition with a hysteresis loop. This be-
havior is similar to that reported by Peng et al. [32] for a [Fe(pz) {Ni (CN)4 }] SCO nano-
particle. 

 
Figure 4. Thermal evolution of the (HS) fraction for different lattice sizes: 4 × 4 (blue star), 5 × 5 
(purple star), 8 × 8 (orange star) and 12 × 12 (red star). The computational parameters are: Δ/kB = 1300 
K, J/kB = 12.9 K, G/kB = 173.6 K, L/kB = 120 K and ln(g) = 6.01. 

 

 

170 180 190 200 210 220
0.0

0.2

0.4

0.6

0.8

1.0

N
hs

T [K]

 4×4
 5×5
 8×8
 12×12

Figure 4. Thermal evolution of the (HS) fraction for different lattice sizes: 4× 4 (blue star), 5 × 5 (pur-
ple star), 8 × 8 (orange star) and 12 × 12 (red star). The computational parameters are: ∆/kB = 1300 K,
G/kB = 173.6 K, J/kB = 12.9 K, L/kB = 120 K and ln(g) = 6.01.

4.2. 2D Rectangular Lattice: Shape Effects under Temperature

In this section, the thermal-dependence of the (HS) fraction is analyzed for different
lattice shapes comprising 144 molecules. We start with a 12 × 12 square lattice and the
length of one side is gradually increased at the expense of the other side, until a 2 × 72
rectangular-shaped lattice is obtained. The ratio t between the number of molecules on the
surface and the total number of molecules is calculated for each lattice configuration. The
values of the t parameter are gathered in Table 1 and Figure 5 shows the curves obtained
for the different shapes 12 × 12, 8 × 18, 6 × 24, 4 × 36, 3 × 48 and 2 × 72. It is worth
mentioning that in the case of the 72 × 2 lattice, all the molecules are located at the surface
which is equivalent to a value of the parameter t equal to 1 and the width of the thermal
hysteresis ∆T = Tup − Tdown is then maximum. It gradually decreases and disappears for
the case 6 × 24 and 8 × 18. The thermal hysteresis reappears for the square lattice 12 × 12,
indicating the presence of a re-entrance phenomenon.
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Table 1. Evolution of the width of the thermal hysteresis ∆T = Tup − Tdown as a function of the
shape of the 2D system and of the ratio parameter t corresponding to Figure 5. The computational
parameters are: ∆/kB = 1300 K, J/kB =13.0 K, G/kB = 179.7 K, L/kB = 120 K and ln(g) = 6.01.

Shape Tdown (K) Tup (K) Tup − Tdown (K) t = Ns/Ntot

12 × 12 204.93 205.46 0.53 0.30
8 × 18 204.00 204.00 0 0.33
6 × 24 201.70 201.70 0 0.38
4 × 36 195.55 195.93 0.38 0.52
3 × 48 188.37 189.91 1.54 0.68
2 × 72 171.46 179.87 8.41 1
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Figure 5. Evolution of the high spin versus the temperature for several shapes: 12 × 12 (red square),
8 × 18 (blue square), 6× 24 (cyan square), 4× 36 (magenta square), 3× 48 (yellow square) and 2 × 72
(dark yellow square). The computational parameters are: ∆/kB = 1300 K, J/kB = 12.7 K, G/kB = 180.1 K,
L/kB = 120 K and ln(g) = 6.01.

4.3. Case of Triangular Interactions

In this section, the case of nanoparticles with a triangular interaction leading to
hexagonal-shaped systems is explained. Each molecule located inside the bulk has, as it
can be seen in Figure 6, six nearest-neighbours (nn) while those situated at the external
surface have three or four nn.
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Five different sizes of these systems with 19, 37, 61 and 91 molecules have been studied.
They are characterized, as it is shown in Table 2, by quite different values for the ratio t.
The latter ratio is important to highlight the influence of the environment, correlated to the
L interaction term, for the molecules at the surface.

Table 2. Relationship between the size of the system and the ratio parameter t between the surface
atoms Ns and the total number of atoms Ntot in the case of a hexagonal-shaped lattice.

Size of the System Ntot = Total Number of Atoms t = Ns/Ntot

H3 19 0.63
H4 37 0.48
H5 61 0.39
H6 91 0.32
H7 127 0.28

Typical values from experimental results of the parameter ∆ (the energy difference
between the fundamental energy level of the (HS) and (LS) states) and of g = gHS/gLS have
been used: ∆/kB = 1200 K and ln(g) = 6.5.

Firstly, the interactions between the molecules at the surface and the environment are
discarded, which amounts to consider L/kB = 0 in the calculations.

As it is shown in Figure 7, the transition from (BS) to (HS) configuration as a function of
temperature for the H3 system shows a small thermal hysteresis. The width of the hysteresis
loop increases as the size of the crystal lattice increases. This behavior is explained by the
fact that the Curie (or the order-disorder) temperature designed by TO.D. decreases when the
size of the molecules decreases whereas the transition temperature designed by Teq remains
constant (in our case Teq = 184.6 K for the parameters chosen for the calculations). The
value of the transition temperature is deduced from the following equation: Teq = ∆

kB ln(g) ,
as given in Equation (18). The first-order phase transition takes place when the condition
TO.D. > Teq is satisfied. This condition is fulfilled for systems H3 to H7.
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Figure 7. The simulated thermal behavior of the total high spin (HS) fraction, Nhs, for different
system sizes: H3 (green square), H4 (blue square), H5 (cyan square), H6 (magenta square) and H7
(dark yellow square). The computational parameters are: ∆/kB = 1200 K, J/kB = 14.8 K, G/kB = 136 K,
L/kB = 0 K and ln(g) = 6.5.
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The case corresponding to the interaction between the molecules at the surface and
their immediate environment is next investigated with L/kB = 125 K. The results are shown
in Figure 8 below.
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Figure 8. Thermal behavior of the total high spin (HS) fraction, Nhs, and re-entrance phenomenon:
H3 (green square), H4 (blue square), H5 (cyan square), H6 (magenta square) and H7 (dark yellow
square). The computational parameters are: ∆/kB = 1200 K, J/kB = 14.8 K, G/kB = 136 K, L/kB = 125 K
and ln(g) = 6.5.

Figure 9 shows that the material undergoes a spin transition with hysteresis. The
thermal hysteresis decreases in width when size decreases (127, 91, 61 atoms) until its
disappearance for the case H4 (37 atoms) and then reappears (for 19 atoms). This is a re-
entrance phase case. To highlight this behavior, the variation of the width of the hysteresis
as a function of the total number of molecules has been plotted in Figure 9 below.
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Figure 9. Hysteresis width as a function of the total number of molecules Ntot: H3 (19 atoms), H4
(37 atoms), H5 (61 atoms), H6 (91 atoms) and H7 (127 atoms). The computational parameters are:
∆/kB = 1200 K, J/kB = 14.8 K, G/kB = 136 K, L/kB = 125 K and ln(g) = 6.5.
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This result is explained by the influence of the interaction between the surface
molecules and the surroundings designed by L on the value of the transition temperature.
For the molecules at the surface Tsur f

eq is given by the following equation: Tsur f
eq = ∆−2 L

kB lng as
expressed in Equation (18).

4.4. 3D Parallelepiped Lattice: Shape Effects under Temperature
4.4.1. The Case L = 0

Figure 10 highlights the shape effects on the thermal evolution of the high spin fraction.
As observed in the 2D case, in the absence of surface matrix effects (L/kB = 0 K), the equilib-
rium temperature Teq is a constant whatever the size and shape of the studied system. With
the computational parameters ∆/kB = 1300 and ln(g) = 6.01, Teq = (∆/kB)/lng ≈ 216.3 K.
The 4 × 4 × 6 system displays a thermal hysteresis which is the sign of a first-order transi-
tion. As can be seen in Figure 11, the width of this hysteresis decreases for the 4 × 4 × 5
system and disappears for the cases 4 × 4 × 4 and 4 × 4 × 3. The values of the parameter
t defined as the ratio between the number of molecules on the surface (Ns) and the total
(NT) number of molecules, depend on the shape of the system, are given in Table 3 and
show that the thermal hysteresis decreases when the ratio t increases. This phenomenon
can be explained by the fact that bulk sites favor the first order transition, while surface
atoms, which increase in number with decreasing size, promote a gradual transition due to
the lack of neighboring sites.

Table 3. Values of the ratio parameter t for different sizes of 3D parallelepiped nanoparticles.

Size of the System Ns NT t = Ns/Ntot

4 × 4 × 3 44 48 0.91
4 × 4 × 4 56 64 0.87
4 × 4 × 5 68 80 0.85
4 × 4 × 6 80 96 0.83
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Figure 10. Thermal evolution of the high spin fraction for different sizes of the 3D SCO nanoparticle
configuration: 4 × 4 × 3 (blue up triangle), 4 × 4 × 4 (purple right triangle), 4 × 4 × 5 (green
down triangle), 4 × 4 × 6 (orange left triangle). The computational parameters are: ∆/kB = 1300 K,
J/kB = 19.5 K, G/kB = 134.2 K, L/kB = 0 and ln(g) = 6.01.
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Figure 11. Evolution of the width of the thermal hysteresis ∆T = Tup − Tdown as a function of the
size of the system corresponding to Figure 10. The computational parameters are: ∆/kB = 1300 K,
J/kB = 19.5 K, G/kB = 134.2 K, L/kB = 0 K and ln(g) = 6.01.

4.4.2. The Case L 6= 0

The value of parameter L/kB has been gradually increased from the value 0 K to the
value 200 K. The results are reported in Figure 12 for the 4 × 4 × 6 shaping system and
show that the increase in L/kB progressively shifts the equilibrium temperature of the
system towards lower temperatures and is accompanied by a first-order transition. Indeed,
the influence of the Tsur f

eq increases. It results in a decreased value of Teq and then the
appearance of a thermal hysteresis when the condition Teq < TO.D. is satisfied.
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Figure 12. Thermal evolution of the (HS) molar fraction Nhs in a 4 × 4 × 6 3D SCO nanoparticle
configuration for different values of the interaction with the surroundings: L/kB = 0 (black square),
L/kB = 20 (blue square), L/kB = 80 (purple square), L/kB = 140 (green square) and L/kB = 200 (orange
square). The computational parameters are: ∆/kB = 1300 K, J/kB = 18.5 K, G/kB = 130.2 K and
ln(g) = 6.01. The ratio t between surface and total numbers of molecules is: t = 80/96 = 0.83.

5. Conclusions

Monte Carlo entropic sampling (MCES) applied to an Ising-like model of SCO com-
pounds shows that surface atoms have no effect on the system’s equilibrium temperature
whatever the size or shape, when the coupling parameter of edge molecules L/kB is set
to zero. However, a first order transition with thermal hysteresis occurs with an increase
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in the width of the hysteresis loop when the size increases. When L/kB 6= 0, opposite
effects are observed. The thermal hysteresis increases when the size of the system decreases
and when the shape gradually evolves towards an elongated rectangular 2 × 72. This
feature is connected to the relative positions of the equilibrium temperature Teq and the
order-disorder transition TO.D. (or Curie) temperature. When the ratio t of the number
of molecules at the surface to the total number of molecules increases, the energetic con-
tribution L acts as a negative ligand-field, lowering the equilibrium temperature. Hence,
for smaller lattice sizes, the condition Teq < TO.D. is fulfilled and leads to a first-order
transition. The “competition” between the effects of Teq and TO.D. is particularly striking
for the hexagonal system, for which a re-entrance phenomenon is clearly depicted for 3D
SCO configuration of size 4 × 4 × 6. These results show that the MCES method, is well
adapted to investigate the thermal properties of spin transitions in the 2D and 3D SCO
compounds although it is limited to small sizes. Future work will concern cubic centered
and faced cubic centered structures and iron (II) spin-crossover binuclear compounds.
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