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Abstract: The paper considers a solution to the problem of developing two-stage hybrid SVM-kNN
classifiers with the aim to increase the data classification quality by refining the classification decisions
near the class boundary defined by the SVM classifier. In the first stage, the SVM classifier with
default parameters values is developed. Here, the training dataset is designed on the basis of the
initial dataset. When developing the SVM classifier, a binary SVM algorithm or one-class SVM
algorithm is used. Based on the results of the training of the SVM classifier, two variants of the
training dataset are formed for the development of the kNN classifier: a variant that uses all objects
from the original training dataset located inside the strip dividing the classes, and a variant that
uses only those objects from the initial training dataset that are located inside the area containing all
misclassified objects from the class dividing strip. In the second stage, the kNN classifier is developed
using the new training dataset above-mentioned. The values of the parameters of the kNN classifier
are determined during training to maximize the data classification quality. The data classification
quality using the two-stage hybrid SVM-kNN classifier was assessed using various indicators on the
test dataset. In the case of the improvement of the quality of classification near the class boundary
defined by the SVM classifier using the kNN classifier, the two-stage hybrid SVM-kNN classifier is
recommended for further use. The experimental results approve the feasibility of using two-stage
hybrid SVM-kNN classifiers in the data classification problem. The experimental results obtained
with the application of various datasets confirm the feasibility of using two-stage hybrid SVM-kNN
classifiers in the data classification problem.

Keywords: binary SVM classifier; one-class SVM classifier; kNN classifier; hybrid classifier; class
imbalance problem

1. Introduction

Data classification problems arise and are solved in many areas of human activity [1–7].
Such problems include the problems of credit risk analysis [1], medical diagnostics [2], text
categorization [4], the identification of facial images [7], etc.

Nowadays, dozens of algorithms and classification methods have been developed,
among which linear and logistic regressions [8], Bayesian classifier [8,9], decision rules [10],
decision trees [8,11], random forest algorithm (RF) [12], algorithms based on neural net-
works [13], k-nearest neighbors algorithm (kNN) [14–16], and the support vector machine
algorithm (SVM) [17–20] should be highlighted.

During the development of any classifier, it is trained and tested. The dataset used in
the development of the classifier is randomly split into training and test sets: the first set is
used to train the classifier, and the second is used to test the classifier in order to assess
its quality. The development of a classifier can also be performed using the principles of
k-fold validation. To estimate the quality of the developed classifier, various indicators of
classification quality can be used, for example, overall accuracy, balanced accuracy, F1-score,
sensitivity, specificity, recall, etc. [1,18,21–23]. A well-trained classifier can be applied to
classify new objects.
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As the analysis shows, nowadays, there are no universal algorithms and classification
methods. Classifiers developed using different algorithms and methods based on the same
dataset can have different values of classification quality indicators, and therefore give
different classification results. This can be explained by the fact that different algorithms
and methods implement different mathematical principles and use different distance
measures, optimization algorithms, optimality criteria, initialization methods, etc.

Many classification problems are successfully solved using the SVM
algorithm [1–7,17–20,24–29]. This algorithm implements “supervised learning” and be-
longs to the group of boundary algorithms and methods. When working with the basic
SVM algorithm, it is possible to develop a binary SVM classifier. As such, by using a
certain kernel function, it translates vectors describing the features of classified objects
from the initial space into a new space of higher dimensionality, and finds a hyperplane
separating objects of different classes in this space. The SVM algorithm builds two parallel
hyperplanes on both sides of the separating hyperplane. These parallel hyperplanes define
the boundaries of classes. The distance between the aforementioned parallel hyperplanes
should be maximized with the aim of providing a higher quality of object classification.

The use of SVM classifiers is problematic when working with big datasets due
to the high computational costs, since SVM classifier development involves solving a
quadratic optimization problem [1,18,22]. Even for a medium-sized dataset, using a stan-
dard quadratic problem solver leads to a large quadratic programming problem, which
significantly limits the range of problems that can be solved using the SVM classifier.
Currently, there are methods such as Sequential Minimal Optimization (SMO) [30], chunk-
ing [31], simple SVM [32], and Pegasos [33], which iteratively calculate the demanded
decision and have linear spatial complexity [20]. The cascading SVM classifier proposed
in [24] allows one to soften the problem of high computing costs by iteratively training
the classifier on subsets of the original dataset, followed by combining the found support
vectors to form new training sets. Moreover, the cascading SVM classifier can be easily
parallelized [25]. Currently, several parallel versions of SVM classifiers can be implemented
using streams, Message Passing Interface (MPI), MapReduce, etc. In recent years, the
Hadoop framework has been actively used to develop SVM classifiers [26].

The SVM algorithm is highly generalizable [1,17,34], but there are problems that make
it difficult to apply. These issues are related to the choice of values for parameters such
as kernel function type, kernel function parameters, and regularization parameter. The
data classification quality essentially depends on the adequate choice of the values of these
parameters [18,21,22].

The optimal parameter values of the SVM classifier, which provide a high quality
classification, can be determined in the simplest case by looking through the grid, which,
however, requires significant time expenditures. With a fixed type of SVM classifier kernel
function, the search for optimal parameter values of the kernel function and the regular-
ization parameter can be performed using evolutionary optimization algorithms: genetic
algorithm [35,36], differential evolution algorithm [37,38], particle swarm optimization
(PSO) algorithm [39–41], fish school algorithm [42–44], etc. A such, the choice of the
best version of the SVM classifier can be performed based on the results of running the
evolutionary optimization algorithm for various types of kernel function, which requires
additional time expenditure. For example, we must apply the evolutionary optimiza-
tion algorithm three times when working with polynomial, radial basis, and sigmoid
kernel functions.

In [21–23], a modified PSO algorithm was proposed, which implemented a simulta-
neous search for the kernel function type, parameter values of the kernel function, and
regularization parameter value during SVM classifier development. This algorithm signif-
icantly reduces the time spent on SVM classifier development, which is very important
when working with complex multidimensional data of large volumes.
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In the future, the parameter values of SVM classifier will be considered optimal if they
provide the maximum data classification quality, assessed using one or another indicator,
on the test set.

In most cases, SVM classifiers developed using evolutionary optimization algorithms
provide high quality data classification at acceptable time costs [21–23]. However, as the
results of experimental studies have shown, most of the misclassified objects fall inside
the strip dividing the classes. Therefore, it is desirable to offer methods to increase the
data classification quality by decreasing the number of errors within the strip dividing
the classes. One of the modern approaches in solving the problem of increasing the data
classification quality allows for the creation of ensembles (committees, hybrids) of various
classifiers in order to increase the final (integral) data classification quality [45–49].

Ensembles of classifiers, in the case of their correct formation and adequate adjustment
of the corresponding parameters, usually make fewer errors than each individual classifier
in the ensemble.

SVM classifiers can be used successfully to create ensembles (committees, hybrids).
Therefore, we can create an ensemble that consists only of SVM classifiers [22,45,48], or an
ensemble that combines SVM classifiers with any other classifiers, fundamentally different
from SVM classifiers in the mathematical apparatus applied in them [50,51].

In the simplest case, we can try to build a hybrid classifier, in which the SVM classifier
will be the main one, and one more, the auxiliary one, designed to refine the classification
within the band dividing the classes. Since SVM classifier development is associated with
great time costs for finding the kernel function type, the parameter values of the kernel
function and the regularization parameter value, which are optimal, of the new classifier
put in the ensemble, must possess insignificant time costs for its development along with
the requirement to guarantee a high data classification quality.

In particular, a kNN classifier based on the kNN algorithm can be used. The kNN
classifier in some cases can provide an increase in the overall data classification quality
with a slight increase in the time spent on developing a hybrid classifier as a whole. As
such, it would be expedient to investigate the possibility of using a SVM classifier with
default parameter values and a kNN classifier with custom parameter values, which, in
general, should significantly reduce the time for developing a hybrid classifier.

The kNN classifier is the simplest metric classifier and assesses the similarity of a cer-
tain object with other k objects–its nearest neighbors, using some voting rules [2,14–16,50,51].

Currently, some approaches, which realize the joint use of SVM and kNN classifiers,
are known. For example, in [50], the authors suggested the use of a local SVM classifier to
classify objects that are erroneously classified by kNN classifier. A local SVM classifier uses
information about the nearest neighbors of the erroneously classified objects. In [51], the
authors suggested using information about the support vectors of the SVM classifier when
developing a kNN classifier. Therefore, the kNN classifier precises the class belonging of
objects within the strip separating the classes.

However, the above approaches are still far from perfect. Therefore, the development
of local SVM classifiers leads to supplementary time costs for searching the optimal number
of neighbors of the considered object and for the development of each local SVM classifier,
and the use of information about the support vectors in the development of the kNN
classifier requires verification of the objectiveness of their definition.

Papers [52,53] proposed and discussed a two-step SVM-kNN classification approach,
which applies the joint sequential application of SVM and kNN classifiers. In the first step,
the SVM classifier is developed on the basis of the initial dataset. Then, the region that
contains all of the misclassified objects is determined. Misclassified objects of this region
and properly classified objects that fall into this region form a new dataset. In the second
step, the kNN classifier is developed on the basis of the reduced dataset, which is formed
from the initial dataset, from which the objects of the new dataset are excluded. Then,
the kNN classifier is applied to classify all objects of the new dataset. If the classification
quality of objects belonging to the new dataset is improved, the two-step SVM-kNN
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classification approach can be used to classify new objects. The parameter values of the
SVM classifier can be set by default or fixed a priori. The parameter values of the kNN
classifier are determined experimentally. The limitations on the applicability of two-step
SVM-kNN classification approach are as follows: due to the large width of the found region
or excessive crowding of objects from the initial dataset within this region, the number of
objects in the reduced dataset may be insufficient for kNN classifier development.

The level of class balance in the dataset used during the development of the classifiers
has a significant influence on the data classification quality. It is known that probabilistic
classifiers are feebly dependent on class balance. However, improbable classifiers, for
example, SVM classifiers, are negatively affected by class imbalances [54,55].

When developing a binary SVM classifier, the hyperplane separating the classes is
constructed in such a way that a comparable number of objects of both classes is inside
the strip separating the classes. Obviously, a change in the class balance can influence this
number, and, consequently, the position of the boundary between the classes.

If the level of class imbalance (the ratio of the number of objects of the majority class
to the number of objects of the minority class) is 10:1 or more, we can obtain a high value of
the classification accuracy indicator if the classification of minority class objects is incorrect.

Currently, the following approaches can be applied to solve the problem of class
imbalance:

• weighting of classes, in which the classification correctness of objects of the minority
class is most preferable;

• sampling (oversampling, undersampling, and their combinations);
• forecasting of the class belonging of objects of the minority class using one-class

classification algorithms.

Nowadays, when working with unbalanced datasets, such one-class classification
algorithms have been actively used such as the one-class SVM algorithm (one-class support
vector machine) [56], isolation forest [57], minimum covariance determinant [58], and local
outlier factor [59].

In recent years, more and more attention has been paid to the development of effective
approaches to big data analysis using cloud technologies, extreme learning and deep
learning tools, the Apache Spark framework, and so on. Particular attention has been paid
to the scalability of the proposed algorithms. As such, many authors have proposed the use
of cascade two-stage learning for processing unstructured and semi-structured data. In [60],
the authors suggested a two-stage extreme learning machine with the aim to operate with
high-dimensional data effectively. At first, they included extreme learning machine into the
spectral regression algorithm to implement data dimensionality reduction and calculate
the output weights. Then, they calculated the decision function of basic extreme learning
machine using the low-dimensional data and the obtained output weights. This two-stage
extreme learning machine has better scalability and provides higher generalizability at a
high learning speed than the basic extreme learning machine. In [61], two-stage analytics
framework, which combines the modern machine learning technique with Spark-based
linear models, multilayer perceptron, and deep learning architecture named as long short-
term memory has been suggested. This framework allows for the organization of big data
analytics in a scalable and proficient way. A two-stage machine learning approach with
the aim of predicting a workflow task execution time in the cloud was proposed in [62].
It is obvious that the use of well-thought-out cascade approaches to data processing can
improve the efficiency and quality of decisions based on machine learning algorithms.

The main goal of the paper is as follows: in the context of developing hybrid classifiers
using the SVM algorithm, we explored the possibility of creating various versions of two-
stage SVM-kNN classifiers, in which, in the first stage, the one-class SVM classifier will be
used along with the binary SVM classifier. Regarding the one-class SVM classifier, it should
be noted that it can work in two versions: both as a one-class (in this case, the training set
contains only objects of the majority class) and as a binary one (in this case, the training set
contains objects of majority and minority classes).
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In this research, it is planned to implement two versions of two-stage classifiers:
the SVM-kNN classifier using the binary SVM algorithm and SVM-kNN classifier using
the one-class SVM-algorithm. For each of the versions of the classifiers, we proposed
implementing two variants of the formation of the training set for the kNN classifier: a
variant using all objects from the initial training set located inside the strip dividing the
classes, and a variant using only those objects from the initial training set, which is located
within an area containing all of the misclassified objects from the strip dividing the classes.
It should be noted that in both variants, correctly classified at the first stage objects that fell
into the dividing strip or in the above-mentioned area could also be included in the training
set for the kNN classifier, but in the second variant, the number of correctly classified
objects could be less. In particular, we planned to investigate whether replacing the binary
SVM classifier as part of a hybrid with a one-class SVM classifier acting as a binary one can
improve the data classification quality as a whole.

The use of the one-class SVM-classifier as a one-class classifier in the proposed study
was not intended, since when working with this classifier, it will be impossible to form a
training set containing objects of different classes for kNN classifier development.

The proposed approach to the development of a two-stage hybrid SVM-kNN classifier
makes it possible to abandon the time-consuming attempts to find the optimal values of
the SVM classifier parameters (for example, using evolutionary optimization algorithms),
which do not guarantee obtaining a classifier with high data classification quality.

Conceptually, the proposed two-stage hybrid SVM-kNN classifiers differ in that at
the first stage, the SVM classifier is developed with default parameter values, and at the
second stage, the kNN classifier for which the optimal value of the number of neighbors
is searched for (with the selected voting rule) is developed. Therefore, the SVM classifier
is trained on the basis of the initial training set, and the kNN classifier is trained on the
basis of the reduced initial training set containing only information about the objects lying
inside the strip dividing the classes. As a result, it is possible to minimize the time spent on
developing the classifier. Thus, the classifier constructed in this way can allow, in some
cases, an improvement in the data classification quality, since the auxiliary classifier, the
principles of which differ significantly from the principles of the SVM classifier, is involved
in the work.

The rest of this paper is structured as follows. Section 2 presents the main steps
of SVM classifier development where aspects of the development of binary and one-
class SVM classifiers are considered as well as the problem of class imbalance. Section 3
presents the main steps of kNN classifier development. Section 4 details aspects of the
development of the proposed two-stage hybrid SVM-kNN classifier. Experimental results
follow in Section 5. Section 6 discusses the obtained results. Finally, Section 7 describes the
future work.

2. Support Vector Machine (SVM) Classifier Development

Let U = {< z1, y1 >, . . . ,< zs, ys >} be the dataset used for SVM classifier devel-
opment. Tuples < zi, yi > (i = 1, s) contain information about object zi and number
yi ∈ {−1;+1}, which represents the class label of object zi [16,17,20,21].

Let object zi (i = 1, s) be described by vector of features (z1
i , z2

i , . . . , zq
i ), where zh

i
is the numerical value of the h-th feature for i-th object (i = 1, s, h = 1, q) [21,22]. The
values of elements of the vector of features are preliminarily subjected to scaling in one
way or another (for example, scaling, using standardization) with the aim of ensuring the
possibility of high quality classifier development.

The dataset U is randomly split into training and test sets in a certain proportion
(for example, 80:20) with the aim of training and testing developed SVM classifiers, from
which the best classifier is subsequently selected (i.e., the classifier that has the utmost
data classification quality). Let the training and test sets contain S and s− S (s > S) tuples,
respectively. The following kernel functions can be used for SVM classifier development:

• linear κ(zi, zt) = zi·zt;
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• polynomial κ(zi, zt) = (zi·zt + 1)r;
• radial basis κ(zi, zt) = exp(−(zi − zt)·(zi − zt)/(2·σ2)); and
• sigmoid κ(zi, zt) = th(k2 + k1·zi·zt),

where zi·zt is the scalar product for zi and zt; r ∈ N; σ > 0; th is the hyperbolic tangent;
and k1 > 0; k2 < 0 [17,18,21,22].

The above considerations are common for both binary and one-class SVM classifiers.

2.1. Aspects of Binary Support Vector Machine (SVM) Classifier Development

Kernel function type, parameter values of kernel function, and regularization parame-
ter value were determined during the development of the binary SVM classifier.

The problem of building the hyperplane separating classes, taking into account the
Kuhn–Tucker theorem, is reduced to the quadratic programming problem with dual
variables λi (i = 1, S) [17,18,21,22].

When training the binary SVM classifier, the dual optimization problem is solved:
1
2 ·

S
∑

i=1

S
∑

t=1
λi·λt·yi·yt·κ(zi, zt)−

S
∑

i=1
λi → min,

λ
S
∑

i=1
λi·yi = 0,

0 ≤ λi ≤ C, i = 1, S,

(1)

where zi is i-th object; yi is the class label for i-th object; λi is the dual variable; i = 1, S;
S (S < s) is the number of objects in training dataset; κ(zi, zt) is the kernel function; and C
is the regularization parameter (C > 0).

Support vectors are determined as a result of the development of the binary SVM
classifier. Support vectors are positioned near the hyperplane separating the classes and
carry all information about separation of the classes. Every support vector is a vector of
features of object zi, belonging to the training set, for which the value of the appropriate
dual variable λi is not equal to zero (λi 6= 0) [17,18].

As a result, the decision rule that assigns the class of belonging with the label “−1” or
“+1” to an arbitrary object is determined as [17,18,21,22]:

F(z) = sign

(
S

∑
i=1

λi·yi·κ(zi, z) + b

)
, (2)

where b = w·zi − yi; w =
S
∑

i=1
λi·yi·zi.

The summation in Formula (2) is carried out only over the support vectors.
The main problem arising in the binary SVM classifier development is associated with

the need to choose the kernel function type, the parameter values of the kernel function,
and the regularization parameter value, at which the high data classification quality will
be ensured.

This problem can be solved with the use of grid search algorithms or evolutionary
optimization algorithms, for example, the PSO algorithm, genetic algorithm, differential
evolution algorithm, fish school algorithm, etc. In particular, the modified PSO algo-
rithm [21–23], which provides a simultaneous search for kernel function type, parameter
values of kernel function, and regularization parameter value, can be used.

It should be noted that the use of the evolutionary optimization algorithm can sig-
nificantly reduce the time spent on development of binary SVM classifier (compared to
the time spent on development of binary SVM classifier using the grid search algorithms).
However, even these time costs can turn out to be significant when working with complex
multidimensional datasets of large volumes, which can be considered as big data.

Another approach to increasing the data classification quality can be proposed taking
into account the fact that most of the objects misclassified by the binary SVM classifier are
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positioned near the hyperplane separating the classes. In this regard, one can try to apply
auxiliary tools in the form of another classifier, which essentially differs from the SVM
classifier in its mathematical principles, and can be applied to classify objects positioned
near the hyperplane separating the classes. The kNN classifier can be used as such an
auxiliary toolkit [14–16]. This classifier is notable for comparable or lower time costs in its
development (in comparison with binary SVM classifier).

Taking into account the identified problems regarding the significant time spent
working with complex multidimensional datasets of large volumes (big data) and the
desire to minimize them, it is necessary to study the possibilities of effective hybridization
of SVM and kNN classifiers when developing a two-stage SVM-kNN classifier.

In particular, it is advisable to answer the following question: is it possible at the first
stage to use the SVM algorithm with the parameter values set by default (or simply fixed)
during the SVM classifier development (that is, by refusing to fine-tune the parameters
values of SVM classifier, which is significantly time-consuming), and at the second stage,
when developing kNN classifier, to increase the data classification quality only by varying
the parameters values of the kNN classifier (in the simplest case, to vary only the number
of neighbors)? As such, the multiple random formation of training and test sets for their
use for a hybrid two-stage SVM-kNN classifier development should remain in force.

2.2. Class Imbalance Problem

Machine learning algorithms assume that the development of classifiers will take
place on the basis of balanced datasets, and the classification error cost is the same for
all objects.

Training on the imbalanced datasets (imbalance problem) [55,63] can lead to a sig-
nificant drop in the quality of the developed classifiers because these datasets do not
provide the necessary data distribution in the training set. The class imbalance indicator is
calculated as the ratio of the number of objects in classes. Negative effects that are com-
mon for training on imbalanced datasets appear stronger if this ratio is equal to 10:1 or is
even larger.

The dataset imbalance in the binary classification means that more objects in the
dataset belong to one class, called the “majority”, and less objects belong to another class,
called the “minority”.

A classifier developed on the basis of the imbalanced dataset may have a high overall
classification accuracy, but there will be errors on all objects of the minority class.

It is usually assumed that the goal of training is to maximize the proportion of correct
decisions in relation to all decisions made, and the training data and the general body of
data follow the same distribution. However, taking these assumptions into account when
working with an imbalanced dataset leads to the developed classifier not being able to
classify data better than a trivial classifier that absolutely ignores the minority class and
assigns all objects to the majority class.

It should be noted that the cost of the misclassification of objects of the minority class
is often much more high-priced than the misclassification of objects of the majority class
because the objects of the minority class are infrequent, but the most important to observe.

2.3. Aspects of One-Class SVM Classifier Development

The goal of the one-class SVM algorithm [63–67] is to identify novelty, that is, it is
assumed that it will allow detecting the infrequent objects or anomalies. Infrequent objects
do not appeared often, and therefore, they are almost not present in the available dataset.
The problem of detecting infrequent objects or anomalies can be interpreted as the problem
of classifying the imbalanced dataset.

The aim of the one-class SVM algorithm is to distinguish the objects from the training
set that belong to the majority class from the rest of objects, which can be considered as the
infrequent objects or anomalies, belonging to the minority class.
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Let the training dataset contain objects zi (i = 1, S), which belong to the majority class.
It is necessary to decide for the objects of the test set whether they belong to the majority or
minority class.

When training the one-class SVM classifier, a dual optimization problem is solved:
1
2 ·

S
∑

i=1

S
∑

t=1
λi·λτ ·κ(zi, zt)→ min

λ
S
∑

i=1
λi = 1,

0 ≤ λi ≤ 1
ν·S , i = 1, S.

(3)

where zi is the i-th object; λi is the dual variable; i = 1, S; S (S < s) is the number of objects
in training dataset; κ(zi, zt) is the kernel function; and ν is the maximal ratio of objects in
the training set that can be accepted as the infrequent objects or anomalies.

When developing the one-class SVM classifier, the regularization parameter value is
calculated as C = 1

v·S .
As a result, the decision rule is determined, which assigns a membership class with

the label “−1” or “+1” to an arbitrary object [56]:

F(z) = sign

(
S

∑
i=1

λi·κ(zi, z)− ρ

)
(4)

where ρ is the algorithm parameter.
The properties of the problem are such that the condition λi 6= 0 in fact means that the

object zi is on the boundary of the strip separating the classes, therefore, for any object zt

so that λt 6= 0, the equality is true: ρ =
S
∑

i=1
λi·κ(zi, zt).

It should be noted that the one-class SVM classifier can work in two roles during
training: as one-class (ooSVM–one-class SVM as one-class classifier), and as binary (obSVM–
one-class SVM as binary classifier). In the first case, only objects of the majority class are
included in the training set, and in the second case, objects of two classes are included in
the training set (we did take their class labels into account).

3. kNN Classifier Development

Let U = {< z1, y1 >, . . . ,< zs, ys >} be a dataset used in the development of the
kNN classifier.

The dataset U is randomly split into training and test sets in a certain proportion in order
to train and test the developed kNN classifiers, from which the best classifier is subsequently
selected (i.e., a classifier that provides the highest possible classification quality).

Let the training and test sets contain S and s− S (s > S) tuples, respectively.
For each kNN classifier, the value of the number of neighbors k is determined at which

the classification error is minimal [14–16].
The class of belonging yi ∈ Y of an object zi ∈ Z is determined by the class of

belonging of most of the objects among the k nearest neighbors of the object zi ∈ Z.
Implementation of the kNN algorithm to determine the membership class of an

arbitrary object for a fixed number of k nearest neighbors usually involves the following
sequence of steps.

1. Calculate the distance d(z, zi) from object z to each of objects zi, the class of which
is known. Order the calculated distances in ascending order of their values.

2. Select k objects zi (k nearest neighbors), which are closest to object z.
3. Reveal the class belonging of each of the k nearest neighbors of object z. Class that

is more common for k nearest neighbors is assigned as membership class of object z.
To estimate the distance between objects in the kNN algorithm, various distance

metrics can be used such as Euclidean, Manhattan, cosine, etc.
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The Euclidean distance metric is most often used [14–16]:

d(zi, z) = (
q

∑
l=1

(zl
i − zl)

2
)

1/2

(5)

where zl
i , zl are the values of l-th feature of objects zi, z correspondently and q is the number

of features.
When implementing the kNN algorithm, various voting rules can be used, for example,

simple unweighted voting and weighted voting [14–16].
When using simple unweighted voting, the distance from object z to each nearest

neighbor zi (i = 1, k) does not matter: all k nearest neighbors zi (i = 1, k) have equal rights
in defining the object class of z.

Each of the k nearest neighbors zi (i = 1, k) of object z votes for its assignment to its
class yzi ,z. As a result of the implementation of the kNN algorithm, object z will be assigned
to the class that gets the most votes using the votes majority rule:

α = argmax
y∈Y

k

∑
i=1
|yzi ,z = y|, (6)

When using weighted voting, the distance from object z to each nearest neighbor zi
(i = 1, k) must be taken into consideration: the smaller the distance, the more major the
contribution to the assessment of the object’s belonging to a certain class is made by the
vote of neighbor zi (i = 1, k).

The assessment of the total contribution of votes of neighboring objects for the belong-
ing of an object z to a class y ∈ Y in weighted voting can be calculated as [36]:

α =
k

∑
i=1

1
d2(zi, z)

·ri, (7)

where ri = 0 if yzi ,z 6= y and ri = 1 if yzi ,z = y.
The class with the highest score (4) is assigned to the object z in question.

4. Two-Stage Hybrid Classifier

The results of the experimental studies show that no classifier can be recognized
as indisputably the best in relation to other classifiers, since it does not allow ensuring
high quality classification for arbitrary datasets in light of the tools’ peculiarities and their
limited capabilities.

The binary SVM classifier allows for satisfactory classification quality on most complex
multidimensional datasets [21–33]. However, there are certain problems when it is applied
to large datasets (big data) as well as to poorly balanced datasets.

The analysis of the position of objects misclassified by the binary SVM classifier
showed that most of them fell inside the strip separating the classes. Moreover, the eSVM
classifier allowed for some objects to fall inside the strip and on the wrong side of the
hyperplane separating the classes [34]. This hyperplane defines the decision boundary.

The strip separating the classes is specified by the inequality −1 < w·z + b < 1, where

w =
S
∑

i=1
λi·yi·zi; b = w·zi − yi.

All objects can be divided into three types.

1. The object is classified correctly and is located far from the strip separating the classes.
Such an object can be called the peripheral.

2. The object is classified correctly and lies exactly on the boundary of the strip separating
the classes. Such an object can be called the support vector.
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3. The object either lies within the strip separating the classes but is classified correctly,
or falls on the class boundary, or generally belongs to a foreign class. In all these cases,
such an object can be called the support intruder.

The classification decision for objects that fall inside the strip separating the classes can
be refined using the two-stage hybrid classifier, which implements the sequential (cascade)
use of SVM and kNN classifiers.

Since we planned to consider two versions of two-stage hybrid classifiers that imple-
ment the use of SVM classifiers based on binary SVM algorithm (bSVM) and one-class
SVM algorithm used in the role of binary (obSVM), the general abbreviation will be used
in the description of the steps of developing a hybrid classifier–SVM with the subse-
quent clarification of the characteristics of the development of SVM classifiers for each of
two versions.

Here, we assumed that the objects of the minority class had the class label “−1”, and
the objects of the majority class had the class label “+1” (it does not matter whether the
class imbalance may be quite insignificant).

The proposed two-stage hybrid classifier can be implemented by the following se-
quence of steps.

Stage 1. SVM classifier development.
1.1. The SVM classifier development with an assessment of the applied quality

indicator on the considered dataset is fulfilled on the basis of randomly formed training
and test sets. Kernel function type, kernel parameter values, and regularization parameter
value are used by default (or selected and fixed). Then, the hyperplane that divides objects
into two classes with labels “−1” and “+1” is defined. Assessment of the data classification
quality is fulfilled on a test set, for example, using indicators such as the accuracy indicator
(Accur), the balanced accuracy indicator (BA), and the F1-score indicator.

When developing bSVM and obSVM classifiers, the dataset is randomly split into
training and test sets in a ratio of 80:20 without imposing any additional restrictions on the
inclusion of objects in these sets: each set may contain objects of both classes (i.e., objects
with a class label “−1”, and objects with a class label “+1”).

It should be noted that the use of the one-class SVM algorithm used in the role of a
one-class SVM (ooSVM) algorithm was not considered in the proposed hybrid SVM-kNN
classifier, since in this case, it is impossible to ensure the presence of objects of different
classes within the strip separating the classes, and, therefore, it is impossible to implement
the second stage, which implies the development of the kNN classifier.

1.2. Formation of the training set for kNN classifier development with the implemen-
tation of two variants.

Variant 1. The training set for kNN classifier development includes all objects of the
training set used at step 1.1 during SVM classifier development inside the strip separating
the classes: −1 < w·z + b < 1. Let the area containing such objects be called B (Boundary).
In the future, symbol B will be assigned to the corresponding hybrid classifier variant.

Variant 2. The training set for the kNN classifier development includes only those
objects of the training set used at step 1.1 during training of the SVM classifier that fall
into the area described by inequality −ρA ≤ w·z + b ≤ ρA, where ρA is the number that
satisfies inequality: 0 < ρA < 1 and is defined as ρA = max(ρ−, ρ+), where ρ− is the
maximum distance from the hyperplane separating the classes to the misclassified object
of the class with the label “−1” belonging to the training set and located inside the strip
separating classes; and ρ+ is the maximum distance from the hyperplane separating the
classes to the misclassified object of the class with the label “+1”, belonging to the training
set and located inside the strip separating the classes. Let the area containing such objects
be called A (Area). In the future, symbol A will be assigned to the corresponding hybrid
classifier variant.

It should be noted that area A with such a definition will be symmetric with respect to
the hyperplane separating the classes, although it is possible to consider an asymmetric
version for area A in the future. While forming a training set for kNN classifier development
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based on objects from area A, it is assumed that in the future, thee SVM classifier will
continue to correctly classify objects outside the area, and inside this area it will still
sometimes make mistakes.

Let the area selected at step 1.2 be called AorB. It is assumed that the SVM classifier always
makes mistakes within area AorB, otherwise kNN classifier development is not required.
Figure A1 (Appendix A) shows examples of areas A and B in two-dimensional space.

Stage 2. kNN classifier development.
kNN classifier development is fulfilled on the basis on the training set formed at step

1.2 using one of two variants of the area AorB (that is, area A or B), for various values of
the number k of nearest neighbors, various metrics for evaluating the distance between
the objects (for example, in accordance with Formula (5)), and various voting rules (for
example, in accordance with Formulas (6) or (7)). The best kNN classifier is selected so that
it provides the highest quality of classification of all objects in the test set as a whole using
the two-stage hybrid SVM-kNN classifier. Therefore, the parameter values of the best kNN
classifier are fixed, in particular, the number of neighbors, metric for assessing the distance
between objects, and voting rule are recorded.

The proposed two-stage hybrid SVM-kNN classifier implements cascade learning:
first, on the basis of the training set, composed randomly from the considered dataset, the
SVM classifier is trained, and then on the basis of the training set reduced in the above way,
the kNN classifier is trained.

In the proposed two-stage hybrid SVM-kNN classifier, it is assumed that due to the
development of the SVM classifier at the first stage, it is possible to change the balance of
classes, working at the second stage in the development of the kNN classifier only with
objects that fall into the reduced training dataset and inside the dividing strip (in area A or
B). Therefore, peripheral (uninformative) objects are excluded from the training dataset.
These objects, in fact, do not affect the final decision (in particular, they are not support
vectors and are not included in classification rules (2) or (4)).

It is reasonable to compare the results of the two-stage hybrid SVM-kNN classifier
development with the results of the development of SVM and kNN classifiers that work
with the default parameters values. As such, it will be possible to assess the expediency of
using the two-stage hybrid SVM-kNN classifier to determine the class belonging of new
objects, identifying or not identifying an increase in the values of the classification quality
indicators of objects from the test set.

In the case of a positive decision on the expediency of using the developed two-stage
hybrid SVM-kNN classifier, the classification of new objects can be performed as follows:

• apply the developed SVM classifier (with fixed parameters values) to separate new
objects into two classes;

• select from the new objects those that fall into area AorB built at step 1.2 at stage 1, and
refine the classification decision for these objects using the developed kNN classifier.

Figure 1 shows the enlarged block diagram of the two-stage hybrid SVM-kNN classi-
fier development.

Two-stage hybrid SVM-kNN classifier development is implemented for various values
of the number k of nearest neighbors. It is reasonable to use odd values of the number k
when using votes majority rule (6) with the aim to avoid circumstances when the same
number of neighbors voted for the various classes (in the case of binary classification).

During kNN classifier development, we worked with not only the entire training set,
but with the reduced training set containing only the data about objects that fell into area
AorB (in the area A or B), depending on which variant of the choice of the area turned
out to be the best when developing the kNN classifier). The use of an auxiliary toolkit
named as the kNN classifier, whose working principles are different from the working
principles of SVM classifier, allows for an increase in the overall data classification quality in
some cases.
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The limitations on the applicability of the proposed two-stage hybrid SVM-kNN
classifier are related to the fact that, due to the small width of area AorB or excessive
sparseness within area AorB, the size of the reduced training set (namely, the number of
objects) may be insufficient for kNN classifier development.

5. Experimental Studies

The feasibility of using the proposed the two-stage hybrid versions of SVM-kNN
classifiers was confirmed during experiments on real datasets taken from the UCI Machine
Learning Repository and other sources applied to test the proposed classifiers.

The binary classification was implemented in all datasets that were used in experi-
ments. Moreover, all datasets differed from each other by significantly different indicators
of class imbalance. During the experiments, in particular, 20 datasets were considered (Aus-
tralian, Banknote Authentication, Biodeg, Breast-Cancer-Wisconsin, Diabetic Retionopathy,
German, Haberman, Heart, Ionosphere, Liver, Musk (Version 1), Musk (Version 2), Parkin-
sons, Phoneme, Pima Indians Diabetes, Spam, Sports Articles, Vertebral, LSVT Voice,
WDBC), for three of which it was possible to obtain confirmation of the effectiveness of
two-stage hybrid versions of SVM-kNN classifiers. The considered datasets are described
in Table A1 (Appendix A). Objects of the majority class are marked with class label “0”,
and objects of minority class are marked with class label “1” (for some datasets, class labels
had to be renamed for consistency).

Software implementation was done in Python 3.8 using the Scikit-learn machine
learning library, which provides tools for developing binary SVM, one-class SVM, and
kNN classifiers. Jupyter Notebooks were applied to write the program code.

When developing SVM classifiers, implementations of binary and one-class SVM
algorithms with default parameters values were used (Table 1). When developing the
kNN classifiers, implementation of the kNN algorithm with the default parameter values
(Table 1) was used as well as the implementation of the kNN algorithm in which the
number of neighbors was chosen from the range [5,46] with the step equal to 2 (with voting
by a majority of votes and weighted voting).

Table 1. Parameter values used by default in the SVM algorithms and kNN algorithm.

Name of
Algorithm

Regulari-
Zation

Parameter C
in the

Binary SVM

nu in the
One-Class

SVM

Type of
Kernel

Functionin
Both SVMs

Value of
Parameter
of Kernel

Function in
Both SVMs

Distance
Metric in

kNN

Number
of Neigh-

bors in
kNN

Weights for
Neighbors

in kNN

Algorithm Used to
Compute the

Nearest Neighbors
in kNN

Leaf Size for
Balltree or
KDTree in

kNN

Binary SVM 1 - rbf 1/(q·var(Z)) - - - - -
One-class

SVM 0.5 rbf 1/(q·var(Z)) - - - - -

kNN - - - - euclidean 5 uniform auto 30

Table 1 uses the following notations:

• nu is the lower boundary of the portion of support vectors and the upper boundary
on the portion of training errors (nu ∈ (0, 1]);

• var(Z) is the training dataset variance calculated as: var(Z) = mean((Z−mean(Z))2);
mean(Z) = sum(Z)/S;

• S is the number of objects in the training set;
• q is the number of features;
• rbf is the radial basis kernel function; and
• auto means that the most appropriate algorithm from BallTree, KDTree, Brute-force

search is used.

The portion of the test set was equal to 20% of the considered dataset.
During the experiments, the following versions of the classifiers were developed.

1. kNN classifier with default parameter values, named as kNN-default.
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2. kNN classifier, which implements the search for the best number of neighbors with
the rest default parameter values, named as kNN.

3. Binary SVM classifier with default parameter values, named as bSVM-default.
4. One-class SVM-classifier, working in the role of a binary, with default parameter

values, named as obSVM-default.
5. A hybrid of the binary SVM classifier with default parameter values and kNN clas-

sifier, which implements the search for the best number of neighbors with the rest
default parameter values, and takes into account the boundaries of the strip separating
the classes, named as bSVM-B-kNN.

6. A hybrid of the one-class SVM classifier, working as a binary, with default parameter
values, and kNN classifier, which implements the search for the best number of neigh-
bors with the rest default parameter values, and takes into account the boundaries of
the strip separating the classes, named as obSVM-B-kNN.

7. A hybrid of a binary SVM classifier with default parameter values and a kNN classifier
that realizes the search for the best number of neighbors with the default parameter
values, and takes into account the selected symmetric areas within the boundaries
defining the band separating the classes, named as bSVM-A-kNN.

8. A hybrid of a one-class SVM classifier, working as a binary, with the default parameter
values, and a kNN classifier, which realizes the search for the best number of neighbors
with the rest default parameter values, and takes into account the selected symmetric
area within the boundaries, defining the strip separating the classes, named as obSVM-
A-kNN.

Before the training procedure, the values of the elements of the feature vectors of
objects were scaled: standardization (Standard) and MinMax scaling techniques were used
in order to select the best one based on the results of training. In the overwhelming majority
of cases, the best learning outcomes (in terms of the classification quality) were obtained
using standardization.

The quality of the classifiers was assessed on the test set using classification quality
indicators such as Balanced Accuracy (BA), Accuracy (Acc), and F1-score (F1). For each fixed
number of neighbors, 500 random partitions of the dataset were performed into test and
training sets in a ratio of 80:20, followed by training, testing, and choosing the best hybrid
classifier (including choosing the best number of neighbors in the kNN classifier) to sense
this or that indicator of the quality of the classification.

The calculation of indicators BA, Acc, and F1 in the case of binary classification was
carried out in accordance with formulas:

BA =
1
2
·(Sensitivity + Speci f icity) =

1
2
·
(

TP
TP + FN

+
TN

TN + FP

)
, (8)

Acc =
TP + TN

TP + FN + TN + FP
, (9)

F1 = 2· Precision·Recall
Precision + Recall

=
2·TP

2·TP + FN + FP
, (10)

where TP is the number of true positive outcomes; TN is the number of true negative
outcomes; FP is the number of false positive outcomes; FN is the number of false negative
outcomes; Sensitivity = Recall = TP

TP+FN ; Speci f icity = TN
TN+FP ; and Precision = TP

TP+FP .
The balanced accuracy indicator BA differs from the accuracy indicator Acc in that

the proportion of objects in each of the classes is taken into account when calculating
it. Hence, indicator BA gives the most reliable assessment of the classification quality of
unbalanced datasets.

5.1. Hybrid Classifier Development Using kNN Classifier Based on the Votes Majority Rule

First, the experiments for the case when the votes majority rule according to For-
mula (6) is used in the development of the kNN classifier were carried out.
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During the experiments, it was possible to prove the effectiveness of the proposed two-
stage hybrid classifiers using three datasets such as Haberman, Heart, and Pima Indians
Diabetes. The efficiency of the proposed two-stage hybrid classifiers for four more datasets
such as Breast-Cancer-Wisconsin, Parkinsons, LSVT Voice, and WDBC turned out to be
the same as when using the kNN classifier, for which the search for the optimal number of
neighbors was carried out.

Tables 2–4 show the classification quality indicator values (Balanced Accuracy (BA), Ac-
curacy (Acc), F1-score (F1)) and the number of neighbors for which the best (i.e., maximum)
classification quality indicator value was reached, for three datasets (Haberman, Heart,
Pima Indians Diabetes), on which the successful application of two-stage hybrid versions
of SVM-kNN classifiers (when at least one of the three indicators is clearly improved or
the obtained decision is among the top three out of eight classifiers above-mentioned) is
observed. The class was assigned to the object z in accordance with the votes majority
rule (6).

Table 2. Values of balanced accuracy indicator (when votes majority rule (6) is used in the kNN classifier).

Dataset/Scaling
Method

kNN/Number
of Neighbors kNN-default SVM-default obSVM-

default

bSVM-A-
kNN/Number
of Neighbors

bSVM-B-
kNN/Number
of Neighbors

obSVM-A-
kNN/Number
of Neighbors

obSVM-B-
kNN/Number
of Neighbors

Haberman/Standard 0.829/25 0.763 0.775 0.784 0.780/17 0.771/17 0.839/23 0.829/33
Haberman/MinMax 0.776/13 0.761 0.731 0.784 0.798/15 0.798/15 0.745/11 0.789/11

Heart/Standard 0.984/35 0.963 0.963 0.766 0.832/25 0.867/23 0.907/35 0.955/43
Heart/MinMax 0.982/29 0.96 0.972 0.762 0.809/31 0.816/35 0.905/5 0.903/25

Pima Indians
Diabetes/Standard 0.810/7 0.805 0.828 0.722 0.711/41 0.730/35 0.795/41 0.813/17

Pima Indians
Diabetes/MinMax 0.814/21 0.801 0.839 0.738 0.718/5 0.732/7 0.777/33 0.786/13

Table 3. Values of accuracy indicator (when votes majority rule (6) is used in the kNN classifier).

Dataset/Scaling
Method

kNN/Number
of Neighbors kNN-default SVM-default obSVM-

default

bSVM-A-
kNN/Number
of Neighbors

bSVM-B-
kNN/Number
of Neighbors

obSVM-A-
kNN/Number
of Neighbors

obSVM-B-
kNN/Number
of Neighbors

Haberman/Standard 0.918/21 0.869 0.918 0.754 0.918/23 0.918/23 0.934/23 0.918/17
Haberman/MinMax 0.902/13 0.869 0.902 0.738 0.905/37 0.905/39 0.902/37 0.902/23

Heart/Standard 0.981/11 0.963 0.963 0.759 0.852/25 0.870/17 0.926/31 0.963/27
Heart/MinMax 0.981/29 0.963 0.963 0.759 0.815/13 0.833/19 0.907/5 0.907/15

Pima Indians
Diabetes/Standard 0.864/17 0.831 0.857 0.708 0.799/19 0.818/41 0.864/41 0.870/17

Pima Indians
Diabetes/MinMax 0.857/21 0.851 0.864 0.721 0.799/17 0.792/5 0.844/19 0.851/33

Table 4. Values of F1-score indicator (when votes majority rule (6) is used in the kNN classifier).

Dataset/Scaling
Method

kNN/Number
of Neighbors kNN-default SVM-default obSVM-

default

bSVM-A-
kNN/Number
of Neighbors

bSVM-B-
kNN/Number
of Neighbors

obSVM-A-
kNN/Number
of Neighbors

obSVM-B-
kNN/Number
of Neighbors

Haberman/Standard 0.700/33 0.636 0.666 0.667 0.700/11 0.700/11 0.727/11 0.667/23
Haberman/MinMax 0.667/13 0.600 0.588 0.642 0.700/15 0.700/15 0.640/11 0.667/11

Heart/Standard 0.980/11 0.963 0.962 0.780 0.800/25 0.851/23 0.895/31 0.952/43
Heart/MinMax 0.982/29 0.958 0.962 0.788 0.773/31 0.792/17 0.894/7 0.894/25

Pima Indians
Diabetes/Standard 0.755/7 0.752 0.763 0.680 0.605/25 0.636/25 0.727/41 0.738/17

Pima Indians
Diabetes/MinMax 0.750/23 0.742 0.804 0.667 0.612/5 0.653/7 0.702/11 0.719/13

In Tables 2–4, indicator values that occupy the first place are highlighted in bold,
indicator values that occupy second place are highlighted in bold italics, and indicator
values that occupy the third place are simply italicized (when ranking in descending order
of indicators values).
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As can be seen from Tables 2–4, all four versions of the two-stage hybrid SVM-kNN
classifiers (bSVM-A-kNN, bSVM-B-kNN, obSVM-A-kNN, obSVM-B-kNN) took the lead
on different datasets (or are included in the top three) when analyzing certain classification
quality indicators, in connection with which it is possible to talk about their effectiveness
and expediency of use (especially in the case of further fine tuning of SVM classifier
parameter values).

For another four datasets (Breast-Cancer-Wisconsin, Parkinsons, LSVT Voice, and
WDBC), it turned out that the kNN, kNN-default, SVM-default classifiers and two-stage
hybrid SVM-kNN classifiers provided the same values of the classification quality indica-
tors (BA, Acc, F1) equal to 1 on the test set. Therefore, the class was assigned to object z in
accordance with the votes majority rule (6). The main difference between two-stage hybrid
SVM-kNN classifiers and kNN classifiers is, possibly, in a various number of neighbors, at
which the best (i.e., maximum) value of the classification quality indicator was reached.
Thus, the composition of the training and test sets, with the use of which the best (i.e.,
maximum) value of the classification quality indicator was achieved, can be obtained in
different ways (with various composition of training and test sets and various numbers
of neighbors in kNN classifier), while, generally speaking, the time to obtain the desired
high-quality classifier can be minimized by developing the kNN classifier, which is part
of the two-stage hybrid SVM-kNN classifier, due to the use of the training set of lower
cardinality than in the case when only kNN or SVM classifiers are developed.

Tables 5–8 show the number of neighbors for the Standard and MinMax scaling
methods, at which the best (i.e., maximum) values of classification quality indicators were
achieved in the kNN, bSVM-A-kNN, bSVM-B-kNN, obSVM-A-kNN, and obSVM-B-kNN
classifiers for different classification quality indicators on the Breast-Cancer-Wisconsin,
Parkinsons, LSVT Voice, and WDBC datasets. Dashes (“-”) in the cells of Tables 5–8 mean
that for the classifier named in the column heading, the maximum value of the quality
indicator named in the row headings (in the leftmost cell of the row) was not observed.

Table 5. Number of neighbors at which the maximum classification quality indicators values were achieved on the
Breast-Cancer-Wisconsin dataset (when votes majority rule (6) is used in the kNN classifier).

Classification
Quality Indicator

kNN: Stan-
dard/MinMax

bSVM-A-kNN:
Standard/MinMax

bSVM-B-kNN:
Standard/MinMax

obSVM-A-kNN:
Standard/MinMax

obSVM-B-kNN:
Standard/MinMax

BA 5/5 - - 7/5 5/5
Acc 5/5 - - 7/5 5/5
F1 5/5 - - 7/5 5/5

Table 6. Number of neighbors at which the maximum classification quality indicators values were achieved on the
Parkinsons dataset (when votes majority rule (6) is used in the kNN classifier).

Classification
Quality Indicator

kNN: Stan-
dard/MinMax

bSVM-A-kNN:
Standard/MinMax

bSVM-B-kNN:
Standard/MinMax

obSVM-A-kNN:
Standard/MinMax

obSVM-B-kNN:
Standard/MinMax

BA 5/5 - 9/- 5/5 9/9
Acc 5/5 - 9/- 5/5 9/9
F1 5/5 - 9/- 5/5 9/9

Table 7. Number of neighbors at which the maximum classification quality indicators values were achieved on the LSVT
Voice dataset (when votes majority rule (6) is used in the kNN classifier).

Classification
Quality Indicator

kNN: Stan-
dard/MinMax

bSVM-A-kNN:
Standard/MinMax

bSVM-B-kNN:
Standard/MinMax

obSVM-A-kNN:
Standard/MinMax

obSVM-B-kNN:
Standard/MinMax

BA 5/5 17/5 9/5 - -
Acc 5/5 17/5 9/5 - -
F1 5/5 17/5 9/5 - -



Symmetry 2021, 13, 615 17 of 32

Table 8. Number of neighbors at which the maximum classification quality indicators values were achieved on the WDBC
dataset (when votes majority rule (6) is used in the kNN classifier).

Classification
Quality Indicator

kNN: Stan-
dard/MinMax

bSVM-A-kNN:
Standard/MinMax

bSVM-B-kNN:
Standard/MinMax

obSVM-A-kNN:
Standard/MinMax

obSVM-B-kNN:
Standard/MinMax

BA 5/5 - - 5/5 5/5
Acc 5/5 - - 5/5 5/5
F1 5/5 - - 5/5 5/5

Appendix B provides Tables A2–A4, which show the classification quality indicator
values (and number of neighbors) for which the best (i.e., maximum) classification quality
indicator value was reached for three datasets (Australian, German, and Ionosphere) on
which the successful application of two-stage hybrid versions of SVM-kNN classifiers was
not obtained. Therefore, the class was assigned to the object z in accordance with the votes
majority rule (6).

The success of applying the proposed two-stage hybrid versions of SVM-kNN classi-
fiers to some datasets and the failure of their application to others can be explained by the
peculiarities of forming area AorB or grouping objects of the training set within area AorB.

5.2. Hybrid Classifier Development Using kNN Classifier Based on the Rule of Weighted Voting

Similar experiments for the case when the rule of weighted voting according to
Equation (7) used in the development of the kNN classifier were carried out.

During the experiments, it was possible to prove the effectiveness of the proposed two-
stage hybrid classifiers using three datasets such as Haberman, Heart, and Pima Indians
Diabetes. The efficiency of the proposed two-stage hybrid classifiers for four more datasets
such as Breast-Cancer-Wisconsin, Parkinsons, LSVT Voice, and WDBC turned out to be
the same as when using the kNN classifier, for which the search for the optimal number of
neighbors was carried out.

Tables 9–11 show the classification quality indicator values (BA, Acc, F1) and number
of neighbors for which the best (i.e., maximum) classification quality indicator value
was reached for three datasets (Haberman, Pima Indians Diabetes, Heart), on which the
successful application of two-stage hybrid versions of SVM-kNN classifiers (when at least
one of the three indicators is clearly improved or the obtained decision is in the top three
out of eight classifiers above-mentioned) is observed. Therefore, the class was assigned to
the object z in accordance with the rule of weighted voting (7).

Table 9. Values of balanced accuracy indicator (when rule of weighted voting (7) is used in the kNN classifier).

Dataset/Scaling
Method

kNN/Number
of Neighbors

kNN-
default

SVM-
default

obSVM-
default

bSVM-A-
kNN/Number
of Neighbors

bSVM-B-
kNN/Number
of Neighbors

obSVM-A-
kNN/Number
of Neighbors

obSVM-B-
kNN/Number
of Neighbors

Haberman/Standard 0.918/21 0.869 0.918 0.754 0.918/23 0.918/23 0.934/23 0.918/17
Haberman/MinMax 0.902/13 0.869 0.902 0.738 0.905/37 0.905/39 0.902/37 0.902/23

Heart/Standard 0.981/11 0.963 0.963 0.759 0.852/25 0.870/17 0.926/31 0.963/27
Heart/MinMax 0.981/29 0.963 0.963 0.759 0.815/13 0.833/19 0.907/5 0.907/15

Pima Indians
Diabetes/Standard 0.864/17 0.831 0.857 0.708 0.799/19 0.818/41 0.864/41 0.870/17

Pima Indians
Diabetes/MinMax 0.857/21 0.851 0.864 0.721 0.799/17 0.792/5 0.844/19 0.851/33
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Table 10. Values of accuracy indicator (when rule of weighted voting (7) is used in the kNN classifier).

Dataset/Scaling
Method

kNN/Number
of Neighbors

kNN-
default

SVM-
default

obSVM-
default

bSVM-A-
kNN/Number
of Neighbors

bSVM-B-
kNN/Number
of Neighbors

obSVM-A-
kNN/Number
of Neighbors

obSVM-B-
kNN/Number
of Neighbors

Haberman/Standard 0.918/23 0.869 0.918 0.754 0.934/29 0.918/23 0.918/23 0.918/45
Haberman/MinMax 0.902/25 0.869 0.902 0.738 0.902/23 0.902/25 0.902/25 0.885/19

Heart/Standard 0.981/43 0.963 0.963 0.759 0.870/27 0.887/19 0.963/43 0.963/15
Heart/MinMax 0.981/39 0.963 0.963 0.759 0.852/5 0.870/25 0.907/7 0.926/21

Pima Indians
Diabetes/Standard 0.870/11 0.831 0.857 0.708 0.805/17 0.825/29 0.851/41 0.857/41

Pima Indians
Diabetes/MinMax 0.864/19 0.851 0.864 0.721 0.799/15 0.799/15 0.851/23 0.857/43

In Tables 9–11, the indicator values that occupy the first place are highlighted in bold;
indicator values that occupy the second place are highlighted in bold italics; and indicator
values that occupy the third place are simply italicized (when ranking in descending order
of indicators values).

Table 11. Values of F1-score indicator (when rule of weighted voting (7) is used in the kNN classifier).

Dataset/Scaling
Method

kNN/Number
of Neighbors

kNN-
default

SVM-
default

obSVM-
default

bSVM-A-
kNN/Number
of Neighbors

bSVM-B-
kNN/Number
of Neighbors

obSVM-A-
kNN/Number
of Neighbors

obSVM-B-
kNN/Number
of Neighbors

Haberman/Standard 0.737/29 0.636 0.666 0.667 0.778/29 0.737/29 0.696/17 0.640/7
Haberman/MinMax 0.667/19 0.600 0.588 0.642 0.667/13 0.667/13 0.609/13 0.571/9

Heart/Standard 0.979/13 0.963 0.962 0.780 0.800/33 0.840/19 0.952/43 0.952/45
Heart/MinMax 0.978/39 0.958 0.962 0.788 0.778/5 0.780/37 0.894/43 0.894/7

Pima Indians
Diabetes/Standard 0.783/11 0.752 0.763 0.680 0.625/29 0.651/37 0.721/35 0.721/43

Pima Indians
Diabetes/MinMax 0.774/19 0.742 0.804 0.667 0.629/11 0.653/5 0.698/27 0.711/43

As can be seen from Tables 9–11, all four versions of the two-stage hybrid SVM-kNN
classifiers (bSVM-A-kNN, bSVM-B-kNN, obSVM-A-kNN, obSVM-B-kNN) took the lead
on different datasets (or are included in the top three) when analyzing certain classification
quality indicators, in connection with which it is possible to talk about their effectiveness
and expediency of use (especially in the case of more fine tuning of the values of SVM
classifier parameters).

For another four datasets (Breast-Cancer-Wisconsin, Parkinsons, LSVT Voice, and
WDBC), it turned out that the kNN, kNN-default, SVM-default classifiers, and two-stage
hybrid SVM-kNN classifiers gave the same values of the classification quality indicators
(BA, Acc, F1), equal to 1 on the test set. The class was assigned to object z in accordance with
the rule of weighted voting (7). The main difference between the two-stage hybrid SVM-
kNN classifiers and kNN classifiers (the same as when using the votes majority rule (6)) is,
possibly, in a various number of neighbors at which the best (i.e., maximum) value of the
classification quality indicator was achieved. The composition of the training and test sets,
with the use of which the best (i.e., maximum) value of the classification quality indicator
was achieved, can be obtained in different ways (with various compositions of training
and test sets and various numbers of neighbors in the kNN classifier), while, generally
speaking, the time required to obtain the desired high-quality classifier can be minimized
by developing the kNN classifier, which is part of the two-stage hybrid SVM-kNN classifier,
due to the use of the training set of lower cardinality than in the case when only kNN or
SVM classifiers are developed.

Tables 12–15 show the number of neighbors for the Standard and MinMax scaling
methods, at which the best (i.e., maximum) values of classification quality indicators
were achieved in the kNN, bSVM-A-kNN, bSVM-B-kNN, obSVM-A-kNN, obSVM-B-kNN
classifiers for different classification quality indicators on the Breast-Cancer-Wisconsin,
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Parkinsons, LSVT Voice, and WDBC datasets. Dashes (“-”) in the cells of Tables 12–15 mean
that for the classifier named in the column heading, the maximum value of the quality
indicator named in the row headings (in the leftmost cell of the row) was not observed.

Table 12. Number of neighbors at which the maximum values of classification quality indicators were achieved on the
Breast-Cancer-Wisconsin dataset (when rule of weighted voting (7) is used in the kNN classifier).

Classification
Quality Indicator

kNN: Stan-
dard/MinMax

bSVM-A-kNN:
Standard/MinMax

bSVM-B-kNN:
Standard/MinMax

obSVM-A-kNN:
Standard/MinMax

obSVM-B-kNN:
Standard/MinMax

BA 5/5 - - 5/5 5/5
Acc 5/5 - - 5/5 5/5
F1 5/5 - - 5/5 5/5

Table 13. Number of neighbors at which the maximum values of classification quality indicators were achieved on the
Parkinsons dataset (when rule of weighted voting (7) is used in the kNN classifier).

Classification
Quality Indicator

kNN: Stan-
dard/MinMax

bSVM-A-kNN:
Standard/MinMax

bSVM-B-kNN:
Standard/MinMax

obSVM-A-kNN:
Standard/MinMax

obSVM-B-kNN:
Standard/MinMax

BA 5/5 21/9 9/9 7/5 5/5
Acc 5/5 21/9 9/9 7/5 5/5
F1 5/5 21/9 9/9 7/5 5/5

Table 14. Number of neighbors at which the maximum values of classification quality indicators were achieved on the
LSVT Voice dataset (when rule of weighted voting (7) is used in kNN classifier).

Classification
Quality Indicator

kNN: Stan-
dard/MinMax

bSVM-A-kNN:
Standard/MinMax

bSVM-B-kNN:
Standard/MinMax

obSVM-A-kNN:
Standard/MinMax

obSVM-B-kNN:
Standard/MinMax

BA 5/5 21/- 9/9 - -/11
Acc 5/5 21/- 9/9 - -/11
F1 5/5 21/- 9/9 - -/11

Table 15. Number of neighbors at which the maximum values of classification quality indicators were achieved on the
WDBC dataset (when rule of weighted voting (7) is used in the kNN classifier).

Classification
Quality Indicator

kNN: Stan-
dard/MinMax

bSVM-A-kNN:
Standard/MinMax

bSVM-B-kNN:
Standard/MinMax

obSVM-A-kNN:
Standard/MinMax

obSVM-B-kNN:
Standard/MinMax

BA 5/5 - - 7/5 7/5
Acc 5/5 - - 7/5 7/5
F1 5/5 - - 7/5 7/5

It should be noted that one of the kNN classifiers, named in Tables 2–15 as kNN,
implements the search for the best number of neighbors. However, this does not always
allow this classifier to become the winner among the considered classifiers in terms of BA,
Acc, and F1. kNN-default, SVM-default, obSVM-default classifiers work with the default
parameters values.

Appendix B provides Tables A5–A7, which show the classification quality indicator
values (and number of neighbors for which the best (i.e., maximum) classification quality
indicator value was reached, for three datasets (Australian, German, and Ionosphere) on
which successful application of two-stage hybrid versions of SVM-kNN classifiers was
not obtained. Thus, the class was assigned to the object z in accordance with the rule of
weighted voting (7).

It should be additionally noted, according to the results of the data analysis in
Tables 2–15, that in some cases, the use of the rule of weighted voting (7) in kNN classifier
development can improve the classification quality.
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5.3. Analysis of Class Imbalance in Initial and Reduced Training Sets

Tables 16–18 show the number of objects of different classes and the ratio for the
number of objects labeled by “0” and “1” in the training sets (initial and reduced for kNN
classifier development) for some datasets from Table A1 (Appendix A) when using the
Standard scaling method and the rule majority of votes (6) with the best values of the
classification quality indicators (BA, Acc, and F1).

Table 16. Statistics for the number and ratio of objects of different classes in training sets with the best values of the balanced
accuracy indicator.

Dataset Name of Classifier

Success of Hybrid
Application (Whether It
Took 1st Place among 7

Classifiers, with the
Exclusion of kNN from
the List of 8 Classifiers)

Ratio of Number of
Objects Labeled “0”
and “1” in the Initial

Training Set

Ratio of Number of
Objects Labeled “0” and

“1” in the AorB Area
Separating the Classes

in SVM Classifier

Australian

obSVM-A-kNN − 295/256 = 1.152 271/224 = 1.210
bSVM-A-kNN − 299/252 = 1.187 272/220 = 1.236
obSVM-B-kNN − 313/238 = 1.315 288/215 = 1.340
bSVM-B-kNN − 306/245 = 1.249 279/220 = 1.268

Breast-Cancer-
Wisconsin

obSVM-A-kNN + 363/196 = 1.852 294/191 = 1.539
bSVM-A-kNN − 369/190 = 1.942 298/188 = 1.585
obSVM-B-kNN + 363/196 = 1.852 303/192 = 1.578
bSVM-B-kNN − 365/194 = 1.881 280/193 = 1.451

German

obSVM-A-kNN − 558/242 = 2.306 509/226 = 2.252
bSVM-A-kNN − 568/232 = 2.448 528/219 = 2.411
obSVM-B-kNN − 560/240 = 2.333 513/220 = 2.332
bSVM-B-kNN − 557/243 = 2.292 513/223 = 2.300

Haberman

obSVM-A-kNN + 170/74 = 2.297 140/65 = 2.154
bSVM-A-kNN − 173/71 = 2.437 144/62 = 2.323
obSVM-B-kNN − 170/74 = 2.297 140/65 = 2.154
bSVM-B-kNN − 172/72 = 2.389 133/66 = 2.015

Heart

obSVM-A-kNN − 115/101 = 1.139 77/74 = 1.041
bSVM-A-kNN − 118/98 = 1.204 86/73 = 1.178
obSVM-B-kNN − 118/98 = 1.204 80/75 = 1.067
bSVM-B-kNN − 122/94 = 1.298 90/70 = 1.286

Ionosphere

obSVM-A-kNN − 181/99 = 1.828 158/93 = 1.699
bSVM-A-kNN − 186/94 = 1.979 166/86 = 1.930
obSVM-B-kNN − 174/106 = 1.642 155/99 = 1.566
bSVM-B-kNN − 175/105 = 1.667 157/99 = 1.586

LSVT Voice

obSVM-A-kNN − 65/35 = 1.857 39/24 = 1.625
bSVM-A-kNN + 69/31 = 2.256 45/21 = 2.143
obSVM-B-kNN − 65/35 = 1.857 41/22 = 1.864
bSVM-B-kNN + 68/32 = 2.125 41/21 = 1.952

Parkinsons

obSVM-A-kNN + 111/44 = 2.523 77/33 = 2.333
bSVM-A-kNN − 110/45 = 2.444 83/30 = 2.767
obSVM-B-kNN + 111/44 = 2.523 83/30 = 2.767
bSVM-B-kNN + 111/44 = 2.523 82/31 = 2.645

Pima Indians
Diabetes

obSVM-A-kNN − 390.224 = 1.741 360/213 = 1.690
bSVM-A-kNN − 395/219 = 1.804 367/208 = 1.764
obSVM-B-kNN + 383/231 = 1.658 356/217 = 1.641
bSVM-B-kNN − 401/213 = 1.883 369/202 = 1.827

WDBC

obSVM-A-kNN + 374/185 = 2.022 316/181 = 1.746
bSVM-A-kNN − 366/192 = 1.896 302/192 = 1.573
obSVM-B-kNN + 365/194 = 1.881 306/191 = 1.602
bSVM-B-kNN − 360/199 = 1.809 297/195 = 1.523
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Table 17. Statistics for the number and ratio of objects of different classes in training sets with the best values of
accuracy indicator.

Dataset Name of Classifier

Success of Hybrid
Application (Whether It
Took 1st Place among 7

Classifiers, with the
Exclusion of kNN from
the List of 8 Classifiers)

Ratio of Number of
Objects Labeled “0”
and “1” in the Initial

Training Set

Ratio of Number of
Objects Labeled “0” and

“1” in the AorB Area
Separating the Classes

in SVM Classifier

Australian

obSVM-A-kNN − 295/256 = 1.152 271/224 = 1.210
bSVM-A-kNN − 299/252 = 1.187 272/220 = 1.236
obSVM-B-kNN − 301/250 = 1.204 280/227 = 1.233
bSVM-B-kNN − 298/253 = 1.178 276/217 = 1.272

Breast-Cancer-
Wisconsin

obSVM-A-kNN + 363/196 = 1.862 294/191 = 1.539
bSVM-A-kNN − 361/198 = 1.823 294/195 = 1.508
obSVM-B-kNN + 363/196 = 1.852 303/192 = 1.578
bSVM-B-kNN − 352/207 = 1.700 294/201 = 1.463

German

obSVM-A-kNN − 542/258 = 2.101 494/238 = 2.076
bSVM-A-kNN − 542/258 = 2.101 498/240 = 2.075
obSVM-B-kNN − 542/258 = 2.101 494/238 = 2.076
bSVM-B-kNN − 543/257 = 2.113 500/234 = 2.137

Haberman

obSVM-A-kNN + 170/74 = 2.642 140/65 = 2.153
bSVM-A-kNN − 170/74 = 2.642 140/65 = 2.153
obSVM-B-kNN − 172/72 = 2.389 134/61 = 2.519
bSVM-B-kNN − 172/72 = 2.389 133/66 = 2.015

Heart

obSVM-A-kNN + 117/99 = 1.181 78/74 = 1.054
bSVM-A-kNN − 118/98 = 1.204 86/73 = 1.178
obSVM-B-kNN + 116/100 = 1.160 80/76 = 1.053
bSVM-B-kNN − 116/100 = 1.160 79/78 = 1.013

Ionosphere

obSVM-A-kNN − 176/104 = 1.692 156/100 = 1.560
bSVM-A-kNN − 172/108 = 1.593 156/105 = 1.486
obSVM-B-kNN − 174/106 = 1.642 155/99 = 1.566
bSVM-B-kNN − 172/108 = 1.593 154/103 = 1.495

LSVT Voice

obSVM-A-kNN − 65/35 = 1.857 39/24 = 1.625
bSVM-A-kNN + 69/31 = 2.226 45/21 = 2.143
obSVM-B-kNN − 65/35 = 1.857 41/22 = 1.864
bSVM-B-kNN + 68/32 = 2.125 41/21 = 1.952

Parkinsons

obSVM-A-kNN + 111/44 = 2.523 77/33 = 2.333
bSVM-A-kNN − 114/41 = 2.780 79/30 = 2.633
obSVM-B-kNN + 111/44 = 2.523 83/30 = 2.767
bSVM-B-kNN + 111/44 = 2.523 82/31 = 2.645

Pima Indians
Diabetes

obSVM-A-kNN − 390/224 = 1.741 360/213 = 1.690
bSVM-A-kNN − 392/222 = 1.766 363/212 = 1.712
obSVM-B-kNN − 383/231 = 1.658 356/217 = 1.641
bSVM-B-kNN − 383/231 = 1.658 356/217 = 1.641

WDBC

obSVM-A-kNN + 374/185 = 2.022 316/181 = 1.746
bSVM-A-kNN − 355/204 = 1.740 286/198 = 1.444
obSVM-B-kNN + 365/194 = 1.881 306/191 = 1.602
bSVM-B-kNN − 352/207 = 1.700 290/199 = 1.457
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Table 18. Statistics for the number and ratio of objects of different classes in training sets with the best values of
F1-score indicator.

Dataset Name of Classifier

Success of Hybrid
Application (Whether It
Took 1st Place among 7

Classifiers, with the
Exclusion of kNN from
the List of 8 Classifiers)

Ratio of Number of
Objects Labeled “0”
and “1” in the Initial

Training Set

Ratio of Number of
Objects Labeled “0” and

“1” in the AorB Area
Separating the Classes

in SVM Classifier

Australian

obSVM-A-kNN − 313/238 = 1.315 288/215 = 1.340
bSVM-A-kNN − 299/252 = 1.187 272/220 = 1.236
obSVM-B-kNN − 313/238 = 1.315 288/215 = 1.340
bSVM-B-kNN − 306/245 = 1.249 279/220 = 1.268

Breast-Cancer-
Wisconsin

obSVM-A-kNN + 363/196 = 1.852 294/191 = 1.539
bSVM-A-kNN − 369/190 = 1.942 298/188 = 1.585
obSVM-B-kNN + 363/196 = 1.852 303/192 = 1.578
bSVM-B-kNN − 365/194 = 1.881 280/193 = 1.451

German

obSVM-A-kNN − 558/242 = 2.306 509/226 = 2.252
bSVM-A-kNN − 568/232 = 2.448 528/219 = 2.411
obSVM-B-kNN − 560/240 = 2.333 513/220 = 2.332
bSVM-B-kNN − 557/243 = 2.292 513/223 = 2.300

Haberman

obSVM-A-kNN + 176/68 = 2.588 136/56 = 2.429
bSVM-A-kNN − 176/68 = 2.588 140/56 = 2.500
obSVM-B-kNN − 177/67 = 2.642 141/57 = 2.474
bSVM-B-kNN − 172/72 = 2.389 133/66 = 2.015

Heart

obSVM-A-kNN − 117/99 = 1.182 78/74 = 1.054
bSVM-A-kNN − 118/98 = 1.204 86/73 = 1.178
obSVM-B-kNN − 118/98 = 1.204 80/75 = 1.067
bSVM-B-kNN − 122/94 = 1.298 90/70 = 1.286

Ionosphere

obSVM-A-kNN − 181/99 = 1.828 158/93 = 1.699
bSVM-A-kNN − 176/104 = 1.692 155/98 = 1.582
obSVM-B-kNN − 174/106 = 1.642 155/99 = 1.566
bSVM-B-kNN − 175/105 = 1.667 157/99 = 1.586

LSVT Voice

obSVM-A-kNN − 70/30 = 2.333 46/20 = 2.300
bSVM-A-kNN + 69/31 = 2.256 45/21 = 2.143
obSVM-B-kNN − 65/35 = 1.857 41/22 = 1.864
bSVM-B-kNN + 68/32 = 2.125 41/21 = 1.952

Parkinsons

obSVM-A-kNN + 111/44 = 2.523 77/33 = 2.333
bSVM-A-kNN − 114/41 = 2.780 79/30 = 2.633
obSVM-B-kNN + 111/44 = 2.523 83/30 = 2.767
bSVM-B-kNN + 111/44 = 2.523 82/31 = 2.645

Pima Indians
Diabetes

obSVM-A-kNN − 390.224 = 1.741 360/213 = 1.690
bSVM-A-kNN − 399/215 = 1.856 370/207 = 1.787
obSVM-B-kNN − 400/214 = 1.869 368/197 = 1.868
bSVM-B-kNN − 401/213 = 1.883 369/202 = 1.827

WDBC

obSVM-A-kNN + 374/185 = 2.022 316/181 = 1.746
bSVM-A-kNN − 366/192 = 1.896 302/192 = 1.573
obSVM-B-kNN + 365/194 = 1.881 306/191 = 1.602
bSVM-B-kNN − 360/199 = 1.809 297/195 = 1.523

When calculating the BA, Acc, and F1 indicators (Tables 16–18) on the Australian, Ger-
man, and Ionosphere datasets, it was not possible to improve the quality of the classification
using the proposed two-stage hybrid classifiers.

When calculating the BA and F1 indicators (Tables 16 and 18) on the Haberman,
Heart, and Pima Indians Diabetes datasets, it was possible to increase the classification
quality using the proposed two-stage hybrid classifiers for the first set, and no advan-
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tage was obtained for the second and third sets. Therefore, using the Breast-Cancer-
Wisconsin, Parkinsons, LSVT Voice, and WDBC datasets, we managed to ensure the
highest possible classification quality, which was also obtained using the kNN-default and
bSVM-default classifiers.

When calculating the Acc indicator (Table 17) on the Haberman, Heart, and Pima
Indians Diabetes datasets, it was possible to increase the classification quality using the
proposed two-stage hybrid classifiers for the first dataset to obtain the same value of Acc
indicator for the second dataset, and no advantage was obtained for the third dataset.
Thus, using the Breast-Cancer-Wisconsin, Parkinsons, LSVT Voice, and WDBC datasets,
we managed to ensure the highest possible classification quality, which was also obtained
using the kNN-default and bSVM-default classifiers.

Analysis of the data in Tables 16–18 allows us to conclude that in some cases, a decrease
in the value of the class imbalance indicator in the AorB area allows for an increase in the
data classification quality as a whole.

6. Discussion

The presented two-stage hybrid SVM-kNN classifiers could in some cases increase
the data classification quality, because applying the kNN classifier to objects near the
separating hyperplane found by the SVM classifier allowed for a reduction in the reduce
th number of misclassified objects. Therefore, it is promising to use all considered ver-
sions of the classifiers: bSVM-kNN, obSVM-kNN with consideration of their variants both
inside the selected symmetric areas within the boundaries defining the band separating
the classes (bSVM-A-kNN, obSVM-A-kNN), and just within the boundaries that form
the class-separating strip (bSVM-B-kNN, obSVM-B-kNN), since it is problematic to pre-
dict in advance how the data are organized including near the boundary that separates
the classes.

The proposed two-stage hybrid classifier should learn quickly, because at the first stage,
the development of the SVM classifier with default parameters values is implemented,
and at the second stage, the kNN classifier with varying value of only one parameter is
named as the number of neighbors and, possibly, with the choice of the voting rule ((6) or
(7)) is developed. As such, training of the kNN classifier is performed on a reduced set
containing only objects from described AorB area.

The proposed two-stage hybrid SVM-kNN classifiers were tested using a personal
computer with the following characteristics: processor: Intel (R) Core (TM) i3-8145U CPU
@ 2.10 GHz, 2304 MHz, 2 cores; RAM: 4 GB; 64-bit operating system. All calculations were
performed under Windows 10.

In the course of the experiments, the average development time of bSVM, obSVM,
kNN as well as RF was estimated with the default parameter values based on the results
of 500 program launches with various variants of splitting the considered dataset into
training and test sets. Development time was calculated as the sum of training time and
testing time. For the bSVM, obSVM, and kNN classifiers, the values of these parameters
are shown in Table 1, and for RF, the following default values of the main parameters
were used: number of trees is 100; function to measure the quality of split is Gini index;
minimum number of samples required to split an internal node is 2; maximum depth of the
tree is defined according to the rule: nodes are expanded until all leaves are pure or until
all leaves contain less than the minimum number of samples required to split an internal
node; maximum number of features to consider when looking for the best split is equal to
the square root of the number of features; minimum number of samples required to be at a
leaf node is 1; nd minimum weighted fraction of the sum total of weights (of all the input
samples) required to be at a leaf node is 0.

As the results of the experiments have shown, the development time of the kNN
classifier was of the same order as the development time of bSVM and obSVM, while the
development time of the RF classifier had a higher order. This is why the kNN classifier
was chosen as the auxiliary classifier. Figures 2 and 3 show graphical illustrations for
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the development time of the bSVM, obSVM, kNN, and RF classifiers as well as for the
development time ratios for the datasets, the calculated information for which is detailed in
Section 5. It can be assumed that approximately the same ratios for the time development
will also be in the search for the optimal number of neighbors in the development of the
kNN classifier, which is part of the hybrid. Therefore, training of the kNN classifier will
be performed on a reduced training set, which should positively affect the development
time of the kNN classifier (in the sense of its minimization). It should be noted that the
formation time of the reduced training set used in the kNN classifier development was not
big and consisted of the time of one pass through the initial training set and the time spent
on sorting the objects of the initial training set based on the results of comparing the object
class labels in it and the class labels assigned to the same objects by the developed classifier.
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The RF classifier can be recommended for use as an auxiliary classifier in a hybrid
only if it has significant computing powers (although this classifier, in some cases, allows
one to obtain higher classification quality when used both as part of a hybrid and for
individual use).
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Table 19 shows the values of the accuracy indicator assessments obtained for the best
two-stage hybrid SVM-kNN classifiers for three datasets (Haberman, Heart, and Pima
Indians Diabetes), for which, taking into account various indicators of classification quality,
it was possible to prove the effectiveness of the proposed two-stage hybrid SVM-kNN
classifiers in comparison with the SVM and kNN classifiers, with parameter values set
by default. Table 19 also provides the values of the accuracy indicator parameters values
for the binary SVM classifier with default parameter values and the binary SVM classifier
built using the modified PSO algorithm [21,22]. The value of the accuracy indicator was
estimated using a test dataset. A dash “-” in a table cell means that the classifier specified
in the row header was not the best for the dataset specified in the column header. A
dash “-” in the last line of the first column means that the voting rule was not applied.
The maximum values in the columns are in bold. Analysis of the data in Table 19 allows
us to draw the following conclusions. For the Haberman and Pima Indians Diabetes
datasets, the proposed two-stage hybrid SVM-kNN classifiers were the best (in the sense
of maximizing the value of the accuracy indicator); for the Heart set, the best value of the
accuracy indicator was obtained using thee binary SVM classifier built using the modified
PSO algorithm. Therefore, we managed to slightly increase the value of the accuracy
indicator for the binary SVM classifier built using the modified PSO algorithm compared
to the binary SVM classifier with the default parameter values, but we did not manage to
exceed the results obtained using the obSVM-A-kNN classifier.
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Table 19. Comparative analysis of the classifiers based on accuracy indicator (with Standard scaling).

Classifier/Voting Rule Haberman/Standard Heart/Standard Pima Indians
Diabetes/Standard

obSVM-A-kNN/(6) 0.934 - -
obSVM-B-kNN/(6) - 0.963 0.870
bSVM-A-kNN/(7) 0.934 - -

obSVM-A-kNN/(7) - 0.963 -
obSVM-B-kNN/(7) - 0.963 -
obSVM-B-kNN/(7) - - 0.857

SVM-default 0.918 0.963 0.857
SVM+PSO/- 0.923 0.981 0.857

It should be noted that one should pay attention to the time spent on obtaining the
best classifiers: How much time is spent on obtaining them? Is it worth spending a lot
of time on developing a classifier, or can you obtain a classifier of acceptable quality in
less time?

For example, for the Pima Indians Diabetes dataset, the development time for the
SVM classifier with default parameter values when the 500 program launches were imple-
mented was approximately 10 s, and the obSVM-B-kNN development time for 500 program
launches was approximately 220 s. The development time for the binary SVM classifier
using the modified PSO algorithm was approximately 950 s, provided that 500 generations
were realized for a population of 60 particles. Each particle determines the parameter
values of a certain classifier, during the construction of which one of three types of kernel
function (from the list of radial basic, polynomial, and sigmoid kernel functions) is spec-
ified, and the parameter values of the kernel function and the regularization parameter
value are selected. As we can see, time spent in the latter case turned out to be significantly
higher, but at the same time, we could not get the classifier with the highest value of the
accuracy indicator. Obviously, when working with large datasets, time spent on developing
the binary SVM classifier using the modified PSO algorithm will be even greater, and we
will not have a guarantee that we will be able to obtain the desired effective solution.

When using the modified PSO algorithm, it was possible to slightly improve the
quality of SVM classifiers for some indicators for three datasets (Australian, German, and
Ionosphere); the information on the development of two-stage hybrid SVM-kNN classifiers
is given in Tables A2–A7. However, the question arises again regarding the expediency of
significant time expenditures to obtain the desired solution.

Obviously, a reasonable approach would be to implement the development process
for two-stage hybrid versions of SVM-kNN classifiers with the choice of the best classifier
from all available at the current launch of the program.

The impossibility of obtaining an effective solution using aa two-stage hybrid of the
SVM-kNN classifier for some datasets may be due to the fact that it was not possible to
provide the necessary rebalancing of classes within the strip separating them. In addition,
it can be caused by the specifics of grouping objects within the strip separating the classes.

It should be noted that the development process of two-stage hybrid SVM-kNN
classifiers can be parallelized, which can be very important when working with big data.

7. Conclusions

In general, the obtained results allow us to speak about the prospects of using two-
stage hybrid SVM-kNN classifiers with the aim to increase the data classification quality.

In the course of further research, it is planned to investigate the possibility of using, as
an additional toolkit, classifiers such as kNN classifiers that implement various weighted
options to account for the nearest neighbors and perform a quick search for the nearest
neighbors, classifiers based on the Parzen window algorithm, RF classifiers, etc. In addition,
it is of considerable interest to analyze the influence of the choice of symmetric and
asymmetric areas within the boundaries defining the hyperplane dividing the classes
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when forming the training and test subsets for the kNN classifier on the overall quality of
the classifier.

The proposed two-stage hybrid SVM-kNN classifier is fundamentally different from
the hybrid SVM-kNN classifier proposed in [52,53] by the method of forming a training
set for the developing kNN classifier: in [52,53], objects were used that lie outside the
area, which, moreover, can be formed taking into account the principles of symmetry
and asymmetry with respect to the hyperplane dividing the classes, and the proposed
study used objects lying inside the area formed based on the principles of symmetry with
respect to the hyperplane dividing the classes. Similar principles (as in [52,53]) for the
formation of a training set were considered in [68,69]. Therefore, we plan to research the
opportunity of using two versions of one-class SVM-algorithm—ooSVM and obSVM—for
the development of the concept of the hybrid SVM-kNN classifier proposed in [52,53].
Therefore, the main problem in all two-stage hybrid SVM-kNN classifiers is the problem of
applicability of the kNN classifier at the second stage, due to the possible small number
of objects in the reduced training set formed using the results from the SVM classifier
development.
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Table A1. Datasets and their descriptions.

Dataset
Total

Number of
Objects s

Numberof
Features q

Number of
Objects in the

Class with
the Label “0”

Number of
Objects in the

Class with
the Label “1”

Source

Australian 689 14 382 307
https://archive.ics.uci.edu/ml/datasets/

statlog+(australian+credit+approval)
(accessed on 10 December 2020)

Banknote
Authentication 1371 4 761 610

https://archive.ics.uci.edu/ml/datasets/
banknote+authentication (accessed on 10

December 2020)

Biodeg 1055 41 699 356
https://archive.ics.uci.edu/ml/datasets/

SAR+biodegradation (accessed on 10
December 2020)

Breast-Cancer-
Wisconsin 699 9 458 241

https://archive.ics.uci.edu/ml/datasets/
breast+cancer+wisconsin+(diagnostic)

(accessed on 10 December 2020)

Diabetic +
Retinopathy 1150 19 84 41

https://archive.ics.uci.edu/ml/datasets/
Diabetic+Retinopathy+Debrecen+Data+

Set (accessed on 10 December 2020)

German 1000 24 700 300
http://archive.ics.uci.edu/ml/machine-

learning-databases/statlog/german
(accessed on 10 December 2020)

Haberman 305 3 224 81
https://archive.ics.uci.edu/ml/datasets/
haberman%27s+survival (accessed on 10

December 2020)

Heart 270 13 150 120
http://archive.ics.uci.edu/ml/machine-

learning-databases/statlog/heart
(accessed on 10 December 2020)

Ionosphere 351 34 225 126
https://archive.ics.uci.edu/ml/machine-
learning-databases/ionosphere (accessed

on 10 December 2020)

Liver 345 6 200 145
http://archive.ics.uci.edu/ml/machine-

learning-databases/liver-disorders
(accessed on 10 December 2020)

LSVT Voice 125 310 84 41
http://archive.ics.uci.edu/ml/datasets/
LSVT+Voice+Rehabilitation (accessed on

10 December 2020)

Musk (Version 1) 475 166 268 207
https://archive.ics.uci.edu/ml/datasets/

Musk+(Version+1) (accessed on 10
December 2020)

Musk (Version 2) 6598 168 5580 1017
https://archive.ics.uci.edu/ml/datasets/

Musk+(Version+2) (accessed on 10
December 2020)

Parkinsons 194 22 146 48 http://archive.ics.uci.edu/ml/datasets/
Parkinsons (accessed on 10 December 2020)

Phoneme 5403 5 3817 1586
https://github.com/jbrownlee/Datasets/
blob/master/phoneme.csv (accessed on 10

December 2020)

Pima Indians
Diabetes 768 8 500 268

http://archive.ics.uci.edu/ml/datasets/
Pima+Indians+Diabetes (accessed on 10

December 2020)

Spam 4601 57 2788 1813
https://archive.ics.uci.edu/ml/machine-

learning-databases/spambase (accessed on
10 December 2020)

Sports Articles 1000 59 635 365
https://archive.ics.uci.edu/ml/datasets/
Sports+articles+for+objectivity+analysis

(accessed on 10 December 2020)

https://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
https://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
https://archive.ics.uci.edu/ml/datasets/banknote+authentication
https://archive.ics.uci.edu/ml/datasets/banknote+authentication
https://archive.ics.uci.edu/ml/datasets/SAR+biodegradation
https://archive.ics.uci.edu/ml/datasets/SAR+biodegradation
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen+Data+Set
https://archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen+Data+Set
https://archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen+Data+Set
http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german
http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german
https://archive.ics.uci.edu/ml/datasets/haberman%27s+survival
https://archive.ics.uci.edu/ml/datasets/haberman%27s+survival
http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/heart
http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/heart
https://archive.ics.uci.edu/ml/machine-learning-databases/ionosphere
https://archive.ics.uci.edu/ml/machine-learning-databases/ionosphere
http://archive.ics.uci.edu/ml/machine-learning-databases/liver-disorders
http://archive.ics.uci.edu/ml/machine-learning-databases/liver-disorders
http://archive.ics.uci.edu/ml/datasets/LSVT+Voice+Rehabilitation
http://archive.ics.uci.edu/ml/datasets/LSVT+Voice+Rehabilitation
https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)
https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)
https://archive.ics.uci.edu/ml/datasets/Musk+(Version+2)
https://archive.ics.uci.edu/ml/datasets/Musk+(Version+2)
http://archive.ics.uci.edu/ml/datasets/Parkinsons
http://archive.ics.uci.edu/ml/datasets/Parkinsons
https://github.com/jbrownlee/Datasets/blob/master/phoneme.csv
https://github.com/jbrownlee/Datasets/blob/master/phoneme.csv
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
https://archive.ics.uci.edu/ml/machine-learning-databases/spambase
https://archive.ics.uci.edu/ml/machine-learning-databases/spambase
https://archive.ics.uci.edu/ml/datasets/Sports+articles+for+objectivity+analysis
https://archive.ics.uci.edu/ml/datasets/Sports+articles+for+objectivity+analysis
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Table A1. Cont.

Dataset
Total

Number of
Objects s

Numberof
Features q

Number of
Objects in the

Class with
the Label “0”

Number of
Objects in the

Class with
the Label “1”

Source

Vertebral 310 6 210 100
http://archive.ics.uci.edu/ml/datasets/

Vertebral+Column (accessed on 10
December 2020)

WDBC 699 10 458 241
https://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+(Diagnostic)

(accessed on 10 December 2020)

Appendix B

Table A2. Values of the balanced accuracy indicator (when votes majority rule (6) is used in the kNN classifier).

Dataset/Scaling
Method

kNN/Number
of Neighbors

kNN-
default

SVM-
default

obSVM-
default

bSVM-A-
kNN/Number
of Neighbors

bSVM-B-
kNN/Number
of Neighbors

obSVM-A-
kNN/Number
of Neighbors

obSVM-B-
kNN/Number
of Neighbors

Australian/Standard 0.942/27 0.935 0.941 0.689 0.721/5 0.749/5 0.841/23 0.848/41
Australian/MinMax 0.945/45 0.931 0.950 0.647 0.687/15 0.730/15 0.831/45 0.837/35

German/Standard 0.754/5 0.754 0.763 0.684 0.705/5 0.706/5 0.674/7 0.669/5
German/MinMax 0.730/5 0.730 0.755 0.659 0.693/7 0.693/9 0.673/7 0.673/7

Ionosphere/Standard 0.944/5 0.944 1 0.937 0.656/19 0.792/5 0.889/5 0.900/19
Ionosphere/MinMax 0.944/5 0.944/5 1 0.895 0.678/11 0.727/5 0.875/17 0.881/17

Table A3. Values of the accuracy indicator (when votes majority rule (6) is used in the kNN classifier).

Dataset/Scaling
Method

kNN/Number
of Neighbors

kNN-
default

SVM-
default

obSVM-
default

bSVM-A-
kNN/Number
of Neighbors

bSVM-B-
kNN/Number
of Neighbors

obSVM-A-
kNN/Number
of Neighbors

obSVM-B-
kNN/Number
of Neighbors

Australian/Standard 0.949/27 0.935 0.942 0.689 0.721/5 0.749/5 0.877/23 0.848/41
Australian/MinMax 0.945/45 0.931 0.950 0.647 0.687/15 0.730/15 0.831/45 0.837/35

German/Standard 0.825/27 0.815/5 0.850 0.655 0.825/41 0.825/27 0.825/41 0.825/41
German/MinMax 0.820/19 0.820 0.865 0.640 0.823/19 0.822/19 0.825/23 0.810/15

Ionosphere/Standard 0.972/5 0.972 1 0.930 0.803/13 0.859/5 0.930/5 0.944/19
Ionosphere/MinMax 0.972/5 0.972 1 0.887 0.859/19 0.859/11 0.930/11 0.930/7

Table A4. Values of the F1-score indicator (when votes majority rule (6) is used in the kNN classifier).

Dataset/Scaling
Method

kNN/Number
of Neighbors

kNN-
default

SVM-
default

obSVM-
default

bSVM-A-
kNN/Number
of Neighbors

bSVM-B-
kNN/Number
of Neighbors

obSVM-A-
kNN/Number
of Neighbors

obSVM-B-
kNN/Number
of Neighbors

Australian/Standard 0.937/27 0.933 0.934 0.694 0.628/5 0.674/5 0.817/31 0.824/41
Australian/MinMax 0.940/9 0.925 0.945 0.667 0.578/15 0.653/15 0.800/45 0.814/35

German/Standard 0.593/5 0.620/5 0.680 0.592 0.595/5 0.595/5 0.523/7 0.521/5
German/MinMax 0.590/5 0.618 0.667 0.556 0.564/7 0.566/9 0.526/7 0.526/7

Ionosphere/Standard 0.941/5 0.941 1 0.902 0.485/9 0.737/5 0.875/5 0.889/19
Ionosphere/MinMax 0.941/5 0.941 1 0.868 0.522/11 0.625/5 0.857/17 0.865/17

http://archive.ics.uci.edu/ml/datasets/Vertebral+Column
http://archive.ics.uci.edu/ml/datasets/Vertebral+Column
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)


Symmetry 2021, 13, 615 30 of 32

Table A5. Values of the balanced accuracy indicator (when rule of weighted voting (7) is used in the kNN classifier).

Dataset/Scaling
Method

kNN/Number
of Neighbors

kNN-
default

SVM-
default

obSVM-
default

bSVM-A-
kNN/Number
of Neighbors

bSVM-B-
kNN/Number
of Neighbors

obSVM-A-
kNN/Number
of Neighbors

obSVM-B-
kNN/Number
of Neighbors

Australian/Standard 0.940/23 0.935 0.941 0.689 0.708/23 0.738/41 0.850/15 0.835/25
Australian/MinMax 0.945/23 0.935 0.950 0.647 0.687/39 0.730/39 0.826/43 0.833/23

German/Standard 0.754/5 0.754 0.763 0.684 0.687/5 0.685/17 0.661/15 0.672/9
German/MinMax 0.742/5 0.729 0.753 0.668 0.692/13 0.700/13 0.692/9 0.682/21

Ionosphere/Standard 0.944/5 0.944 1 0.937 0.694/17 0.740/15 0.875/15 0.900/11
Ionosphere/MinMax 0.944/5 0.944 1 0.895 0.676/5 0.740/21 0.880/5 0.881/17

Table A6. Values of the accuracy indicator (when rule of weighted voting (7) is used in the kNN classifier).

Dataset/Scaling
Method

kNN/Number
of Neighbors

kNN-
default

SVM-
default

obSVM-
default

bSVM-A-
kNN/Number
of Neighbors

BSVM-B-
kNN/Number
of Neighbors

obSVM-A-
kNN/Number
of Neighbors

obSVM-B-
kNN/Number
of Neighbors

Australian/Standard 0.940/23 0.935 0.942 0.689 0.783/33 0.783/33 0.870/13 0.835/25
Australian/MinMax 0.945/23 0.935 0.950 0.647 0.687/39 0.730/39 0.826/43 0.833/23

German/Standard 0.840/39 0.810 0.850 0.655 0.820/17 0.835/17 0.820/17 0.825/25
German/MinMax 0.840/13 0.820 0.865 0.640 0.825/13 0.825/13 0.825/13 0.815/5

Ionosphere/Standard 0.972/5 0.972 1 0.930 0.845/17 0.859/9 0.930/7 0.944/11
Ionosphere/MinMax 0.972/5 0.972 1 0.887 0.845/5 0.859/11 0.930/7 0.930/13

Table A7. Values of the F1-score indicator (when rule of weighted voting (7) is used in the kNN classifier).

Dataset/Scaling
Method

kNN/Number
of Neighbors

kNN-
default

SVM-
default

obSVM-
default

bSVM-A-
kNN/Number
of Neighbors

bSVM-B-
kNN/Number
of Neighbors

obSVM-A-
kNN/Number
of Neighbors

obSVM-B-
kNN/Number
of Neighbors

Australian/Standard 0.934/23 0.933/5 0.934 0.694 0.607/5 0.660/41 0.824/15 0.810/19
Australian/MinMax 0.940/17 0.932 0.945 0.667 0.578/39 0.653/39 0.793/37 0.804/23

German/Standard 0.620/5 0.620 0.680 0.592 0.544/11 0.544/11 0.495/9 0.518/9
German/MinMax 0.635/9 0.618 0.667 0.556 0.565/5 0.565/5 0.559/9 0.532/21

Ionosphere/Standard 0.980/5 0.980 1 0.902 0.560/17 0.649/15 0.857/15 0.889/11
Ionosphere/MinMax 0.942/5 0.942 1 0.868 0.526/9 0.649/21 0.864/5 0.865/17
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